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1 Preface

The underlying principles of data assimilation are easy, but the available literature, for the
most part, is not. The art of applied data assimilation is also more difficult than the underlying
principles might appear to indicate. I have written this note mainly to provide a fairly gentle
introduction to these underlying principles, including some examples to make things concrete.
Another intention was to help my own poor memory: if I do not write something down, I am
likely to forget it. (I find some reassurance in Doob [Sne97].)

Once you have understood the basic principles, it should be easier to get into the research
literature and practical applications. As an example of something that I have not written about
here, but which is of central importance in practical atmospheric data assimilation [LBB+00], I
mention the control variable transforms — a topic that may be meaningless until you understand
the basics, as presented here and in other tutorials. I hope also that some of the other tutorial
material will be easier if you examine it alongside this note, in which I have adopted a different
point of view.

Data assimilation is traditionally used to quantify states of models of systems, such as the
atmosphere. It can also be used to estimate parameters that control systems, so I have included
that application here.

A useful tool in the preparation of computer codes (by which I mean programs, not cryp-
tography) is automatic differentiation, also known as algorithmic differentiation. In my opinion,
this is becoming increasingly important in practical data assimilation, so I have also written a
section on that.

Throughout, the presentation is informal and idiosyncratic, based on my own areas of re-
search and understanding. Basically, it fills in what I did not understand when I started learning
about data assimilation. In this spirit, I have included some brief digressions into more specialised
areas — I hope these are useful. Where I am unsure of something, I say so.
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Thanks to Edmund Ryan, who at the time of writing is at the University of Sheffield, for
pointing out some errors and inconsistencies in an earlier version. Any remaining errors are, of
course, entirely my own fault. I will be grateful for any more feedback from readers.

At this point, you might want to read §5, starting on page 9, before coming back to the next
section. Be sure not to skip §5 altogether.

2 Introduction: What is Data Assimilation (DA)?

We have a system, and a numerical model of it. The sort of system we are interested in is
something like the atmosphere, or an ocean, or the land surface at a certain geographical location.
The model is then something like a spatially and temporally discretised mathematical description
of one of these systems. (There are DA methods for continuous models, but I do not understand
them, and they are not directly relevant here.)

The state of the model is denoted by its state vector at time t: x(t), or xt. If the time steps are
numbered, it becomes xi. This model state vector contains all the numbers that describe the state
of the model. For a model of the atmosphere, these could be: the velocity components, pressures,
potential temperatures and humidities at all grid-points in a model of the atmosphere. For a 1-
dimensional model of the land surface, they could be: soil water potential in soil layers, radiation
intensity and carbon dioxide concentrations in vegetation layers, screen-height temperature, etc.
Generally, they are a collection of numbers that are the values of prognostic variables in our
model.

At the same time, the system is described by ξ(t), or ξt — this can be a vector if the system is
physically discrete, or a set of functions (even though I use a vector notation) if it is continuous,
or some hybrid of these. We call it the system state vector. Sometimes I get carried away and
refer to the system as “the world”.

We have at our disposal a set of measurements of the system. These are often temporally
discrete. They need not be direct measurements of things that are represented by prognostic or
diagnostic variables in the model. But we will see later that we need to be able to predict what
these measurements should be, from the state of the model. For example, the system might be
a land-surface chunk sitting in a lysimeter, which measures (by weighing) the amount of water
in the soil, while our model is of soil water potential in layers in the soil. If we know the soil-
water relations for the type of soil, we can predict what the weight should be from the modelled
values of the water potential. Or if a satellite-borne instrument measures an intensity of infrared
radiation from the atmosphere, this is a spatially integrated quantity (because the radiometer
samples along a column in the atmosphere), modified by a complicated instrument function.
Given the model’s state (quantities at grid-points), and our knowledge of the instrument, we
can predict that measurement.

The model is wrong in various systematic and random ways. So are the measurements: the
lysimeter is not perfect, and the satellite’s radiometer may have offset or gain drifts and pointing
error.

Data assimilation is the process of using the measurements and the numbers in the model’s
state vector, to produce a best estimate of the state of the system. The estimated state vector
is x̂(t), x̂t or x̂i. By “best”, I mean we hope to get a statistically optimal estimate. For various
reasons, this is often not achievable in practice (or even in principle), and we do something
statistically sub-optimal instead. Much of the art of DA is concerned with doing something
useful when the optimal cannot be attained.

There may be parameters in the model, that we are not too sure of. For example, the single-
scattering albedo of leaves, or θwilt. Or, if we expand our definition of system a bit, the offset
or gain of our modelled satellite instrument. These affect the data stream emerging from the
model, or our predicted measurements, or both, but they are not generally considered to be
evolving quantities in the usual sense. However, they can be treated by augmented DA systems
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in ways that can be anything from ad hoc to mathematically rigorous.

3 Two Methods of Data Assimilation

The two fundamental modes of DA are sequential and variational. These are illustrated in Fig.
(1) on page 81. A picture like this can be found in any introduction to DA.

Both parts of the figure represent the same model, having a 0-dimensional state vector: the
scalar x. In both parts of the figure, we see a number of observations, represented by filled circles
with error bars. The first of these is special: it is not an observation, but the prior estimate of
the state at the beginning of the DA process. In fact, it need not come from an observation at
all: it can be, and often is, an estimate from climatology, or from a previous DA process.

The top part illustrates sequential DA, which is exemplified by the Kalman filter. We start
running the model, initialised by the prior estimate, and stop the model when the first observa-
tion of the system becomes available. In this simple case, the observation is a direct measurement
of x, not a more complicated function of x. At this time, we have an observation with error bars,
and a model state with error bars. The latter are known or assumed parts of our knowledge
of the model and system — see §4, below. Given these two data (model and observation) and
their error bars, we form the best estimate as a weighted sum of the two data, the weights being
inversely proportional to their respective errors. The small vertical arrow represents this adjust-
ment process. We then calculate the error bars on the estimate, from the observation errors and
model errors. Then we switch the model on again, and proceed exactly as before. In this second
iteration, our new estimate takes the place of the prior estimate. At the end of each iteration,
we update the estimate’s state and error bars, and this estimate is made available as a prior
estimate of the model’s state for the next iteration. The following pseudocode sums it up.

1. have a prior estimate of the state and its error bars
2. do
3. run the model for a while
4. get the observation and its error bars
5. update the estimate of the state and its error bars
6. end do

In a multi-dimensional system with multiple kinds of observations: the states of the system,
model and estimate are represented as evolving state vectors, while the observations at any time
are represented as a vector, and the error bars are represented as evolving covariance matrices.

The bottom part of Fig. (1) represents variational data assimilation. Here, we run the model
for the whole length of the DA process, from some initial condition that is known as the “first
guess” or “background estimate”. It is the same thing as the prior estimate in sequential data
assimilation. We then iteratively improve this by adjusting the initial condition until we have the
best fit to the prior estimate and the observations, that is a continuous trajectory of the model.
For example, the dashed line is a poor trajectory, because it goes outside all the error bars. The
unbroken line is better, because it is closer to the prior estimate and the observations. Both
lines are runs of the model without any adjustment except for the initial condition. That is, the
whole trajectory is adjusted to find the best one, hence the name “variational”. A disadvantage
of variational DA, compared with sequential DA, is that it does not propagate the estimate’s
errors through time, so we do not have error bars for the estimated state vector. Variational
DA (“Var”) generalises to multiple dimensions and covariance matrices, much as does sequential
DA. Much of practical Var is concerned with the iterative adjustment of the initial conditions.
The following pseudocode sums up Var.
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1. have a “first guess” estimate of the initial state and its error bars
2. do
3. run the model for the whole time of interest
4. get the observations and their error bars
5. compare the model trajectory with the observations and the initial state
6. if the comparison is not good enough, adjust the first guess estimate . . .
7. . . . but if it is good enough, exit this loop
8. end do

4 Systems, Models and Errors

4.1 Introduction

For the purposes of this paper, intuitive notions of model error, observation error and estimation
error are probably sufficient. (You may want to skip ahead to §5 then §6 or §7 now.) A full
understanding, though, depends on a deeper appreciation of what we mean by “error”. In general,
it depends on the system being analysed, and the assumptions that are made.

The next subsection, §4.2, is based on [Coh97a] and [Coh97b]1. It covers models of deter-
ministic systems.

4.2 Deterministic Systems

Let ξk be the continuous state of the world at time k. Ignoring any stochastic forcing (e.g.
variations in Solar radiative input, cosmic ray intensity, and other inputs from the exterior), the
world evolves in a deterministic manner:

ξk+1 = g(ξk), (4.1)

for some function g, called the system propagator. We do not know g, but we know it exists. In
the computer, we have the model state vector, xk, for this k. This is a function of the system
state vector. We write xt

k to mean the true model state vector, which is defined as a correct
discretisation of the system state vector:

xt
k = D(ξk), (4.2)

where D is the discretisation operator. It is the superscripted t that is the distinguishing feature
of the symbol xt

k.
In the computer, we have some function f , called the model propagator, that we use to model

the evolution of the model state vector. It is, in fact, our program that models the weather or
climate or whatever. It is, of course, imperfect, and we next find an expression for the model
error. By the definition of f ,

xk+1 = f(xk). (4.3)

Then we can perform the following sequence of manipulations:

xt
k+1 = D(ξk+1) (4.4a)

= D(g[ξk]) (4.4b)
= D(g[ξk]) + f(xt

k)− f(xt
k) (4.4c)

= f(xt
k) +D(g[ξk])− f(D[ξk]) (4.4d)

= f(xt
k) + wk, (4.4e)

1These papers are either very similar or identical.
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where

wk = D(g[ξk])− f(D[ξk]) (4.5)

is the model error. It is “discretised propagated system minus propagated discretised system”.
The general idea is that, even if we discretise the system’s state as well as we can (by whatever
criteria you like), and use the best model we can, then the propagated model state is unlikely to
be identical with the discretised propagated system. We generally assume that 〈wk〉 = 0; and a
fortiori that wk is multivariate normal with zero mean.

Another way to think about it is as the failure of the commutativity diagram, (4.6).

FAILS!

ξk
g−−−−→ ξk+1yD yD

xk
f−−−−→ xk+1

FAILS! (4.6)

At first sight, you might think something funny is going on here. Equation (4.5) shows that
wk is the difference between two perfectly deterministic quantities, so it must be deterministic
itself. But we treat it as a random vector in data assimilation. How can these facts be recon-
ciled, without concluding that something has gone badly wrong? In fact, although wk is indeed
deterministic, it is unknown and unknowable. Therefore we treat it as a random vector. I think
a Bayesian approach would be most consistent from here on, but since I do not know how to do
this, I continue to treat wk as a random vector in what follows.

[Coh97a] analyses observation errors and errors of representation in ways related to the above
treatment, but these are not covered here.

The best estimate of the model of the state, also called the analysis, is in error as well. The
error is called the analysis error, and it is described by the analysis error covariance matrix. The
analysis is not the same as xt

k because our data assimilation system does not give the true value,
but an estimate of it. The analysis is “contaminated” by the various kinds of error.

4.3 Stochastic Systems

What if the system has a stochastic component? A system that we are interested in could
certainly behave in such a way. For example, a small area of the surface of the land could
be influenced by external phenomena that are unknown, and therefore might be treated as
stochastic.

Now the system has a deterministic part as above, and an additive stochastic component:

ξk+1 = g(ξk) + γk, (4.7)

where γk is a random field or set of random fields. We can proceed as above, to get:

xt
k+1 = f(xt

k) +D(g[ξk] + γk)− f(D[ξk]) (4.8a)
= f(xt

k) + wk, (4.8b)

where now

wk = D(g[ξk] + γk)− f(D[ξk]). (4.9)

Can we now assume that 〈wk〉 = 0? If D is a linear operator, and γk has zero mean, then
equation (4.9) reduces to (4.5), and we can treat this case just like that of the deterministic
system. When things are more complicated, a further analysis should be done.
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4.4 Discrete Systems

By “discrete”, I mean that the system is fully described by a finite set of numbers, unlike the
continuous system of the previous few paragraphs, which had an infinite number of degrees of
freedom. For example, the system might be a remote sensing aircraft, described by its position
vector (three numbers) and its orientation (another three numbers). And the system in §8,
starting on page 18, is described by only two numbers, x and y.

Now, the discretisation operator is just the identity operator:

xt
k = D(ξk) = I(ξk) = ξk. (4.10)

So equations (4.5) and (4.9) become, respectively:

wk = g(ξk)− f(ξk), (4.11a)
wk = g(ξk) + γk − f(ξk), (4.11b)

where γk is now a random vector.

4.5 Broken Models

Finally, we must think about models that are simply incorrect. For example, a discretisation may
be inconsistent with the continuous equations; or the equations that are thought to describe the
system, do not describe the system very well. If we are very lucky, this might lead to a model error
that is stochastic with zero mean, as above. More likely, we will end up with model bias, i.e. a
deterministic error, or a stochastic error with non-zero mean, and possibly a mean that increases
in expectation. Model bias is not discussed further in this paper. See [Dd98] and references to
and from it for further information.

Models can also be wrong, not because the equations are wrong, but because the parameters
(e.g. coefficients and other fixed numbers) in them are wrong. This problem can often be dealt
with by parameter estimation, which is discussed in §14.

5 A Note on Notation

The notation in this paper is not completely unambiguous, but I think everything is correct and
makes sense in its context. I like Cantwell’s justification on page 15 of [Can02]:

It will usually be obvious from the context which function name applies to a given
configuration of variables. In any case, what is important is the concept, not the
symbols used to explain the concept.

We are trying to understand a system, which has a Greek bold symbol for its state: ξ. This
always means the system state vector.

We have a model of the system, and this model has a state that is denoted by a Roman bold
symbol: x. However, although ξ always means the state, x usually means the model, but can
also mean the state. In the Appendices, anything goes.

Observations are, similarly, one step removed from the system, so they have a Roman bold
symbol too: y.

Our best knowledge about the system is embodied in the estimate, which has a hat: x̂.
In the development of the Kalman filter, the following notation will simplify the page con-

siderably:
Sk = I −KkHk, ∀k. (5.1)

I is, as usual, an identity matrix. But I do not specify its size. Throughout this tutorial, I
use the symbol I, unadorned, to mean an identity matrix of the size that is necessary for the
equation it is in to make sense.
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Two standard-ish pieces of notation can be used for the statistical or probabilistic expecta-
tion: angle brackets, and the Ê symbol. Thus, for some random vector x̂ (which can, if you like,
contain only one entry and thus be a scalar), the expectation of x̂ can be written:

Ê [x̂] = 〈x̂〉. (5.2)

The conditional expectation can be written in these two ways:

Ê [x̂|ζ] = 〈x̂|ζ〉, (5.3)

for some other random vector ζ. I use the angle bracket notation in this paper. Random vectors
and conditional expectation are summarised in §A, starting on page 59.

A superscripted T , attached to a vector or matrix, indicates the transpose of that vector or
matrix. A superscripted t indicates a true value, e.g. xt is the true discretisation of a system’s
state ξ.

To avoid confusion about the term “linear”, I must say that a linear transformation of a
vector is just pre-multiplication by a matrix, and an affine transformation of a vector is a linear
transformation followed by addition of another vector. Thus, y = Sx is a linear transformation,
while y = Sx + ξ is affine. I generally say “linear” to mean the deterministic part of a transfor-
mation, but often this is followed by the addition of a stochastic vector, which makes the whole
transformation, strictly speaking, an affine one. So equation 7.1 is an affine transformation, but
the deterministic part (premultiplication by Mk) is linear.

6 The Rest of This Paper

Var is easier to understand in an intuitive way than is sequential filtering. But the latter seems
to be more fundamental than the former, so I describe and derive it first in what follows. After
the mathematical discussion of the Kalman filter, I present a simple example of how it works,
then a derivation of Var, and a simple example of that.

The Kalman filter is necessarily all about linear systems and linear observation operators
(these being the functions that take model states and return predictions of observations), so the
demo is linear. Var easily works with nonlinear systems, but does not consider model errors. So
the demo for Var is nonlinear, but does not treat analysis errors. Later parts of the paper relax
both these limitations.

Another large chunk of the paper is about practical aspects. This is where adjoints and other
linearisations become essential.

The subject is vast and complicated, so many things are left out — I briefly list some of
them later in the paper. I hope they will be more accessible after you have read all or some of
the stuff here.

7 The Kalman Filter (KF)

7.1 Introduction

Here I derive the Kalman filter. The derivation is close to that of [BH97], both in detail and in
its spirit of being fairly simple — but it is not identical. There are many other derivations in
books and refereed papers — I like, for example, [Dee91].

A much more complete (and difficult) derivation is that of [Coh97a], which is dwarfed by,
and partly covered by, [Tod99]. I only discuss the case of discrete time, i.e. where the model
has discrete time steps, and observations are available at certain discrete times. The continu-
ous time KF is much harder, and requires understanding of the measure-theoretic probability
theory [CK00], or the non-measure-theoretic method of [Jaz70], which is just as difficult.

10
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The Kalman filter and its relatives are all about optimal estimates of models of states of
systems. For a given system that evolves in time (e.g. the atmosphere, or the trajectory and
orientation of an aircraft), we have a mathematical model and a stream of observations — that
is, we have to come up with a data assimilation method. Unlike Var and its relatives, which work
with a whole system trajectory at once (hence the name “variational”), the KF and friends are
sequential, meaning that optimal estimates are produced sequentially, and even in real time for
many control engineering situations. Furthermore, the filter is recursive, meaning that at any
time k, it only uses the state at the previous time k−1 and the observations at the present time
k. It does not have to remember or look up earlier states or observations, or anticipate or look
up future states or observations.

Most of this tutorial is about state estimation, which is the original and common purpose of
the KF. I also discuss parameter estimation in §14, starting on page 35.

7.2 Assumptions

The plain KF is all about linear systems and linear observations. That is: the state vector
evolves by matrix multiplication; and an observation vector comes from matrix multiplication of
the state vector. General vector random variables are explained in §A, starting on page 59, and
so are scalar normal (“Gaussian”) random variables and multivariate normal (“MVN”) random
vectors.

The model propagates the true model state vector like this:

xt
k+1 = Mkx

t
k + wk, wk ∼ N(0,Qk), (7.1)

where xt
k ∼ (nx × 1) is the true discretisation of the system’s state at a time indicated by

its subscript; Mk ∼ (nx × nx) is the evolution operator or transition matrix at time k; and
wk ∼ (nx × 1) is an additive noisy quantity at time k, distributed as a multivariate normal
random vector having zero mean and covariance matrix Qk. We want to estimate xt

k for all k.
Our estimate — also called the analysis — is denoted x̂k. The model is assumed to be unbiased,
i.e. 〈wk〉 = 0, so any drift of the model away from the system is a random walk phenomenon.
The job of the KF is to use the observations to stop this random walk from forever staggering
away in a divergent manner.

Our model propagates model state vectors forward in time:

xk+1 = Mkxk. (7.2)

Equation (7.2) is a statement that defines what the model does. Equation (7.1) is a statement
about the objective truth of the model. Both equations are correct, but they are to be interpreted
in different ways.

Observations, or measurements, are also linear in x:

yk = Hkx
t
k + vk, vk ∼ N(0,Rk), (7.3)

where yk ∼ (nyk
× 1) is a vector of observations at time k; Hk ∼ (nyk

× nx) is the observation
operator, or observation matrix at time k; and vk ∼ (nyk

×1) is the zero-mean observation error
at time k, assumed to be multivariate normal with mean zero and covariance matrix Rk. For
a spatially continuous system, the latter is not simply instrumental error — see [Coh97a] for a
discussion of the error of representation. Observe that vectors of observations can be of different
lengths at different times (i.e. we do not necessarily have the same set of types of observations
at each time step), which is why lengths have double subscripts, as in nyk

. Like the model, the
observation vector is assumed to be unbiased, i.e. the expectation of the observation error is
zero.

I show below (in the paragraph beginning “The discussion so far” on page 13) that wk starts
at w0, but vk starts at v1.

11
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Now we look again — just for confirmation and confidence — at the covariance matrices of
the model error and observation error:

〈wkw
T
k 〉 = Qk, (7.4a)

〈vkv
T
k 〉 = Rk, (7.4b)

where Qk is the model error covariance matrix; Rk is the observation error covariance matrix;
and 〈·〉 is the expectation operator. Recall that the product of a column vector with a row-
vector, with the column to the left of the row, is a matrix. The matrices on the RHS of these
two equations contain the expectations of their individual entries, e.g. (Qk)i,j = 〈(wk)i(wk)j〉.
Qk and Rk are assumed to be known for all k.

Equations (7.4) do not look quite right at first. For some vector random variable x, the
covariance matrix is 〈(x− 〈x〉)(x− 〈x〉)T 〉. Only if 〈x〉 = 0, does this become 〈xxT 〉, which has
the same from as (7.4). However, we have assumed that wk and vk have zero expectations, so
the covariances as written in equations (7.4) are indeed correct.

We assume also that the error vectors are white, and orthogonal to each other, which means
these three things:

〈wkw
T
m〉 = 0, for k 6= m, (7.5a)

〈vkv
T
m〉 = 0, for k 6= m, (7.5b)

〈wkv
T
m〉 = 0, for all k and all m. (7.5c)

These are essential simplifying assumptions. Without them, I do not know if the KF would be
feasible at all. (If any reader knows, please tell me.) It will later turn out that another three
conditions are required. These will be introduced in the derivation, §7.4, and are listed together
in §7.5 on page 16.

7.3 The Plan

The KF has a repeating predict-correct structure. We use our optimal estimate at time k, passing
it through the model equations to predict the state at time k + 1; and then correct this prediction
by using observation data, which gives us our optimal estimate at time k + 1. Then we do it all
again, using our optimal estimate from time k + 1 to get an optimal estimate at time k +2; and
so on.

You can find a summary of a KF job in the “Timing Diagram”, figure 2 on page 82. I copied
this excellent pedagogical and mnemonic device from [Gel74].

Note: a time tk is the time of validity of the kth observation vector, not necessarily of the kth

time step of the model. The model can run through one or more time steps between observations.

7.4 The Details

This derivation of the Kalman filter does not proceed in the order in which the various results
are used. If the ordering is confusing, you can look at the “Timing Diagram”, figure 2 on page 82;
and at the summary of use of the KF in §7.5 on page 16. We are going to work with these three
things:

xt
k, the correct discretisation of the system at time tk; (7.6a)

x̂−k , the modelled prior estimate of the system at time tk; (7.6b)
x̂k, the modelled posterior estimate of the system at time tk. (7.6c)

The hats on x̂−k and x̂k indicate that these are optimal estimates, and not just any old
estimates. We work with general integer k > 0, with a short preamble for k = 0, which is

12
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a special case. By “prior”, I mean the “predict” part of the predict-correct algorithm that I
mentioned in §7.3. x̂−k will be a prior estimate, which is why it has a superscripted minus sign.

First, we make an estimate of the state of the discretised system at the beginning of the
data assimilation job, i.e. at t = t0 = 0; call this estimate x̂0. It has a known or assumed error
covariance matrix P0 = 〈(x0 − 〈x0〉)(x0 − 〈x0〉)T 〉. This is the same as the background error
covariance matrix B in Var, 9.2. Where do x̂0 and P0 come from? We can use whatever prior
information we have, such as a climatology or a previous data assimilation job.

Next, we cycle the KF as follows, for k > 0, including k = 1, which is not a special case.
Remember that a time tk is the time of validity of the kth observation vector, not necessarily
the kth time step of the model (as noted a short distance above).

For general k > 0, we first form the optimal prior estimate, thus:

x̂−k = Mk−1x̂k−1, e.g. x̂−1 = M0x̂0. (7.7)

This seems like a natural way to proceed with the data and operators that are available. However,
I am not saying that x̂−k is without error; it does have the following prior error:

e−k = x̂−k − x̂t
k, e.g. e−1 = x̂−1 − x̂t

1. (7.8)

This prior error has a prior error covariance matrix, P−
k = 〈(e−k −〈e

−
k 〉)(e

−
k −〈e

−
k 〉)

T 〉. I will show,
later, that under a certain reasonable assumption that I will also make plain later, 〈e−k 〉 = 0, so

P−
k = 〈e−k (e−k )T 〉. (7.9)

At time tk, we also have the observation vector yk. We form the prior observation increment
dk like this:

dk = yk −Hkx̂
−
k , e.g. d1 = y1 −H1x̂

−
1 . (7.10)

Then, to make the best estimate, which is the posterior estimate x̂k, we use x−k , dk and an
intermediate result called the Kalman gain matrix Kk (which is derived later):

x̂k = x̂−k + Kkdk, e.g. x̂1 = x̂−1 + K1d1. (7.11)

We will later determine Kk in such a way that x̂k really is optimal, on a measure that is defined
below. Why do we choose this way of doing it? Because if yk = Hkx̂

−
k then our prediction, Hkx̂

−
k ,

is perfect, and we have no additional information to fold into the analysis. But if yk 6= Hkx̂
−
k

then our prediction must be wrong, and we should adjust x̂−k accordingly.
The discussion so far, and the Timing Diagram (Fig. 2 on page 82), indicate that x̂k comes

from yk and x̂−k . This is true for all k, except for the start of the sequence at k = 0. The first
time at which we fully use the KF algorithm is k = 1. This is also the time of the first available
observation vector y1. There is no y0 — if there was, we could just increase the k labels of
everything by one, and get our “standard” Timing Diagram back again, as shown here. To start
the filtering process, we need some kind of first guess at the state of the system — we call this
x̂0, as indicated above. And, as indicated above, this has an error covariance matrix P0. So in
equations (7.5), wk starts at w0, but vk starts at v1.

Our x̂k, for k > 0, has a posterior error ek, and this has a posterior error covariance matrix
Pk, as follows.

ek = x̂k − xt
k, e.g. e1 = x̂1 − xt

1, (7.12)

and
Pk = 〈(ek − 〈ek〉)(ek − 〈ek〉)T 〉. (7.13)

It is useful to insist that 〈ek〉 = 0, leading to

Pk = 〈eke
T
k 〉, e.g. P1 = 〈e1e

T
1 〉. (7.14)
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The next paragraph shows how this leads to a condition, 〈e0〉 = 0.
We start with the definition of ek, and make a series of substitutions:

ek = x̂k − xt
k (7.15a)

= x̂−k + Kkdk − xt
k (7.15b)

= x̂−k + Kk(yk −Hkx̂
−
k )− xt

k (7.15c)
= e−k + Kk(Hkx

t
k + vk −Hkx̂

−
k ) (7.15d)

= e−k + KkHk(xt
k − x̂−k ) + Kkvk (7.15e)

= e−k −KkHke
−
k + Kkvk (7.15f)

= Ske
−
k + Kkvk (7.15g)

The first equality is a definition; the second uses the definition of x̂k; the third uses the definition
of dk; the fourth uses the definition of e−k and equation (7.3); the fifth is a rearrangement; the
sixth again uses the definition of e−k ; and the seventh uses the definition of Sk. Since Kk is fixed,
i.e. it is not random, its expectation is simply itself, and we immediately deduce the following
from equation (7.15g):

〈ek〉 = Sk〈e−k 〉. (7.16)

But we can transform e−k as well, as follows:

e−k = x̂−k − xt
k (7.17a)

= Mk−1x̂k−1 − (Mk−1x
t
k−1 + wk−1) (7.17b)

= Mk−1ek−1 −wk−1, (7.17c)

where the manipulations are similar in spirit to those in equations (7.15). Thus

〈e−k 〉 = Mk−1〈ek−1〉. (7.18)

We can put equations (7.16) and (7.18) together in two different ways, to get the following
two recurrence relations:

〈ek〉 = SkMk−1〈ek−1〉, (7.19a)
〈e−k 〉 = Mk−1Sk−1〈e−k−1〉. (7.19b)

Thus

〈ek〉 = SkMk−1〈ek−1〉 (7.20a)
= SkMk−1Sk−1Mk−2〈ek−2〉 (7.20b)
= . . . (7.20c)
= [a product of matrices]× 〈e0〉. (7.20d)

So to make everything in the KF work nicely, we assume 〈e0〉 = 0, i.e. 〈x̂0〉 = xt
0. Then 〈ek〉 = 0

for all k.
This statement is a little problematic, for there was no indication before now that x̂0 is a

random vector. A Bayesian interpretation would be most appropriate here, but for the purposes
of this tutorial, we just assume it is a random vector. After all, before the KF job is started, it is
indeed unknown. Perhaps of more concern is the very assumption that 〈x̂0〉 = xt

0. What reason
do we have for this? Very little — but in order to proceed, we must make this assumption. The
quotation from [Dee91] in §7.7 applies here.

Having made this assumption, we can use equation (7.18) and say that 〈e−k 〉 = 0 for all k.
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Now we have x̂−k and x̂k for all k, and leaving aside the question of what is Kk until later,
we can calculate P−

k and Pk, as follows.

P−
k = 〈e−k (e−k )T 〉 (7.21a)

= 〈(x̂−k − xt
k)(x̂

−
k − xt

k)
T 〉 (7.21b)

= 〈(Mk−1ek−1 −wk−1)(Mk−1ek−1 −wk−1)T 〉 (7.21c)

= Mk−1〈ek−1e
T
k−1〉MT

k−1 + 〈wk−1w
T
k−1〉 −Mk−1〈ek−1w

T
k−1〉 − 〈wk−1e

T
k−1〉MT

k−1 (7.21d)

= Mk−1Pk−1M
T
k−1 + Qk−1, (7.21e)

where the first equality is a definition; the second uses the definition of e−k in equation 7.17a;
the third uses equations (7.17c); the fourth expands the multiplication and takes fixed matrices
outside the expectation angle-brackets. The fifth uses equations (7.14) and (7.4a); then starts
from a reasonable assumption that 〈e0w

T
k−1〉 = 0, and uses the following recurrence relation to

show that it follows that 〈ek−1w
T
k−1〉 = 0.

〈ekw
T
k 〉 = 〈(Ske

−
k + Kkvk)wT

k 〉 from equation (7.15) (7.22a)

= Sk〈e−k wT
k 〉+ Kk〈vkw

T
k 〉 (7.22b)

= Sk〈(Mk−1ek−1 −wk−1)wT
k 〉 from equations (7.5c) and (7.17) (7.22c)

= SkMk−1〈ek−1w
T
K〉 − Sk〈wk−1w

T
k 〉 (7.22d)

= SkMk−1〈ek−1w
T
k 〉 from equation (7.5a) (7.22e)

= [a product of matrices]× 〈e0w
T
k 〉 by induction. (7.22f)

Similarly,

Pk = 〈eke
T
k 〉 (7.23a)

= 〈(Ske
−
k + Kkvk)(Ske

−
k + Kkvk)T 〉 (7.23b)

= Sk〈e−k (e−k )T 〉ST
k + Kk〈vkv

T
k 〉KT

k + Sk〈e−k vT
k 〉KT

k + Kk〈vk(e−k )T 〉ST
k (7.23c)

= SkP
−
k ST

k + KkRkK
T
k , (7.23d)

where the first equality is a definition; the second uses equation (7.15g); the third expands the
product and takes fixed matrices outside the expectation angle-brackets. The fourth equality
starts from a reasonable assumption that 〈e−0 vT

k 〉 = 0, and uses a recurrence relation for 〈e−k vT
k 〉

that is quite similar to that in equations (7.22).
Next, we need to derive an expression for Kk, since it has not yet been specified. It could

be anything (well, any matrix with the right shape), and equation (7.23d) would follow from
equations (7.10) and (7.11) and the assumptions. However, we do want to make Kk optimal,
and we do this by working on Pk, as follows.

If you need to know about traces of matrices, and how to differentiate them, first read §B
starting on page 68.

One measure of the badness of the posterior estimate, x̂k, is the sum of the variances of its
errors. These variances are the numbers in the leading diagonal of Pk in equation (7.23d). The
sum is the trace of Pk. To minimise the badness, we need to minimise the trace, and the thing
we can adjust to do this minimisation is the Kalman gain matrix, Kk. Variances are positive
semidefinite, so there is no ambiguity in this. A measure involving the covariances would be
problematic, because covariances can be negative.

We can write (7.23d) in a more useful (but not as nice) way like this (remembering that
covariance matrices are necessarily symmetric):

Pk = P−
k −KkHkP

−
k − (KkHkP

−
k )T + Kk(HkP

−
k HT

k + Rk)KT
k . (7.24)
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The first term does not involve Kk. The second and third are linear in Kk, and the last is
quadratic in Kk. So we can apply equations (B.3) to the second and third terms:

d tr(KkHkP
−
k )

dKk
= (HkP

−
k )T . (7.25)

And we can apply equations (B.4) to the fourth term:

d tr[Kk(HkP
−
k HT

k + Rk)KT
k ]

dKk
= 2Kk(HkP

−
k HT

k + Rk). (7.26)

So, using the fact that the trace of a square matrix is equal to the trace of the transpose of that
matrix,

d tr(Pk)
dKk

= −2(HkP
−
k )T + 2Kk(HkP

−
k HT

k + Rk). (7.27)

This must be zero at the minimum, so finally we can say:

Kk = P−
k HT

k (HkP
−
k HT

k + Rk)−1, (7.28)

which is what we need to use in (7.11) to finally get our optimal posterior estimate of the state.
This completes the derivation of the Kalman filter. The evolving error covariance matrices

have to be calculated for each tk, as an essential part of the filter. However, they provide
important information in their own right, on the variances and covariances of the errors in our
estimate of the state of the system.

7.5 Summary

The Kalman filter equations are (7.7), (7.21e), (7.28), (7.10), (7.11) and (7.23d). The conditions
in equations (7.5) must be met, as must the following three:

〈e0〉 = 0, (7.29a)

〈e0w
T
k 〉 = 0, ∀k, (7.29b)

〈e0v
T
k 〉 = 0, ∀k. (7.29c)

The loopiness of the KF works like this:

1. Start with x̂0 and P0

2. do k = 1→ n

3. calculate x̂−k = Mk−1x̂k−1

4. calculate P−
k = Mk−1Pk−1M

T
k−1 + Qk−1

5. calculate Kk = P−
k HT

k (HkP
−
k HT

k + Rk)−1

6. get observations yk

7. calculate x̂k = x̂−k + Kk(yk −Hkx̂
−
k )

8. calculate Pk = SkP
−
k ST

k + KkRkK
T
k . . . and also see equations (7.34)–(7.36).

9. end do

This shows the recursive nature of the filter, i.e. the fact that at any time, it only uses the
estimate at the previous time and the observations at the present time. It does not have to
remember or look up earlier states or observations.

Observe, also, that the matrices P− and P do not depend on the estimates, x̂− and x̂,
although the estimates do depend on the matrices. If you like, then, you can calculate the P−

and P matrices offline and store them for later use.
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7.6 Another View: the Conditional Mean

The derivation presented above works by minimising the sum of the variances of the analysis
errors — i.e. it is a minimum variance derivation, and the KF is thus a minimum variance filter.
The quantity that is minimised is tr(〈eke

T
k 〉) = 〈eT

k ek〉. This can be written with an identity
matrix in the middle, like this:

tr(Pk) = 〈eT
k ek〉 = 〈eT

k Iek〉. (7.30)

We could make a different scalar thing that we have to minimise, like this:

Lk(ek) = 〈eT
k Jek〉, (7.31)

where J ∼ (nx×nx) is any fixed (i.e. deterministic) positive definite matrix, and Lk is the scalar
result of this equation. This includes the simple J = I. Since ek is a random vector, then Lk(ek)
is a random variable, and it has an expectation 〈Lk(ek)〉.

Now let us consider another way of estimating the state:

x̂k = 〈xt
k|y1,y2, . . . ,yk〉, (7.32)

which is called the conditional mean estimate. [Coh97a] shows that the value of x̂k that minimises
the expected loss function, 〈Lk(ek)〉, is the conditional mean estimate. That is, the minimum
variance estimate for any valid J is the conditional mean estimate.

Now we have that result, then by conditional mean reasoning we can easily show that the
analysis is unbiased. If we write Yk for all the observations up to and including time k, i.e.
Yk = {y1, . . . ,yk}, then by the chain rule for conditional expectations(§A.5):

〈ek〉 = 〈〈xt
k|Yk〉 − xt

k〉 = 〈〈xt
k|Yk〉〉 − 〈xt

k〉 = 〈xt
k〉 − 〈xt

k〉 = 0. (7.33)

Here, the first equality expresses the definitions of ek and the conditional mean estimate; the
second uses linearity; and the third uses the chain rule.

7.7 Remarks

1. According to [BH97], there are three other expressions for the analysis error covariance
matrix Pk. They are algebraically identical with each other and with equation (7.23d), but
may have different numerical properties. I have checked that they are correct. Here they
are:

Pk = P−
k − P−

k HT
k (HkP

−
k HT

k + Rk)−1HkP
−
k , (7.34)

Pk = P−
k −Kk(HkP

−
k HT

k + Rk)KT
k , (7.35)

and
Pk = SkP

−
k . (7.36)

2. Here is another way to think about the update, which is given by equations (7.11):

x̂k = x̂−k + Kk(yk −Hkx̂
−
k ) (7.37a)

= (I −KkHk)x̂−k + Kkyk. (7.37b)

This says that the posterior estimate is a weighted sum of the prior estimate and the
observations. Kkyk can be thought of as the observations, transformed into state space and
weighted. Ix̂−k is just the prior state estimate. KkHkx̂

−
k is the prior estimate, transformed

into observation space, and weighted and transformed back into state space. If Kk is big
(in some sense), then the observations win. If Kk is small, the prior estimate wins.
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3. There are many assumptions in the derivations of the Kalman filter. To quote [Dee91]:

Almost none of the information implicit in the statistical assumptions [. . . list of
equations . . . ] is actually available in realistic situations. [. . . ] There is no com-
pelling theoretical reason to assume, for instance, that model error forcing is
additive and that it only occurs at regular time intervals that correspond to the
forecast model time-step. Any actual implementation of the KF algorithm there-
fore contains a multitude of approximations, all of which affect the calculation
of the forecast error covariance.

However, there are robust filters that are not too badly perturbed when the assumptions
do not stand. For example, the H∞-filter that is discussed in [Sim06] appears to be an
important development.

4. Problems can arise with filter divergence and stability. These are generally outside the
scope of this introduction, but it is important to at least be aware of the square-root
filters. The covariance matrix P can become non-positive-definite due to rounding errors.
This can be avoided by working with a factorisation of the covariance matrix, which is
guaranteed to preserve positive-definiteness. See e.g. [BH97] for a simple introduction.

5. The minimum variance derivation of the KF does not require the random variables to be
multivariate normal (MVN). However, it is useful if they are, because linear transforma-
tions of MVN random vectors produce new MVN random vectors. Since the whole of the
KF analysis is linear, and the model and observation operators are assumed linear, then
starting with MVN random vectors will ensure that the analyses and their errors are MVN
as well.

8 A Demonstration of the Kalman Filter

8.1 The Rotational System

Here, I present a working example of the plain KF for a very simple system that has two state
variables. The dynamics and the observation operator are linear, so the plain KF is directly
applicable. A filter for a nonlinear system is discussed later, and its validity is demonstrated by
showing that it gives the same results as the plain KF when applied to this simple linear system.

The system has a deterministic component and a stochastic component. The deterministic
part consists of a particle in uniform circular motion, anticlockwise around a circle that is centred
on the origin. Each time step, Gaussian noise is added to the x and y components of the position
of the particle — this is the stochastic part. The state vector is:

xt = ξ =
[
x
y

]
(8.1)

It evolves like this:
dξ

dt
= Mξ + w =

[
0 −ω
ω 0

] [
x
y

]
+

[
wx

wy

]
, (8.2)

where ω is the angular velocity of the particle, and w is a white, multivariate normal (MVN)
noise vector with mean zero and covariance matrix Q. We could say “bivariate” instead of
“multivariate” for this case of two entries in the vector. This situation is described by §4.3
and §4.4.

The observation operator is just the identity matrix, and we add Gaussian zero-mean noise
with a covariance matrix R, to simulate measurement error. Thus an observation is given by

y = ξ + v, (8.3)
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where v is a white bivariate normal noise vector with mean zero and covariance matrix R.
Given an initial value for ξ, and an angular velocity ω, we want to model the system to

provide a trajectory (i.e. ξ(t)) and a set of simulated observations. Given these, we want to use
a KF to try to estimate this trajectory. So we need a way of integrating the equations of motion
as an initial value problem.

The obvious discretisation is Euler’s method. Thus for time step dt:

ξn+1 = ξn + dtMnξn + wn, (8.4)

but this is numerically unstable, and the trajectory spirals out exponentially away from the
origin, even if the noise is omitted.2

However, an implicit scheme works fine. The deterministic part is defined by the following
discretisation:

xn+1 − xn

dt
= −ω

yn+1 + yn

2
, (8.5)

yn+1 − yn

dt
= ω

xn+1 + xn

2
. (8.6)

This leads by simple rearrangement to the following:[
1 ω dt

2

−ω dt
2 1

] [
xn+1

yn+1

]
=

[
1 −ω dt

2
ω dt
2 1

] [
xn

yn

]
, (8.7)

so:

ξn+1 =
[
xn+1

yn+1

]
= Mnξn =

1
1 + ω2dt2/4

[
1− ω2dt2/4 −ω dt

ω dt 1− ω2dt2/4

] [
xn

yn

]
. (8.8)

After every time step, the bivariate noise is simply added to the state vector. It is easy to verify
(by doing the matrix multiplication) that MT M = I, i.e. that M is orthogonal. So it preserves
the length of a vector, like this:

ξT
n+1ξn+1 = ξT

n MT
n Mnξn = ξT

n Iξn = ξT
n ξn. (8.9)

Furthermore, we can see that it is, as required, a rotation matrix, because

(1− ω2dt2/4)2 + ω2dt2

(1 + ω2dt2/4)2
= 1, (8.10)

i.e. (1 − ω2dt2/4)/(1 + ω2dt2/4) = cos θ and ω dt/(1 + ω2dt2/4) = sin θ for some angle θ.
Furthermore, in the limit dt→ 0, M becomes the rotation matrix for differentially small angles,
as you can verify by use of Taylor’s theorem. So our numerical scheme is not only numerically
stable, it preserves lengths of vectors exactly, and rotates them as required. The evolution
operator is a matrix, i.e. the evolution is linear (as required for the plain KF) and accurate.

Now if we make an initial guess at x̂0 and P0, we have everything we need to cycle the Kalman
filter as summarised in §7.5: M is defined in equation (8.8); Q and R are chosen in advance,
when running the system forward; and H is the identity matrix, I. If you use a high-level
language such as Matlab or R, that can do a matrix operation with a single operator, then the
whole KF code only takes a few lines. For example, here is a chunk of R code that does most of
the KF work, after a forward run has been done to simulate the system. Initial values of matrices
and vectors have been assigned before the loop that is shown, and simulated observations have
been saved. The hash mark indicates a comment, and %*% is the matrix multiplication operator:

2N.B. this w is not the same as that in equation (8.2). Here, it is a temporally discrete stochastic process, while
in (8.2) it is a temporally continuous stochastic process. I use the same notation, w, anyway! Refer to [Jac10]
or [Rob09] to learn more about continuous Wiener processes.
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for (i in 1:n) {
# Create next prior state:
state.prior = transition %*% state.post
# Calculate next prior cov:
P.minus = transition %*% P.post %*% t(transition) + Q
# Calculate Kalman gain matrix:
if (got.obs[i]) { K = P.minus %*% t(H) %*% solve(H %*% P.minus %*% t(H) + R) } else

{ K = matrix( rep(0,4) , 2 ) }
# Calculate obs. increment:
obinc = matrix(obs.keep[,i]) - H %*% state.prior
# Calculate posterior state:
state.post = state.prior + K %*% obinc
# Calculate posterior cov:
S = matrix( diag(c(1,1)) , 2 , 2 ) - K %*% H
P.post = S %*% P.minus
# Make sure symmetric
P.post = 0.5 * (P.post + t(P.post))

}

The model is propagated forward in small time steps between the arrival of observations, so
K updates are not required for most time steps. Observe that there is a line that ensures that
P is symmetric. Covariance matrices are, by definition, symmetric. But numerical errors can
cause asymmetry, which can break the algorithm if symmetry is not forced. This breaking of the
algorithm is discussed, along with other problems, in §6.6, “Divergence problems”, of [BH97].
The square-root filter is also relevant here, as in §7.7 of this tutorial.

8.2 Forward Runs

First, let us look at two results from forward runs of the system. The coupled differential equa-
tions are integrated as in equation (8.8). The angular velocity is ω = 1, giving a rotational period
of 2π. Total run time is 100, so nearly 16 full rotations are simulated. The starting position is
x = 1, y = 0. The time step is 0.2, and bivariate Gaussian noise is added at the end of the
deterministic evolution every time step, with Q = I. Observations are simulated every 25 time
steps, i.e. every 5 time units, which is a bit more than once per full rotation. The measurement
is simply the values of x and y at observation time, with additive Gaussian noise, R = 10I. Fig-
ure 3 on page 83 shows what happens in this simple case. Observe that there is a tendency for
the radius, r, to increase with time, even though the noise that is added to x and y is unbiased.
We can understand this by considering what happens from one time step to the next. Given ξk,
we can calculate the squared radius at the next time step:

r2
k+1 = ξT

k+1ξk+1 (8.11a)

= (ξT
k MT + wT

k )(Mξk + wk) (8.11b)

= ξT
k ξk + ξT

k MT wk + wT
k Mξk + wT

k wk (8.11c)

= r2
k + ξT

k MT wk + wT
k Mξk + wT

k wk. (8.11d)

Taking expectations and assuming that 〈wk〉 = 0,

〈r2
k+1〉 − 〈r2

k〉 = 〈wT
k wk〉. (8.12)

Since wT
k wk is positive semidefinite, then so is the expected change in squared radius. This is

the expectation; the actual change at any time step can be negative, as in equations (8.11). This
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system is very strange, and may not correspond to any physically realisable mechanism. Since
ω is constant, it represents a particle whizzing around at greater and greater speeds and radii
(in expectation), with some wobble about the spiral trajectory. Nevertheless, it is the simplest
linear example that I could think of, that is not completely trivial and not univariate.

We can play around with the model and generate more interesting trajectories. Figure 4

on page 84 repeats Figure 3, the only difference being that now, Q =
[

3.01 −3.0
−3.0 3.01

]
. So the

components of system noise are anticorrelated, leading to the diagonal sense of the trajectory
in the figure.

8.3 Filtering Results

Figure 5, starting on page 85, shows the results of a KF job on the system and observations
that are summarised in Figure 3. I used correct values of Q, R and initial conditions; and a
small, diagonal P0. Remember that the KF is trying to reproduce the coloured curve, given: the
observations; the model of the system; a first guess at the initial state; and guesses at Q, R and
P0. Observe the occasional jumps at the times of observations. This is because the KF makes its
adjustments to the estimated state when observations come in, as in §7.5, and the model evolves
according to the noise-free dynamics between observations. Thus the filtered radius is stepwise
constant in the third and fourth graphs of figure 5. The fourth plot shows how well (or badly)
the KF estimate tracks the forward run’s trajectory.

In the second page of Figure 5, the evolution of the error bars is very clear; they increase in
time between observations, and abruptly decrease when observations are processed. The cyclical
nature of the variances is clear. The covariance is close to zero. This is at it should be, because
the model error Q, and observation error R, both have diagonal covariances, i.e. each has
uncorrelated x and y parts. In the top two plots, observe that there is a roughly constant phase
error in the estimate. It appears that the KF is trying to “catch up” with the true position —
but I do not know why.

Figure 6, starting on page 87, is similar to figure 5. There are only two differences in how they
were produced. The first is that the initial state is deliberately made very incorrect. The second
is that the initial P0 is made large and not diagonal. The graphs show that the KF quickly
corrects both of these “deliberate mistakes”, and soon becomes practically indistinguishable
from the earlier run that had a good initialisation.

More can be done with this simple system. For example, we could investigate what happens
when we use incorrect values of Q and R. In a real life analysis, we are likely to have a reasonably
good understanding of the observations’ error bars (i.e. of R). But information on Q is generally
scant. Then, Q can be thought of as a tuning parameter, which can (indeed, must) be adjusted
to get certain output statistics right. This kind of tuning and filter divergence are closely related.
Divergence is mentioned above. Tuning is mentioned by [Inv07], which is a technical but readable
introduction to the KF.

Figure 7, starting on page 89, repeats figure 6; but now, the Kalman filter has been given
Q = 0.1I, which is a factor of ten too small. This means that P is too small, and so is K. The
former means the estimated error bars are too small, as you can see on the graphs. The latter
means that corrections at observation times are too small, i.e. too much weight is given to the
prior estimate (from the model), and too little is given to the observations.

Figure 8, starting on page 91, makes the opposite deliberate mistake: now, the Kalman filter
has been given Q = 5I, which is a factor of five too big. Corrections at observation times are
now too big, i.e. too little weight is given to the prior estimate, and too much is given to the
observations. You can see that the error bars are too big, and the estimated trajectory jumps
directly to the observations, largely ignoring what the model says.

21



A Primer on Data Assimilation . . .

9 Variational Data Assimilation

9.1 Introduction

For linear systems (and models of them) and linear observation operators, the Kalman filter
cannot be beaten. It is optimal under many assumptions, including those given in §7. It can
also be extended to nonlinear systems, models and observation operators, albeit with the loss
of optimality, as I discuss later in this paper. Nonlinearity is the rule in numerical weather
prediction (NWP), climate prediction, and almost any Earth system. Any kind of Kalman filter
is too expensive for operational NWP, or a GCM climate run, or any other large system. Indeed,
for an nx-dimensional state vector, [Dee91] points out that calculation of P is roughly 2nx

times more expensive than running the model forward to predict the prior state. So a cheaper
method is used: 4-dimensional variational data assimilation. This has the additional advantage
that it is directly applicable to nonlinear models of nonlinear systems with nonlinear observation
operators. It has the disadvantage that it does not update the estimate’s covariance matrix.

On nomenclature, “4-dimensional” refers to the three spatial dimensions of the atmosphere
and the one dimension of time. Abbreviations include “4D-Var” and “Var”.

If you look at the cost function below (equation (9.1)), you will notice two types of covariance
matrix: a single background error covariance matrix B, and a set {Rk}, each member of which
includes measurement error and error of representation. It is plain that an optimal analysis can
only be produced if these covariance matrices are optimally estimated. Unfortunately, there is
no known way to acquire an optimal estimate of B; but sub-optimal methods are known, and
are found throughout the literature. For now, it is useful to understand why the cost function
takes this particular form in the first place.

9.2 The Cost Function

The usual 4D-Var cost function, or penalty function, is this scalar:

J(x0) =
1
2
(x0 − xb)T B−1(x0 − xb) +

1
2

N∑
k=1

(yk − Ĥk(xk))T R−1
k (yk − Ĥk(xk)), (9.1)

where xk is an nx-vector containing the model’s state at time step k; B is the nx × nx error
covariance matrix of xb, i.e. of a prior estimate of x at the beginning of the data assimilation
time window; k labels the time step; yk is an nyk

-vector of observations of the system at time
tk; Ĥk(·) is the operator that predicts yk from xk; and R is the nyk

× nyk
error covariance

matrix of yk. The job of Var is to find an initial state of the system, x0, that minimises J .
That done, the model’s trajectory through its phase space is optimal for that model, that set of
observations, and that set of covariances. In particular, at the end of the run of N time steps,
the model is in its optimal state, i.e. it gives the best estimate at the end of the run (and at the
start, and through the run, too). Our best estimate of x0 is the analysis, x̂0. (Since the model
is deterministic, all the other model state vectors are analyses as well.)

The first term in the cost function penalises differences between x0 and xb. That is, if x0

is changed so that this measure of x0 − xb increases, then J gets bigger, while we are trying
to find an x0 that makes it as small as possible. The remaining terms, under the summation
sign, penalise differences between actual and predicted observations. Since covariance matrices
are positive semidefinite, each term in the equation is positive semidefinite. As a compromise
between the observations and the model, this process seems reasonable, in an intuitive kind of
way. Next, I show that this process really is, in a sense to be defined below, optimal.

In his Chapter 5, [Jaz70] derives a conditional mode filter for the case of discrete (in time)
measurements of a discrete (in time) dynamical system. This system can be truly discrete, or a
discrete representation (because finitely sampled) of a temporally continuous system. [Coh97a]
also discusses this, and other, filters. Estimation of the state of the system in the past, i.e.
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posterior analysis, is known as smoothing ([Jaz70], [BH97]). In the present case, we want to use
the conditional mode filter to get an estimate, x̂0. My §9.4 follows [Jaz70] closely, but omits one
or two details that are not required in an introductory paper, as well as changing the notation
appropriately.

9.3 Assumptions

The assumptions here are very much like those of §7.2. Terms such as true state and model error
are defined in §4.

Let the state of the system at time step k be represented by ξk. In work on the atmosphere,
ξk could contain velocity components, humidity, density, temperature, tracer concentration, and
so forth, at each point (i.e. at an infinite number of points — ξk contains fields, not a finite
number of numbers). In the model, we have the finite nx-vector xk, which is a finite discretisation
of ξk. The model evolves any model state vector like this:

xk+1 = M̂k(xk), (9.2)

where M̂k(·) is the model evolution operator (i.e. a complicated function that will generally be
nonlinear). The true state is assumed to evolve in time as a Markov process, like this:

xt
k+1 = M̂k(xt

k) + wk, (9.3)

where M̂k is the same function as in the previous equation; wk is an nx-vector white noise,
Gaussian sequence wk ∼ N(0,Qk). A true state comes from the previous true state, propagated
by the model, then “contaminated” by model error. M̂k is the same as f in equations (4.4).

Measurements of the system are also noisy:

yk = Ĥk(xt
k) + vk, (9.4)

where yk is the nyk
-vector of measurements at time step k; Ĥk(·) is most generally a nonlinear

function; and vk is an nyk
-vector Gaussian white noise sequence, vk ∼ N(0,Rk). It is assumed

that wk and vk are independent of each other, as well as being white themselves. Observe that
nyk

has a k as part of its subscript, indicating that the number of observations may change as
time goes on.

9.4 Derivation of the Cost Function

Assume now that we have a set of N observation vectors, {y1,y2, . . . ,yN}, each of these vectors
being acquired at the time step indicated by its subscript. Write this set of vectors as a single
symbol, and similarly the xt-vectors, thus:

Xt
N = (xt

0,x
t
1, . . . ,x

t
N ), (9.5)

YN = (y1,y2, . . . ,yN ). (9.6)

These are ordered sets, but YN is not necessarily a matrix, because the y-vectors are not neces-
sarily all the same length. Observe that there are N observation vectors, and (N +1) xt-vectors,
because the latter set contains xt

0.
The conditional mode filtering problem is, then, to maximise the following conditional density

with respect to the set of xt-vectors:

p(Xt
N |YN ). (9.7)

Using Bayes’ rule, this density is written as

p(Xt
N |YN ) =

p(YN |Xt
N )p(Xt

N )
p(YN )

(9.8)
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The denominator does not depend on Xt
N , so we can ignore it in maximising p(Xt

N |YN ) with
respect to Xt

N .
Now, because the sequence {vk} is white, the random variables {y1, . . . ,yN} are independent,

once {xt
0, . . . ,x

t
N} are given. Thus:

p(YN |Xt
N ) =

N∏
k=1

pv,k(yk − Ĥk(xt
k)), (9.9)

where pv,k(yk − Ĥk(xt
k)) = pv,k(vk) ∼ N [0,Rk], a Gaussian density.

Because the sequence {xt
0, . . . ,x

t
N} is a Markov sequence,

p(Xt
N ) = p(xt

0)
N∏

k=1

p(xt
k|xt

k−1) (9.10)

= p(xt
0)

N∏
k=1

pw,k(xt
k − M̂k−1(xt

k−1)), (9.11)

where pw,k(xt
k − M̂k−1(xt

k−1)) = pw,k(wk−1) ∼ N [0,Qk−1].
We assume that a prior estimate of xt

0 is available, known as the background state, and that
it is multivariate normal (MVN):

xt
b ∼ N(〈xt

b〉,B), (9.12)

where B is the prior state error covariance matrix, also known as the background error covariance
matrix. MVN random vectors are defined in equation (A.19) on page 62.

Putting these pieces together, remembering that the product of exponentials is the exponen-
tial of a sum, we obtain:

p(xt
0, . . . ,x

t
N |y1, . . . ,yN )

=
c(B,R1, . . . ,RN )

p(y1, . . . ,yN )
exp

{
−1

2
(xt

0 − xt
b)

T B−1(xt
0 − xt

b)

−1
2

N∑
k=1

(yk − Ĥk(xt
k))

T R−1
k (yk − Ĥk(xt

k))

−1
2

N∑
k=1

(xt
k − M̂k−1(xt

k−1))
T Q−1

k−1(x
t
k − M̂k−1(xt

k−1))

}
, (9.13)

where c(B,R1, . . . ,RN ) is a simplified notation for the parts of the density that are powers
of 2π and determinants of covariance matrices, as in the quotient term in the third part of
equation (A.19), not depending on any of the vectors {xt

k}. N.B. equation (9.13) is a Bayesian
statement about the true states.

As stated close to equation (9.7), we need to maximise this conditional probability w.r.t.
Xt

N . This is equivalent to finding a set of xt-vectors that minimise this cost function:

J(xt
0) =

1
2
(xt

0 − xt
b)

T B−1(xt
0 − xt

b)

+
1
2

N∑
k=1

(yk − Ĥk(xt
k))

T R−1
k (yk − Ĥk(xt

k))

+
1
2

N∑
k=1

(xt
k − M̂k−1(xt

k−1))
T Q−1

k−1(x
t
k − M̂k−1(xt

k−1)) (9.14)
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The three factors of 1/2 could be deleted, with no effect. But it is usual to keep them, so I
have done the same. We have a tool for providing sets of xt-vectors: this is the model. How-
ever, the model is exactly deterministic3, and has no w terms in it, so the third summation in
equation (9.14) goes to zero. We are left with the best model equivalent to the system’s cost
function:

J(x0) =
1
2
(x0 − xt

b)
T B−1(x0 − xt

b) +
1
2

N∑
k=1

(yk − Ĥk(xk))T R−1
k (yk − Ĥk(xk)). (9.15)

This process is sometimes known as making the perfect model assumption, but that is a mis-
nomer. In fact, we are using the deterministic model because that is what we have to work with.
If anything, we are making a deterministic system assumption.

The cost function we have ended up with in equation (9.15), is optimal under the assumptions
that the {wk} and {vk} are white, Gaussian and uncorrelated in with each other; that the true
state is governed by equation (9.3); and that measurements are described by equation (9.4).
Our x0 is not likely to be a true value, i.e. not likely to be xt

0, even if we do our best. Then,
equation (9.2) still holds, and the superscripted “t” are therefore omitted from the model’s states
in equation (9.15). Thus we have a further deviation from the “ideal” data assimilation system
that is represented by equation (9.14).

The optimising value of x0 in equation (9.15) is an analysis, x̂0, and it can be referred to as
xa.

9.5 Remarks

1. On model error. The third summation in equation (9.14) is called the model error term —
it penalises jumps in the evolution of the true state. That is, if we allow the model to make
a jump at the end of every time step instead of proceeding deterministically, then those
jumps are “discouraged” by the model error term. The cost function is then a compromise
between trying to hit the background estimate, trying to hit the observations, and trying
not to jump around too much.

At least two factors mitigate against including the model error term in Var. First: we do
not know what the Qk are (although one could also point out that we do not know what
B is). Second: there is considerable additional cost in calculating the sum of model error
norms.

2. On statistics and probability. The derivation is Bayesian, but Bayes’ rule applies to random
variables as well as to Bayesian measures of uncertainty.

3. On approximations. As in [Dee91]’s critique of the Kalman filter on page 18, few, if any,
of the assumptions that go into Var are truly met in reality.

4. It is sometimes said, e.g. by [BC], that the analysis error covariance matrix is equal to
double the inverse of the Hessian matrix of the cost function, at the minimum of the cost
function. Although this statement is true, it is only strictly true for linear systems.

5. It is not obvious, but it turns out that B controls the whole Var job. Consider the cost
function again:

J(x0) =
1
2
(x0 − xb)T B−1(x0 − xb) +

1
2

N∑
k=1

(Observation term)k (9.16)

3I omit discussion of stochastic physics models.
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Taking the derivative w.r.t. x0, we get:

B−1(x0 − xb) =
N∑

k=1

∂(Observation term)k

∂x0
. (9.17)

Thus we can get an expression for the analysis increment, (x0 − xb):

x0 − xb = B

N∑
k=1

∂(Observation term)k

∂x0
. (9.18)

That is, the analysis increment is “proportional” to B. More precisely, it is in the range
of B, and if B is not of full rank, then a certain subspace is not accessible by the Var
job. Since B is unknown, various non-optimal methods are used to estimate it (see below).
So, although it is obvious that we should try to get the covariance error matrices right,
equation (9.18) shows in a concrete way that our methods for getting a B have a direct
effect on the data assimilation, and hence on the forecast product.

6. Related to 4D-Var is 3D-Var, which does not take proper account of variations through
time — see [Kal03]. 3D-FGAT (“First Guess at Appropriate Time”) has intermediate
complexity — see [Law10].

7. In Var, B is unknown and unknowable. But this does not mean we have zero knowledge
about it. One way to think about it is to run a set of forecasts that are valid at the same
time, but that have slightly different initial conditions — which is the essence of the “NMC
Method”. This set of forecasts contains differences that can be considered to be proxies
for background error. See [Kal03], §5.5.3, “Final comments on the relative advantages of
3D-Var, PSAS and OI”.

10 A Demonstration of Var

10.1 The Rotational System

Variational data assimilation is bound to fail with the rotational system that is discussed above.
This is because the system itself is noisy in such a way that the particle roughly spirals out
away from the origin. Var would choose initial values of x and y, using the deterministic part of
the model to predict the true state through time. Since the deterministic part of the model just
propagates the particle in a circle of fixed radius, Var would choose some sort of compromise
that put the particle in a fixed orbit somewhere between the innermost and outermost segments
of the stochastic orbit of the system.

10.2 DALEC

DALEC — “Data Assimilation Linked ECosystem” — is a simple carbon cycle model for forests.
I took it, with permission, from the web site at [Fox]. Only the briefest of overviews is given here
— look at the web site and at [WSL+05] if you need more details. Figure 9 on page 93 shows
and explains the carbon pools and fluxes that are modelled within DALEC. The details are not
very important for the present discussion, but if you want to see the simple code, you can find
it in §C, starting on page 69. Running of the model is controlled by a number of parameters
that are not described here, but are fixed. Also, meteorology data to drive the model must be
provided. DALEC is also used in my ensemble Kalman filter demo at §13.2, starting on page 34.

For a demonstration, I did two very simple Var jobs on DALEC. The baseline run, that
produced the “target function” of LAI vs. time, is explained later, in §13.2, and plotted in the
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first part of Figure 14, on page 102. The cost function involved only the observation components,
i.e. there was no background term. I decided to involve only LAI, so the cost function was:

J =
∑

[(forward-run LAI)k − (Var simulated LAI)k]2/R, (10.1)

where the observation error covariance R = 0.25. That is, for a single Var job, the initial values of
the five carbon pools were systematically adjusted to minimise this cost function. The minimisa-
tion was done by the R library function optim(), using the downhill simplex method [PTVF92].
That is, optim() found the five initial carbon pools that, when used to initialise the DALEC
model, gave a good fit to the simulated observations. I repeated this job 100 times, each time
using a different set of pseudo-random numbers to simulate the observation error, with zero
mean and a standard deviation of σLAI = 0.25. Since the observation errors were different for
each job, we would expect the optimal initial values to be a bit different each time. I made it
easy by giving optim() the correct initial values. The first page of Figure 10, which starts on
page 94, shows the results of this experiment. As you can see, there is some scatter in the results,
but each time the Var job finds nearly the right result. Also, the mean result is very close to the
correct set of numbers.

The second page of the Figure shows what happened when I made it harder, by initiating
optim() with values that were 50% too high. Now we can see outliers, where optim() has found a
local minimum of the cost function. Use of a background term — which was deliberately omitted
in these simple examples — might have brought these outliers closer to the centroid. On the
other hand, the whole cluster of points, and its centroid, would then have shifted.

11 An Introduction to Nonlinearity

11.1 Introduction

Var deals naturally with nonlinear systems and observation operators, but the plain KF can
cope with neither. Therefore these sections, §11 and §12, explain how sequential filters can be
adapted to nonlinear problems.

11.2 Nonlinear Observation Operators

So far, the discussion of the Kalman filter has assumed that the observation vector is a linear
function of the state vector. That is, that it is just a matrix multiplication of the state vector.
The case of a nonlinear observation operator is easy to deal with, albeit with a loss of exact
optimality.

Equation (7.3) says:

yk = Hkx
t
k + vk, (11.1)

leading to equations (7.15), which say:

ek = x̂k − xt
k = Ske

−
k + Kkvk. (11.2)

We now replace equation (7.3) with this nonlinear equivalent:

yk = Ĥk(xt
k) + vk, (11.3)

where Ĥk(·) is a vector-valued function of its vector-valued argument. In the linear case, this is
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simply Ĥk(xt
k) = Hkx

t
k. Equations (7.15) and (11.2) then become:

ek = x̂k − xt
k = {x̂−k + Kk[yk − Ĥk(x̂−k )]} − xt

k (11.4a)

= (x̂−k − xt
k) + Kk[Ĥk(xt

k) + vk − Ĥk(x̂−k )] (11.4b)

= e−k + Kk[vk + Ĥk(xt
k)− Ĥk(x̂−k )] (11.4c)

= e−k + Kk[vk + Ĥk(x̂−k − e−k )− Ĥk(x̂−k )] (11.4d)

= e−k + Kk{vk + Ĥk(x̂−k )−Hke
−
k + O[(e−k )2]− Ĥk(x̂−k )} (11.4e)

= e−k + Kk{vk −Hke
−
k + O[(e−k )2]} (11.4f)

' (I −KkHk)e−k + Kkvk (11.4g)
= Ske

−
k + Kkvk. (11.4h)

Here, Hk is the Jacobian of Ĥk. If you do not understand why it arises here, read §D, starting
on page 71. In the linear case, it is trivially equal to the matrix Hk that was used above, so I
use the same notation in this nonlinear case. The rest of the derivation of the KF continues as
before. Loss of optimality arises from discarding the O[(e−k )2] term.

11.3 Nonlinear Systems and Models

There are many variations of the KF, that are designed to deal with nonlinear systems. Here,
I discuss only the ensemble Kalman filter, or EnKF. First, I list some others. The linearised
Kalman filter uses a fixed reference trajectory and linearises the KF equations for small pertur-
bations about the reference trajectory [BH97]. The extended Kalman filter, or EKF, is similar,
but instead of having a fixed reference trajectory, it updates it at observation times [BH97].
According to [RME02],

For nonlinear dynamics, the extended Kalman filter (EKF) can be used, although it
is notoriously unstable if the nonlinearities are strong . . . .

The unscented Kalman filter follows a rationally chosen set of model runs [JU97], and so is
related to the EnKF. And there are many more.

12 The Ensemble Kalman Filter for Nonlinear Systems

12.1 Introduction

The abbreviation for the Ensemble KF is “EnKF”. The EnKF works by running an ensemble
of slightly different Kalman filters, replacing equations (7.21) and (7.23) by purely numerical
calculations that use members of the ensemble, for example in equation (12.6). This allows
nonlinear dynamics and nonlinear observation operators.

The word “ensemble” means more than “family” or “collection”. It means a collection of
vector or scalar random variables that are independent and identically distributed (“iid”).

Geir Evensen invented the EnKF, as presented in [Eve94]. That paper does not make any
sense to me (surely my fault, not Evensen’s). Evensen’s later paper, [Eve03], corrects the earlier
formulation, but I cannot understand the theory or how it practically works, from that paper.
Indeed, it is hard to find a description of how it actually works, and an understandable account
of the theory. [SO08] is the best I have found. This section is based on that account, and adds
some probability and statistics theory to back it up.

I use the overbar notation to indicate an ensemble average. For an ensemble of vectors xν ,
ν = 1, . . . , Ne, the ensemble average is given by:

x =
1

Ne

Ne∑
j=1

xj . (12.1)
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The ensemble covariance matrix of these vectors is

P =
1

Ne − 1

Ne∑
j=1

[xj − x][xj − x]T (12.2)

We can also calculate expectations of ensemble averages and ensemble covariances, because
these are, respectively, a random vector and a random matrix: 〈x〉 and 〈P 〉.

We need to extend the notation, to accommodate time step and ensemble member in the
specification of a vector. In the plain KF, a model state vector at time tk was denoted xk. Now
we have an ensemble of state vectors at time k, one of which we denote xν(tk), meaning ensemble
member number ν at time k. Matrices just use a subscripted time step number, as in the plain
KF. A high tilde, as in x̃ and P̃ , denotes the EnKF version of something that occurs in the
plain KF.

12.2 The EnKF in the Linear Case

The propagation operator and the observation operator are now matrices, i.e. they represent
linear transformations.

12.2.1 How it Works — the Recipe

Before considering nonlinearities, which are the raison d’être of the EnKF, I present the EnKF
for the fully linear system and observations. I will say “∀ν” to mean “1 ≤ ν ≤ Ne”, where this
is not clear from the context.

We start with our plain KF first guess, x̂0, and construct an ensemble of Ne first guesses
around it like this:

x̃ν(t0) = x̂0 + φν , φν ∼ N(0,P0), ∀ν, (12.3)

where the φν vectors contain Gaussian random numbers. Observe that these random vectors
are specified like the background error, i.e. like the assumed error in x̂0 in the plain KF.

We then proceed to advance the ensemble members in time, very much like the plain KF;
but in the EnKF we add some extra random vectors that are distributed like the model error:

x̃−ν (t1) = M0x̃ν(t0) + ζν(t0), ζν(t0) ∼ N(0,Q0), ∀ν. (12.4)

Then we can form the prior estimate covariance matrix like this:

x−(t1) =
1

Ne

Ne∑
j=1

x̃−j (t1), (12.5)

P̃−
1 =

1
Ne − 1

Ne∑
j=1

[x̃−j (t1)− x−(t1)][x̃−j (t1)− x−(t1)]T . (12.6)

Next, we make a Kalman gain matrix, using P̃−
1 instead of P−

1 :

K̃1 = P̃−
1 HT

1 (H1P̃
−
1 HT

1 + R1)−1. (12.7)

We calculate the posterior estimate as in the plain KF; but with the addition of extra random
vectors that are distributed as the observation errors. If this is not done, the ensemble’s evolving
variance will be too low [BvE98], and can even collapse. Thus, the augmented observation
increment is:

d̃ν(t1) = y(t1)−H1x̃
−
ν (t1) + ην(t1), ην(t1) ∼ N(0,R1), ∀ν, (12.8)
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which should be compared with equations (7.10).
Then we get the ensemble of posterior estimates:

x̃ν(t1) = x̃−ν (t1) + K̃1d̃ν(t1), ∀ν, (12.9)

and finally,
P̃1 = S̃1P̃

−
1 S̃T

1 + K̃1R1K̃
T
1 , (12.10)

or the ensemble equivalents of (7.34)–(7.36).
For later time steps, we just repeat this predict-correct cycle, working on each member of

the ensemble. At any time k, the best posterior estimate of the system is x̃(tk), the sample mean
of the ensemble of posterior estimates. Its covariance is given by P̃k.

In summary:

1. Start with x̃ν(t0) = x̂0 + φν , where φν ∼ N(0,P0), 1 ≤ ν ≤ Ne

2. do k = 1→ n

3. ∀ν calculate x̃−ν (tk) = Mk−1x̃ν(tk−1) + ζν(tk−1), where ζν(tk−1) ∼ N(0,Qk−1)
4. calculate x−(tk) = 1

Ne

∑Ne
j=1 x̃−j (tk)

5. calculate P̃−
k = 1

Ne−1

∑Ne
j=1[x̃

−
j (t1)− x−(t1)][x̃−j (t1)− x−(t1)]T

6. calculate K̃k = P̃−
k HT

k (HkP̃
−
k HT

k + Rk)−1

7. ∀ν calculate d̃ν(tk) = y(tk)−Hkx̃
−
ν (tk) + ην(tk), where ην(tk) ∼ N(0,Rk)

8. ∀ν calculate x̃ν(tk) = x̃−ν (tk) + K̃kd̃ν(tk)
9. calculate P̃k = S̃kP̃

−
k S̃T

k + K̃kRkK̃
T
k . . . and also see equations (7.34)–(7.36)

10. calculate x̂(tk) = x̃(tk) = 1
Ne

∑Ne
j=1 x̃j(tk)

11. end do

N.B. you might not want x̂(tk) at each time step. In that case, you do not need to calculate
it until you want to print it.

12.2.2 Another Recipe

The following changed notation can be easier to think about, and easier to code. It is not obvious
that it does exactly the same thing, so I discuss it here. It involves storing all the ensemble
members at a given time in a single matrix. Thus, instead of having Ne ensemble members at
time k, we have a single nx × Ne matrix called X̃k, which contains the column vectors x̃ν(tk)
side-by-side, like this:

X̃k = [x̃1(tk) | x̃2(tk) | · · · | x̃Ne(tk)] . (12.11)

Similarly,
X̃−

k =
[
x̃−1 (tk) | x̃−2 (tk) | · · · | x̃−Ne

(tk)
]
, (12.12)

and
X−

k =
[
x−(tk) |x−(tk) | · · · |x−(tk)

]
. (12.13)

Note that all the columns of X̃k differ from one another, and the same for X̃−
k ; but all the

columns of X−
k are the same as each other.

Then it can be shown easily (if you know what to expect) that

X̃−
k = Mk−1X̃k−1 + Z̃k−1, (12.14)
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where Z̃k−1 is a matrix populated with Ne random vectors ζν ∼ N(0,Qk−1),∀ν. And equa-
tion (12.6) can be replaced by this:

P̃−
k =

1
Ne − 1

[X−
k −X−

k ][X−
k −X−

k ]T (12.15)

Using matrices, we can replace the Ne equations (12.8) and the Ne equations (12.9) with the
following:

Ỹk = [y(tk) | · · · |y(tk)] , (12.16a)

Ẽk = [η1(tk) | · · · |ηNe(tk)], ην ∼ N(0,Rk), (12.16b)

D̃k = Ỹk −HkX̃
−
k + Ẽk, (12.16c)

X̃k = X̃−
k + K̃kDk. (12.16d)

In summary:

1. Start with x̃ν(t0) = x̂0 + φν , where φν ∼ N(0,P0)
2. Arrange the vectors x̃ν(t0) into a matrix X̃0

3. do k = 1→ n

4. calculate Z̃k−1 = [ζ1(tk−1) | · · · |ζNe(tk−1)], where ζν(tk−1) ∼ N(0,Qk−1)
5. calculate X̃−

k = Mk−1X̃k−1 + Z̃k−1

6. calculate X−
k =

[
x−(tk) | . . . |x−(tk)

]
7. calculate P̃−

k = 1
Ne−1

[
X̂−

k −X−
k

] [
X̂−

k −X−
k

]T

8. calculate K̃k = P̃−
k HT

k (HkP̃
−
k HT

k + Rk)−1

9. calculate Ẽk = [η1(tk) | . . . |ηNe(tk)], where ην(tk) ∼ N(0,Rk)
10. calculate D̃k = Ỹk −HkX̃

−
k + Ẽk, where Ỹk = [y(tk) | . . . |y(tk)]

11. calculate X̃k = X̃−
k + K̃kD̃k

12. calculate P̃k = S̃kP̃
−
k S̃T

k + K̃kRkK̃
T
k . . . and also see equations (7.34)–(7.36)

13. calculate x̂(tk) = x̃(tk) = 1
Ne

∑
j x̃j(tk), where x̃ν(tk) are the columns of X̃k

14. end do

N.B. you might not want x̂(tk) at each time step. In that case, you do not need to calculate
it until you want to print it.

12.2.3 Does it Work?

This all looks quite plausible, but it is important to confirm, if possible, that it is consistent
with the plain KF. We can investigate this by examining expectations and covariances of the
results. Direct comparison is possible because the above recipe for the EnKF assumes operators
are linear.

We first examine x̂ν(t0):

〈x̂ν(t0)〉 = 〈x̂0 + φν〉 = x̂0 + 〈φν〉 = x̂0, (12.17a)

so 〈X̂0〉 =
[
x̂0 | x̂0 | . . . | x̂0

]
, (12.17b)

as required. And:

cov(x̂ν(t0)) = 〈[x̂ν(t0)− 〈x̂ν(t0)〉][x̂ν(t0)− 〈x̂ν(t0)〉]T 〉 = 〈φν(t0)φν(t0)T 〉 = 〈P0〉, (12.18)
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as required.
The following expectation works out easily:

〈x̃−ν (t1)〉 = 〈M0x̃ν(t0) + ζν(t0)〉 = M0〈x̃t
0 + φν(t0)〉 = M0x̂

t
0, (12.19)

as required. The covariance of a single ensemble member is a longer manipulation, but not
difficult:

cov(x̃−ν (t1)) = 〈[x̃−ν (t1)− 〈x̃−ν (t1)〉][x̃−ν (t1)− 〈x̃−ν (t1)〉]T 〉 (12.20a)

= 〈[x̃−ν (t1)−M0x̂
t
0][x̃

−
ν (t1)−M0x̂

t
0]

T 〉 (12.20b)

= 〈[M0(x̂0 + φν(t0)) + ζν(t0)−M0x̂0][M0(x̂0 + φν(t0)) + ζν(t0)−M0x̂0]T 〉
(12.20c)

= 〈[M0φν(t0) + ζν(t0)][M0φν(t0) + ζν(t0)]T 〉 (12.20d)

= 〈M0φν(t0)φν(t0)T MT
0 + M0φν(t0)ζν(t0)T + ζν(t0)φν(t0)T MT

0 + ζν(t0)ζν(t0)T 〉
(12.20e)

= M0P0M
T
0 + Q0, (12.20f)

as required, since this is the same as for the plain KF, as in equations 7.21.
Now for the analysis of P̃−

1 , i.e. the ensemble covariance matrix.

〈P̃−
1 〉 =

1
Ne − 1

Ne∑
j=1

〈[
x̂−j (t1)− x−(t1)

] [
x̂−j (t1)− x−(t1)

]T
〉

(12.21a)

=
1

Ne − 1

Ne∑
j=1

〈{
M0(x̂0 + φj(t0)) + ζj(t0)−

1
Ne

Ne∑
k=1

[M0(x̂0 + φk(t0)) + ζk(t0)]

}
×

{
M0(x̂0 + φj(t0)) + ζj(t0)−

1
Ne

Ne∑
m=1

[M0(x̂0 + φm(t0)) + ζm(t0)]

}T 〉
(12.21b)

=
1

Ne − 1

Ne∑
j=1

〈
M0φj(t0)φj(t0)T MT

0 + M0φj(t0)ζT
j (t0)−

1
Ne

M0φj(t0)
Ne∑

m=1

[M0φm(t0) + ζm(t0)]T + ζj(t0)φj(t0)T MT
0 +

ζj(t0)ζT
j (t0)−

1
Ne

ζj(t0)
Ne∑

m=1

[M0φm(t0) + ζm(t0)]T −

1
Ne

Ne∑
k=1

[M0φk(t0) + ζk(t0)]φj(t0)T MT
0 −

1
Ne

Ne∑
k=1

[M0φk(t0) + ζk(t0)]ζT
j (t0) +

1
N2

e

Ne∑
k=1

[M0φk(t0) + ζk(t0)]
Ne∑

m=1

[M0φm(t0) + ζm(t0)]T
〉

(12.21c)

=
1

Ne − 1

Ne∑
j=1

[
M0P0M

T
0 + 0− 1

Ne
M0P0M

T
0 − 0 + 0 + Q0 − 0− 1

Ne
Q0 −

1
Ne

M0P0M
T
0 − 0− 0− 1

Ne
Q0 +

1
Ne

(M0P0M
T
0 + 0 + 0 + Q0)

]
(12.21d)

=
1

Ne − 1

Ne∑
j=1

(
1− 1

Ne

)
(M0P0M

T
0 + Q0) (12.21e)
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=
Ne − 1

Ne(Ne − 1)

Ne∑
j=1

(M0P0M
T
0 + Q0) (12.21f)

= M0P0M
T
0 + Q0 = P−

1 , (12.21g)

as required. N.B. equations (12.21) are just an extended version of the proof that the expectation
of a scalar sample variance is equal to the population variance [Wik07b]. To get from (12.21b)
to (12.21c): first, many of the terms were multiplied out; then cancellations done (e.g. the terms
in x̂0x̂

T
0 all drop out); and expectations of zero-mean random variables were removed.

Having proved that 〈P̃−
1 〉 = P−

1 , the next steps are to show similar correspondences hold
for K̃1, x̃ν(t1) and P̃1. That is, that the expectations of these quantities are the same as in the
plain Kalman filter, and that the covariances of x̃ν(t1) are also the same as in the plain KF;
and thus that the same is true for later time steps. Unfortunately, I cannot figure out how to
continue this process. I would be grateful if any reader could tell me how to do it.

12.3 The EnKF in the Nonlinear Case

The previous section goes some way to showing that the EnKF is equivalent in expectation
and covariance to the plain KF in the linear case. Equivalence for the rotational system is
demonstrated in §13.1. When propagation and observation operators, or both, are nonlinear,
then a direct comparison cannot be made. Nevertheless, a demonstration is appropriate, and is
given below in §13.2, starting on page 34.

To make it work in the nonlinear case, the state propagation matrix is replaced by a function
in equation (12.4). Similarly, the matrix observation operator in equation (12.8) is replaced with
a function. Elsewhere, H is replaced by the Jacobian of Ĥ, as explained in §11.2.

12.4 Remarks

1. An EnKF analysis scheme is summarised in the pseudocodes on pages 30 and 31. Be-
fore making this work practically, I had tried a slightly different scheme, in which X̃−

k =

Mk−1X̃k−1 and P̃−
k = 1

Ne−1

[
X̂−

k −X−
k

] [
X̂−

k −X−
k

]T
+ Qk−1. So the ensemble mem-

bers evolve deterministically between Kalman updates (albeit that they are initialised
stochastically), and P̃−

k has a random matrix added to it, that is distributed as the model
error. Just like the correct scheme, this one has 〈P̃1〉 = P1. In a practical implementation,
though, this is not a very good filter. It tracks the system less well than the plain KF and
the correct EnKF, and the covariances are too small. The filter goes off the rails after the
first iteration, but the reason will remain mysterious until I figure out how to calculate all
the expectations in the EnKF (and in its incorrect variation).

2. It seems likely that equation (12.10) can be replaced by a sample covariance matrix of the
ensemble of posterior estimates. But I have not yet proved or otherwise demonstrated this,
even to myself.

3. In the plain KF, P− and P did not depend on the state vectors, and could be calculated
offline. This is not the case in the EnKF. Now, the matrices must be calculated from the
state vectors.

13 Two Demonstrations of the EnKF

13.1 The Rotational System

Because the rotational system is linear, the EnKF should exactly reproduce the analysis that
the plain KF does, in the limit Ne →∞. This section, §13.1, examines finite approximations to
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this claim for three sizes of ensemble.
First, Ne = 25 seemed like a reasonable number. I ran the EnKF exactly as in §12.2, with an

ensemble size Ne = 25. The parameters and initiation were exactly as in Figure 6, starting on
page 87. The results are shown in Figure 11, starting on page 96. You can see that the trajectory
is close to that shown in Figure 6, but the error bars are not so good. The error bar envelopes in
the top three panels of the second page of the figure are not as smooth as in the plain KF. This
reflects the wobbliness of P (x, x) and P (y, y). The covariance, P (x, y) is very different from the
plain KF result, which was practically zero after the transient had disappeared.

Repeating the same numerical experiment, but with Ne = 250 gave Figure 12, starting
on page 98. The trajectory is now indistinguishable from that in Figure 6. The error bars have
smooth envelopes, and the variances are starting to look like those of the plan KF. The covariance
is generally smaller, roughly by a factor of

√
10 by the look of it, although I have not quantified

this.
Is Ne = 5 a big enough ensemble? Figure 13 shows the results, starting on page 100. The

error bars, variances and covariance are now all over the place. The trajectory starts off quite
different to the plain KF’s, but later starts to resemble a slightly rougher version of it.

A useful conclusion would be a statement on how big an ensemble is required. In fact, it
appears that the required size of the ensemble must depend on the user’s requirements. Is a
rough, post-transient trajectory a good enough result? Or do you need smooth error bars? One
thing we can say is that a big enough EnKF ensemble can reproduce the plain KF in a linear
case where a direct comparison can be made.

13.2 DALEC

Next we apply the EnKF to the DALEC model that was introduced in §10.2. DALEC is non-
linear, so the plain KF is not applicable. Nevertheless, it is useful to see what the EnKF can do
here.

For a certain set of parameters (it does not really matter what they are, for the purposes
of this tutorial) and initial values of the carbon pools, a forward run of the DALEC model
is shown in page 1 of Figure 14. The carbon pools evolve over three years as in the top five
panels. LAI is proportional to Cf, and the line in the bottom panel shows this. The coloured
circles show simulated observations of LAI, calculated by adding zero-mean Gaussian random
noise with σ = 0.25, to the forward run values. A sparse subset is assumed, corresponding
to a notional sampling by a satellite-borne instrument looking through an atmosphere that is
sometimes cloudy.

I ran an ensemble KF with 100 members in three different ways. The variables involved were
the five carbon pools, and the observations were those simulated in the forward run. That is,
x = (Cf, Cr, Cw, Clit, Csom), and y = LAI.

In the first run, shown on page 2 of Figure 14, which starts on page 102, the EnKF was
started with the correct initial values of the carbon pools. The model error was set as Q =
diag(2.75, 1.8, 11, 0.5, 99)2. All the carbon pools and the LAI are tracked well. But some problems
are immediately apparent. The error bars on Cw and Csom show no sign of being constrained
by the observations. Cf and Clit, on the other hand, have pinch points in their error bars when
observations are available. Cr seems to be in an intermediate state.

In the second run, shown on page 3 of Figure 14, I repeated the first, with the exception
that I doubled the initial values of the carbon pools that were supplied to the EnKF. Now we
can see clearly that Cf and Clit are well controlled by the filter. Previously, we were not sure of
the status of Cr, but now we can see that it is controlled by the filter, albeit not strongly. Again,
Cw and Csom appear not to be controlled at all.

Finally, the third run, shown on page 4 of Figure 14, repeats the third, but decreases the
model error variance of Csom to 222. The only change is that Csom is now even more poorly
controlled.
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We can conclude that the KF does not work fully for this system with these observations.
This is a problem of observability. As [BH97] say,

There is a third kind of divergence problem that may occur when the system is not
observable. Physically, this means that there are one or more state variables (or linear
combinations thereof) that are hidden from the view of the observer (i.e. the mea-
surements). As a result, if the unobserved processes are unstable, the corresponding
estimation errors will be similarly unstable. This problem has nothing to do with
roundoff error or inaccurate system modelling. It is just a simple fact of life that
sometimes the measurement does not provide enough information to estimate all the
state variables of the system.

There are mathematical tests of observability, such as in [Jaz70]. Practically, two ways to fix the
problem are: do not try to control an unobservable state variable; get other observations that
do allow all relevant state variables to be controlled.

In the case of DALEC, LAI is proportional to Cf, so this is well constrained. Also, Cf

directly influences GPP, which in turn directly affects Cr and Cw, so we might expect these to
be controlled well. However, this is not the case for Cw, presumably because the coupling of
GPP to Cw is weak. Cf also has a direct influence on Clit, so the latter is well constrained. But
Csom is two steps away from Cf, which is why it is not well constrained.

I had hoped to demonstrate successful use of the EnKF. It is known to work in many circum-
stances, (e.g. [Eve09]) but I assume that the set-up I used here is not amenable to estimation
by the EnKF. It is, however, useful to see a partial failure, since this is rarely (perhaps never?)
found in textbooks.

14 Parameter Estimation

Another job we might want to do, is to estimate some parameters in a model of a system. For
example, in the rotational system of §8.1, the angular velocity ω is a parameter. If we did not
know it accurately, we would have to estimate it, otherwise the data assimilation job would go
haywire.

If we do not have an independent estimate of ω, we might try to estimate it from the data.
This is parameter estimation by data assimilation. I have not produced a demonstration of it
for this paper.

Another way to think of this is to note that it is a way of accomplishing nonlinear regression.
In the common situation of fitting a straight line to (x, y) data, we have to estimate the intercept
and slope of that straight line, by a process called linear regression. Linear regression can be
extended to more variables and more complicated functions [PTVF92] — the name remains
correct so long as the function to be fit is linear or affine in the coefficients that are to be
estimated. More general is nonlinear regression, where the job is to estimate some numbers in
a function that is neither linear nor affine in those numbers. In the present case, the function is
given by the mathematical model. One way of estimating the numbers (i.e. the parameters) is
by data assimilation.

14.1 By Nonlinear Sequential Filtering

I assume, for now, that there is only one parameter to be estimated. Extension to more than
one is fairly plain. An intuitively appealing approach is to insert the parameter into the vector
of things we have to estimate. Then, for example, our rotational model becomes the following,
or some related discretisation:

xn+1 =

xn+1

yn+1

ωn+1

 =
1

Cn

1− ω2
ndt2/4 −ωn dt 0

ωn dt 1− ω2
ndt2/4 0

0 0 Cn

xn

yn

ωn

 +

wx,n

wy,n

wω,n

 , (14.1)
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where Cn = 1+ω2
ndt2/4. (Observe that w and ω both occur here. They are not the same thing.)

Thus, ω is stationary in the deterministic part of the model, but is given some additive noise
that allows the Kalman filter to change it. The art of solving this problem is largely in tuning
the variance of the random process wω,n, which is the noise added to ωn. If the noise is too small,
the filter can fail because it is slow to arrive at a reasonable value of ω — meanwhile, it fails
to follow the system’s state because it has the wrong parameter in it. If the noise is too large,
the estimate of the parameter is too weakly constrained, and it can wander around too much.
Whatever the form, the estimate will wander about to some extent. I have tried this method of
estimating ω by the EnKF, and found it much more difficult than merely estimating the state
of the system. However, maybe I gave up too easily, because Mat Williams at the University of
Edinburgh has made this work [Personal communication], and [LKSW03] have estimated state
and parameters by a sequential filter.

Why does the title of this subsection say Nonlinear? Looking at equation (14.1), we see a
matrix equation. However, the coefficients of xn and yn contain ωn, which we also trying to
estimate. The model equations are now a nonlinear set, and the plain KF no longer applies.
This is a general problem with estimation of parameters by sequential filtering.

14.2 With a Filter Bank

Consider a linear state estimation problem, which is amenable to the plain KF. If the model
contained one unknown parameter, we could run N KF jobs, each with a different value of that
parameter. One of these jobs would be a better filter than the others, and the value of the
parameter in that job would be the one to choose. These jobs, which could be run in parallel,
are known as a filter bank [BH97], and this method has been known since 1965 or earlier. [BH97]
discuss it, filling in many of the complexities — for example, in the relevant probability theory
— that I have omitted here. [AM05] go into more depth and summarise existence proofs.

While this can be a useful tool in the estimation of a single parameter, it becomes problematic
for many parameters. If we have n parameters to estimate, and each has N divisions in its range,
then our filter bank will contain Nn KF jobs.

I speculate that we could produce a cost function that measures the performance of a single
KF job, as a function of a vector of parameters. Then the best set of parameters would be the
set that minimised this cost function. I have not yet brought this idea to fruition; but I would
not be surprised if it were already thought through and either published or dismissed already
by someone else.

14.3 Variationally

There is a simple, at first sight useless, rigorous extension of Var to estimating parameters, by
inserting them into the vector of things to be estimated — a method akin to that in §14.1.

Let p be a set of fixed (i.e. they do not change through time, at least through a single
Var analysis window) parameters arranged in an np-vector. Our state vector from §9 is now
augmented by the vector p, like this:

x̃k = (xT
k ,pT )T =

[
xk

pk

]
, (14.2)

i.e. x̃ is a column vector of length nx + np. The second equality uses a partitioned matrix
notation, applied to the vector.

The true augmented model state vector evolves like this:

x̃t
k+1 = M̂k(x̃t

k) + w̃k, (14.3)
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where I have used the M̂k notation again, because it is the same function as before. Using the
partitioned matrix notation, this equation means:[

xt
k+1

p

]
=

[
M̂k(xt

k)
p

]
+

[
wk

0

]
. (14.4)

So the evolution operator is essentially the same as in §9, because the p part of the augmented
state vector is constant (but unknown).

Measurements of the system are also noisy, and may depend on the parameters.

yk = Ĥk(x̃t
k) + vk, (14.5)

similar to the §9 case. As before, it is assumed that w̃k and vk are independent.
Again, we define

X̃t
N = (x̃t

0, x̃
t
1, . . . , x̃

t
N ), (14.6)

YN = (y1,y2, . . . ,yN ). (14.7)

There is now a tilde on the X̃t
N because we include the system state and the parameters that are

to be estimated. But YN is the same as before. We want to maximise the following conditional
density with respect to the set of x̃-vectors:

p(X̃t
N |YN ). (14.8)

Using Bayes’ rule, this density is written as

p(X̃t
N |YN ) =

p(YN |X̃t
N )p(X̃t

N )
p(YN )

. (14.9)

The denominator does not depend on X̃t
N , so we can ignore it in maximising p(X̃t

N |YN ) with
respect to X̃t

N .
The analysis in §9 still works in the following two ways. First,

p(YN |X̃t
N ) =

N∏
k=1

pv,k(yk − Ĥk(x̃t
k)), (14.10)

where pv,k(yk − Ĥk(x̃t
k)) = pv,k(vk) ∼ N [0,Rk], a Gaussian density. Second, the sequence

{x̃t
0, . . . , x̃

t
N} is a Markov sequence, so

p(X̃t
N ) = p(x̃0)

N∏
k=1

p(x̃t
k|x̃t

k−1) (14.11)

= p(x̃0)
N∏

k=1

pw,k(x̃t
k − M̂k−1(x̃t

k−1)), (14.12)

where pw,k(x̃k − M̂k−1(x̃k−1)) = pw,k(wk−1) ∼ N [0,Qk−1].
We now have a more complicated background term. Our xb becomes x̃b, a vector containing

a background estimate not only of the initial value of the state vector, but also our prior estimate
of the parameters. The background error covariance matrix must now be augmented as follows:

B =

[
Bxx Bxp

Bpx Bpp

]
, (14.13)
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where Bxx and Bpp are the background error covariance matrices for xt and p, respectively;
and Bxp and Bpx are the cross-covariance matrices. There is a bit of unpleasantness here: we
need B−1, but the inverse of a partitioned matrix is not, generally, formed from the inverses
of the blocks: see §A.6. However, if the cross-covariance matrices are zero, then the inverse is
formed from the inverses of the diagonal blocks, and that is what I assume here. That is, the
background errors of the system state and of the parameters are assumed to be uncorrelated so
we can write

B−1 =

[
B−1

xx 0

0 B−1
pp

]
. (14.14)

If this assumption is not thought to stand, the full formulæ for the inverse can be used, at least
in principle, as in §A.6.

Equation (9.14) of §9 now becomes

J(x0,p) =
1
2
(x0 − xb)T B−1

xx (x0 − xb) +
1
2
(p− pb)T B−1

pp (p− pb)

+
1
2

N∑
k=1

(yk − Ĥk(x̃k))T R−1
k (yk − Ĥk(x̃k))

+
1
2

N∑
k=1

(xk − M̂k−1(xk−1))T (Qk−1)−1(xk − M̂k−1(xk−1)). (14.15)

In the final term, we have x instead of x̃, because it is only the system that evolves, not the
parameters. (This is by assumption, and if this assumption is incorrect than we have a theory
for an assimilation system that can be used, but which is not optimal.) The only explicit term
involving the parameters is that containing B−1

pp , and this represents a statistical statement that
penalises departures of the parameters from the prior (background) estimate. If you have no
prior estimate, this term can be omitted — but that is probably not a very good idea.

Again, the model is our tool for minimising the cost function, and we have:

J(x0,p) =
1
2
(x0 − xb)T B−1

xx (x0 − xb) +
1
2
(p− pb)T B−1

pp (p− pb)

+
1
2

N∑
k=1

(yk − Ĥk(x̃k))T R−1
k (yk − Ĥk(x̃k)). (14.16)

I said, a couple of pages back, that this method is “at first sight useless.” This is because a
parameter error is likely to lead at least to a bias, and probably a drift, of the model’s trajectory
w.r.t. that of the discretised system. However, the derivation of Var assumes that the model is
unbiased, as in §9.3. But this is explicitly contradicted by the expected bias or drift that we
expect from a model with incorrect parameters. That is, incorrect parameters cause an effect
that contradicts the assumptions that start the derivation (unless we are very lucky — and even
then, we probably would not know!).

However, variational estimation of parameters is likely to work anyway. Imagine that the
model had correct initial values and correct parameters. Then the cost function would indeed
be smaller than if incorrect initial values, or parameters, or both, were used. Thus, variational
estimation of parameters is a rational method, albeit not necessarily an optimal one. Plainly,
this variational method is akin to the filter bank in sequential estimation, and I suspect that it
is, therefore, a good method, despite my lack of a proof. Perhaps a proof exists somewhere in
the literature, and I have just not found it.
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15 Introduction to Finding the Minimum in Var

The job in Var is to find a vector x0 that minimises J(x0). This special value of x0 is the analysis,
x̂0 or xa. The literature on minimising functions, in textbooks and research, is vast. The process
of minimisation is often called optimisation. There are robust methods that use only values of
the function at different values of x0, such as the downhill simplex method [PTVF92]. These
are generally slow, except under special circumstances. Faster methods, e.g. the BFGS method
(e.g. [PTVF92] and [Fle87]), use values of J(x0) and its gradient ∂J(x0)/∂x0 at different values
of x0.

So we need to find cheap ways of evaluating J(x0) and ∂J(x0)/∂x0. The former is done
by a form of linearisation called incremental Var, in which most of the function evaluations are
done with a linearised version of the model. It is linearised about a run of the full, nonlinear
model, this run being known as a linearisation state. There are two basic modes of linearising
the model. One is to start with the equations that are coded into the model. The equations are
linearised, then the linearised equations are coded, to make what is known (in the Met Office)
as a perturbation forecast model, or PF model. I do not discuss the PF model further in this
tutorial. The second is to start with the nonlinear model code, and linearise this to form what
is known as the tangent linear code. This is discussed below, in §20, starting on page 45.

The gradient can be found by a linearised model known as the adjoint, as explained below,
also in §18.

16 Overview of Incremental Var.

§18 shows how to find the gradient of the cost function w.r.t. the initial state vector. This enables
us to use gradient methods to minimise the cost function. However, it is still necessary to run the
model forward many times, harvesting the various vectors and matrices each time. Incremental
Var lets us speed this up by linearising the Var process about a single full model run called the
linearisation state. Iterations of the minimiser then use the adjoints, etc., of the full model run
(i.e. a linearised model), so this should be faster. These iterations are called inner loops, with
the implication that there are outer loops somewhere. An outer loop is when you do a second
(or third, . . . ) full model run, which is a new linearisation state around which to do another
set of linear inner loops. N.B. there is no proof, that I know of, that this process will converge
quickly, or even that it will converge at all! But practically, it works.

Incremental Var can also involve running models at lower spatial resolution than is normally
attainable, to speed up the iterative procedure further. I do not discuss that here.

17 Details of Incremental 4D-Var

Here is one way of doing incremental Var. In it, I explicitly label various terms in accordance
with outer loop iteration and inner loop iteration, which (I hope) will make the process easier
to understand.

Some symbols that are usually subscripts are, in this section, superscripts. This is to prevent
the clutter that would arise, because more subscripts are required here then elsewhere in the
paper. For example, the background estimate is usually denoted by xb, but in this section by
xb. And similarly with others. Since the argument of J(·), which is usually denoted by x0, is a
dummy argument, I replace it in this section by ξ, which makes the presentation a bit tidier.

Superscripts and subscripts are as follows.

• Time increments are denoted by τ , with 0 ≤ τ ≤ T ;

• Outer loop increments are denoted by k, with 1 ≤ k ≤ K;
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• Inner loop increments are denoted by i, with 1 ≤ i ≤ Ik, Ik depending on the outer loop
that it is within, as the notation suggests.

The basic picture is that an inner loop does iterations about a fixed linearisation state (i.e. k is
fixed, but i changes), while an outer loop changes the linearisation state (i.e. k changes).

Using a norm notation that I copied from Gordon Inverarity at the Met Office, the 4D-Var
cost function is

J(ξ) = ‖ξ − xb‖2B +
T∑

τ=1

‖yτ − Ĥτ [ξτ ]‖2Rτ , (17.1)

where
‖ζ‖2S = ζTS−1ζ (17.2)

for any conformable vector ζ and matrix S.
Now consider the cost function at outer loop k and inner loop i, with initial state ξ0

k,i. That
is, the initial state varies between inner loops and outer loops.

J(ξ0
k,i) = ‖ξ0

k,i − xb‖2
B

+
T∑

τ=1

‖yτ − Ĥτ [ξτ
k,i]‖

2

Rτ . (17.3)

Let the initial state be split between a part that depends only on the outer loop, and the
remainder:

ξ0
k,i = ξg,0

k + δξ0
k,i. (17.4)

Also, let the model evolution operator be M̂0→τ , taking any initial state to the state at discrete
time τ , by running the full nonlinear model:

ξτ
k,i = M̂0→τ [ξ0

k,i] (17.5a)

= M̂0→τ [ξg,0
k + δξ0

k,i] (17.5b)

' M̂0→τ [ξg,0
k ] + M0→τ

k δξ0
k,i (17.5c)

= ξg,τ
k + M0→τ

k δξ0
k,i, (17.5d)

where M0→τ
k is the Jacobian and ξg,τ

k is, by definition, M̂0→τ [ξg,0
k ]. A short way below, the

operator M̂ τ (observe that the superscripted “0 →” is absent) means the evolution from one
time-step to the next.

Now we “incrementalise” equation (17.3), looking at the two parts of the cost function in
turn.

JB = ‖ξ0
k,i − xb‖2

B
(17.6a)

= ‖ξg,0
k + δξ0

k,i − xb‖2
B

(17.6b)

= ‖δξ0
k,i − (xb − ξg,0

k )‖2
B

(17.6c)

= ‖δξ0
k,i − δξg,0

k ‖
2

B
, (17.6d)

where, by definition, δξg,0
k = xb − ξg,0

k . Now

JRτ = ‖yτ − Ĥτ [ξτ
k,i]‖

2

Rτ (17.7a)

' ‖yτ − Ĥτ [ξg,τ
k + M0→τ

k δξ0
k,i]‖

2

Rτ (17.7b)

' ‖yτ − Ĥτ [ξg,τ
k ]−Hτ

k M0→τ
k δξ0

k,i‖
2

Rτ (17.7c)

= ‖dτ
k −Hτ

k M0→τ
k δξ0

k,i‖
2

Rτ , (17.7d)
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where, by definition, Hτ
k is the Jacobian and dτ

k = yτ − Ĥτ [ξg,τ
k ].

So equation (17.3) becomes

J(ξ0
k,i) = ‖δξ0

k,i − δξg,0
k ‖

2

B
+

T∑
τ=1

‖dτ
k −Hτ

k M0→τ
k δξ0

k,i‖
2

Rτ . (17.8)

It is now easy to see which objects must be calculated when. Those with subscripts k, i must
be calculated every inner loop:

δξ0
k,i Hτ

k M τ
k δξ0

k,i, (17.9)

and those with subscript k alone need only be calculated every outer loop:

δξg,0
k dτ

k Hτ
k M τ

k . (17.10)

The M τ
k are linearisations of the full, nonlinear model. They are realised as either tangent

linear models or PF models, and assembled from single-time-step linearisations, like this:

ξ1
k,i = M̂0

k,i(ξ
0
k,i) = M̂0

k,i(ξ
g,0
k + δξ0

k,i) ' M̂0
k,i(ξ

g,0
k ) + M0

k δξ0
k,i = ξg,1

k + M0
k δξ0

k,i. (17.11)

Then,

ξ2
k,i = M̂1

k,i(ξ
1
k,i) ' M̂1

k,i[ξ
g,1
k + M0

k δξ0
k,i)] ' M̂1

k,i(ξ
g,1
k ) + M1

kM0
k δξ0

k,i = ξg,2
k + M1

kM0
k δξ0

k,i.
(17.12)

And,

ξ3
k,i = M̂2

k,i(ξ
3
k,i) ' M̂2

k,i[ξ
g,2
k +M1

kM0
k δξ0

k,i)] ' M̂2
k,i(ξ

g,2
k )+M2

kM1
kM0

k δξ0
k,i = ξg,3

k +M2
kM1

kM0
k δξ0

k,i.
(17.13)

So, by induction:

ξn
k,i ' M̂n−1

k,i (ξg,n−1
k ) + Mn−1

k Mn−2
k · · ·M0

k δξ0
k,i = ξg,n

k + Mn−1
k Mn−2

k · · ·M0
k δξ0

k,i. (17.14)

The M̂ ·
k are just steps of the full nonlinear model. The M ·

k are the steps of the linearised
model.

The whole process starts with k = 1, i.e. the first outer loop. Then the first guess is ξ0
1,1 =

ξg
1 + 0, i.e. δξ0

1,1 = 0. The full model is run to produce the first linearisation state, and a Var
job is done using the linearised model, until convergence has been achieved or for a pre-defined
number of iterations (i.e. of inner loops). Then a second outer loop is initiated by forming
ξg,0
2 = ξg,0

1 +δξ0
1,M , where ξ0

1,M is the optimal value of ξ0
1,i. Then another linearised optimisation

is done, with inner loops. In this way, the outer loops can be iterated either to convergence or
for a pre-determined number of iterations.

18 Gradient Calculation for State Estimation

The analysis is a little intricate, so before presenting the useful derivation for a general vector x0,
I give a derivation for the simplified case where the model, the system and observation vectors
are scalars.

18.1 Gradient of J for Scalar Systems.

The Var equation is now

J(x0) =
(x0 − xb)2

2B
+

N∑
i=1

(yi − Ĥ(xi))2

2Ri
. (18.1)
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Minimisation of the background term Jb, does not involve linearisation.
Let us now consider the usual Var situation, in which we are only trying to find a best

starting value of x0, with the parameters being fixed. We want to find ∂Jo/∂x0, (where Jo is the
observations part of the cost function, i.e. the subscript is “oh”, not “zero”), so we can do an
efficient search using derivatives. First, observe that Jo =

∑N
1 Jo,i, to use an obvious notation.

Then

∂Jo,i

∂x0
=

∂

∂x0

[yi − Ĥ(xi)]2

2Ri
(18.2a)

=
[Ĥ(xi)− yi]

Ri

∂

∂x0
Ĥ(xi) (18.2b)

=
diHi

Ri

∂xi

∂x0
(18.2c)

=
diHi

Ri

∂xi

∂xi−1

∂xi−1

∂xi−2
. . .

∂x2

∂x1

∂x1

∂x0
, (18.2d)

where di = Ĥ(xi)− yi and Hi = ∂Ĥ(xi)/∂xi. Now we can write

∂xi

∂xi−1
=

∂M̂i−1(xi−1)
∂xi−1

= Mi−1, (18.3)

which defines the scalar Mi−1. So

∂Jo,i

∂x0
=

diHi

Ri
Mi−1Mi−2 . . .M0. (18.4)

So, as well as the derivatives, we have to do i + 1 multiplications and 1 division in calculating
∂Jo,i/∂x0. So in calculating ∂Jo/∂x0, it looks like we need O(N2) multiplications, N divisions
and N − 1 additions.

A clever factorisation (Horner’s Rule, [Weia]) reduces this from O(N2) to O(N). I illustrate
this for N = 5, using for brevity, ζi = diHi/Ri:

ζ1M0 + ζ2M1M0 + ζ3M2M1M0 + ζ4M3M2M1M0 + ζ5M4M3M2M1M0

= M0(ζ1 + M1(ζ2 + M2(ζ3 + M3(ζ4 + M4ζ5)))), (18.5)

which has a complexity of O(N) multiplications, N divisions and N − 1 additions.

18.2 Gradient of J for Vector Systems

The scalar analysis is a step-up to understanding the vector case. I next show how it works for
a vector state function, x(t), and a vector of observations, y(t). Again, I will show how to get a
useful expression for the gradient of the ith term of Jo.

Now, the Var equation is more familiar:

J(x0) =
1
2
(x0 − xb)T B−1(x0 − xb) +

1
2

N∑
k=1

(yk − Ĥk(xk))T R−1
k (yk − Ĥk(xk)), (18.6)

A problem arises in the usual vector-matrix notation, which I now explain for a simpler
example. Let f(x) and g(x) be two vector-valued functions of some other vector x. If they have
the same lengths, we can define this scalar:

Z(x) = f(x)T g(x). (18.7)
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Then ∇Z = ∂Z/∂x must be a column vector (well, it could be a row vector, but the gradient of
a scalar is usually thought of as a column; and even if we think of it as a row, the same essential
problem will arise). Now, using the product rule of differential calculus,

∂Z(x)
∂x

=
∂

∂x
[f(x)T g(x)] (18.8a)

=
∂f(x)T

∂x
g(x) + f(x)T ∂g(x)

∂x
. (18.8b)

But the first term in equation (18.8b) is a column vector, while the second term is a row vector.
We can avoid this apparent nonsense (and it really is only apparent — caused by pushing the no-
tation further than it can cope) by using index notation and the summation convention [Wik07a]
that repeated indices imply summation. To illustrate, Z and its gradient become:

Z(x) = fα(x)gα(x), (18.9a)
∂Z

∂x
=

∂Z

∂xβ
(18.9b)

=
∂fα(x)gα(x)

∂xβ
(18.9c)

=
∂fα(x)

∂xβ
gα(x) +

∂gα(x)
∂xβ

fα(x). (18.9d)

Extension to the slightly more complicated case of the observation part of the cost function is
fairly easy if you are confident with this notation.

We want to find ∂Jo,i/∂x0, as follows. Assume that we want to compute the subscript-γ
component of the gradient:

∂Jo,i

∂x0
=

∂Jo,i

∂[x0]γ
(18.10a)

=
1
2

∂

∂[x0]γ

{
[yi − Ĥi(xi)]α[R−1

i ]αβ [yi − Ĥi(xi)]β
}

(18.10b)

=
1
2

∂[yi − Ĥi(xi)]α
∂[x0]γ

[R−1
i ]αβ [yi − Ĥi(xi)]β +

1
2

∂[yi − Ĥi(xi)]β
∂[x0]γ

[R−1
i ]αβ [yi − Ĥi(xi)]α

(18.10c)

=
∂[yi − Ĥi(xi)]α

∂[x0]γ
[R−1

i ]αβ [yi − Ĥi(xi)]β (18.10d)

= −∂[Ĥi(xi)]α
∂[x0]γ

[R−1
i ]αβ [yi − Ĥi(xi)]β (18.10e)

= −∂[Ĥi(xi)]α
∂[xi]δ

∂[xi]δ
∂[x0]γ

[R−1
i ]αβ [yi − Ĥi(xi)]β (18.10f)

= −
[

∂[xi]δ
∂[x0]γ

]
δγ

[
∂[Ĥi(xi)]α

∂[xi]δ

]
αδ

[R−1
i ]αβ [yi − Ĥi(xi)]β (18.10g)

= −
[

∂[xi]δ
∂[x0]γ

]T

γδ

[
∂[Ĥi(xi)]α

∂[xi]δ

]T

δα

[R−1
i ]αβ [yi − Ĥi(xi)]β. (18.10h)

The first equality re-writes the gradient using the index notation. The second expands Jo,i. The
third applies the product rule, remembering that R−1 is constant. The fourth is a rearrangement,
remembering that indices that are summed over are dummy indices, and can be given any names
you please. The fifth arises because yi is constant. The sixth expands ∂Ĥ(xi)/∂x0 using the
chain rule of differential calculus. The seventh is a first step from index/summation notation
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back to matrix/vector notation — big square brackets are placed around objects that can be
thought of as matrices. The eighth transposes the matrix-like objects, so all the objects in the
equation are in the correct order to give a subscripted γ at the left — we want this because the
gradient has a subscripted γ at the first equality.

We need to convert all this subscripty stuff into matrix and vector notation, remembering

that the gradient of Jo,i is a column-vector. Now
[

∂[xi]δ
∂[x0]γ

]T

γδ
is the transpose, or adjoint, of the

Jacobian of xi w.r.t. x0. (That Jacobian is also known as the tangent linear model.) A similar

statement can be made for
[

∂[Ĥ(xi)]α
∂[xi]δ

]T

δα
. It is the transpose of the Jacobian of Ĥ(xi) w.r.t. xi.

Putting all this back together, we get:

∂Jo,i

∂x0
= −

[
∂xi

∂x0

]T
[

∂Ĥi(xi)
∂xi

]T

R−1
i [yi − Ĥ(xi)] (18.11a)

= −
[

∂xi

∂xi−1

∂xi−1

∂xi−2
. . .

∂x2

∂x1

∂x1

∂x0

]T
[

∂Ĥi(xi)
∂xi

]T

R−1
i [yi − Ĥ(xi)] (18.11b)

= −[Mi−1Mi−2 . . .M1M0]T HT
i R−1

i [yi − Ĥ(xi)] (18.11c)

= −MT
0 MT

1 . . .MT
i−2M

T
i−1H

T
i R−1

i di, (18.11d)

where Mi is the Jacobian or tangent linear of M̂i, so MT
i is the adjoint; Hi is the Jacobian of

Ĥi; and di = yi − Ĥ(xi).
Then ∂Jo/∂x0 is the sum of all the ∂Jo,i/∂x0 terms, like it was in the 1-D case above. Again,

we can use Horner’s rule to factorise the sum of products4. This is much more important now,
because we are dealing with matrix products and sums instead of scalars. For N = 5:

∂Jo

∂x0
= MT

0 (HT
1 R−1

1 d1+MT
1 (HT

2 R−1
2 d2+MT

2 (HT
3 R−1

3 d3+MT
3 (HT

4 R−1
4 d4+MT

4 HT
5 R−1

5 d5)))).

(18.12)
To calculate this monster, you need to run the model forward, calculating and storing (or just
storing) di, MT

i , R−1
i and HT

i at each time-step. Then do all these matrix multiplications and
additions, starting with the last (number 4/5 in this example) and proceeding to the first. This
is the origin of the infamous phrase “integrating backwards through time”.

Instead of working as stated here, we could have taken the transpose of everything to end
up with row-vectors and non-transposed matrices. The result would be the same, considered as
a set of numbers.

The tangent linears and adjoints are multidimensional generalisations of the scalar M things
we saw in analysis of the 1-D problem. As the latter are scalars, transposition is irrelevant, and
the “adjoint” jargon only appears in the multidimensional case.

19 Gradient Calculation for Parameter Estimation

The specification of tangent linear and adjoint is a bit more complicated when we need the
gradient w.r.t. a parameter, or parameters. However, it is easy to follow it through, once you
have understood the previous section, so I omit it, except for a couple of notes of guidance.

For scalars, we want to calculate ∂Jo,i/∂p, for some parameter p.

∂Jo,i

∂p
=

Ĥ(xi; p)− yi

Ri

∂Ĥ(xi; p)
∂p

. (19.1)

4[GV96] shows that Hornerisation of a matrix polynomial (which this is) is not optimal. However, the optimal
algorithm is complex, and probably not worth the additional effort.
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Now we encounter a common notational problem with partial derivatives. Ĥ(xi; p) can change
by direct changes in p, and also by changes in xi that are themselves caused by changes in p.
A good way to deal with it is to adopt a convention that is used in many thermodynamics
textbooks, like this:

∂Ĥ(xi; p)
∂p

=

[
∂Ĥ(xi; p)

∂p

]
xi

+

[
∂Ĥ(xi; p)

∂xi

]
p

∂xi

∂p
, (19.2)

where the large square brackets have subscripts that indicate what is being kept constant while
something else is varying.

For vector systems with vectors of parameters, the derivation is similar, but with a more
complicated vector analysis.

20 Automatic Differentiation (AD) of Code

20.1 Introduction

In the earlier parts of this tutorial, I showed the need for tangent linear and adjoint codes.
There are two fundamental modes of automatic production of linearised code from nonlinear
code: forward mode and backward mode. For these two modes, there are three methods that I am
aware of: source code transformation, operator overloading, and the complex step method. Each
of these methods involves changes to the code, which may be done, to some extent, automatically.
In practice, it is usually found that considerable human intervention is required, so “AD” is
often used to mean “Algorithmic Differentiation”. Automatic Differentiation is synonymous
with Algorithmic Differentiation.

The following subsections discuss:

• the source code transformation method for forward and backward modes;

• the operator overloading method for forward mode;

• the complex step method for forward mode.

Results of a forward mode analysis are often referred to as tangent linears, while results of a
backward mode analysis are often referred to as adjoints. (Sometimes people will say “adjoint”
to mean either or both!) I find this nomenclature unhelpful, since both modes provide derivatives
of inputs w.r.t. outputs. The meaning of “adjoint” earlier in this tutorial is “transpose”. When
discussing AD, I suggest that the term linearisation be used, alongside forward or backward
mode.

It is most important to understand that these modes and methods provide algorithms for
generating real numbers; they are not symbolic manipulators, such as Maple or Mathematica.
When you write one as computer code, it outputs real numbers.

To learn more, Griewank’s book [Gri00] is a comprehensive, but difficult (for me, at least)
reference on this subject.

20.2 Source Code Transformation

20.2.1 Rosenbrock’s Banana

The banana function, due to Rosenbrock, is useful as a tester and demonstrator of optimisation
algorithms. Here it is:

f(x, y) = (1− x)2 + 100(y − x2)2. (20.1)

If you plot it as a surface, it looks nothing like a banana. But it does contain a curved valley in
which a mathematical banana could stably rest. Here it is just a simple, but not trivial, function
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that I will show how to differentiate algorithmically. I do not know the reference to the first
publication of this function, but [Weib] seems to think it is [Ros60].

The following pseudocode shows how we could construct the function, given x and y as
inputs. I have spun it out a bit to show how the method works.

1. Input x and y

2. w1 = (1− x)2

3. w2 = y − x2

4. w3 = 100w2
2

5. f = w1 + w3

6. Output f

Remember that x and y are real numbers, therefore all the intermediate w variables and the
output f are also real numbers. This is about working with numbers, not algebraic symbols.

20.2.2 Differentiating the Banana: Forward Mode

Now we can differentiate it line-by-line, using the chain rule to get the differential of the whole
function. I say d.X to mean the differential of X, for any symbol X.

1. Input x, d.x, y and d.y

2. w1 = (1− x)2

3. d.w1 = 2(x− 1) d.x

4. w2 = y − x2

5. d.w2 = d.y − 2x d.x

6. w3 = 100w2
2

7. d.w3 = 200w2 d.w2

8. f = w1 + w3

9. d.f = d.w1 + d.w3

10. Output f and d.f

Now x, d.x, y and d.y are all real numbers, so the intermediate w variables are real numbers, so
the outputs f and d.f are real numbers. This is not about the symbolic calculus that Maple and
Mathematica can do — it is about getting numbers out of an algorithm, and d.f is a number
that is the value of a derivative of f at the input values of x and y.

If we substitute all the partial differentials in order until we only get functions of d.x and
d.y on the right-hand side, we find:

d.f = d.w1 + d.w3 (20.2a)
= 2(x− 1) d.x + 200w2 d.w2 (20.2b)

= 2(x− 1) d.x + 200(y − x2)(d.y − 2x d.x) (20.2c)

= [2(x− 1)− 400x(y − x2)] d.x + 200(y − x2) d.y (20.2d)

=
∂f

∂x
dx +

∂f

∂y
dy. (20.2e)

We can get ∂f/∂x in our pseudocode by setting d.y ← 0 and d.x← 1; and we can obtain ∂f/∂y
by setting d.y ← 1 and d.x ← 0. So we do not need two algorithmic differential codes for the

46



A Primer on Data Assimilation . . .

two partial derivatives. We just use one code, calling it twice with different input values of d.x
and d.y.

In summary, the forward mode calculates the differentials in the same order that they are
calculated. To get the full gradient of the scalar output, i.e. ∂f/∂x and ∂f/∂x, we have to call
the code twice. We could also calculate a directional derivative by calling it once, for example
with d.x← 0.5 and d.y ← 0.866.

The full gradient ∇f can be calculated in one call of a slightly adapted forward mode — see
§20.2.9.

I think an extension to vector-valued functions can be done the same way, but I need to
understand that better before writing it up.

There is much more to AD than what is presented here, but this is a useful start. In case
forward mode is still a bit mysterious, I next apply it to a more complicated scalar function of
three input variables.

20.2.3 Pearson’s Squiggle

Here it is:

f(x, y, z) =
[
xy + sin

(
x

yz

)
+ (xyz)2

]3

. (20.3)

A merit of the Banana is that it is useful in other contexts. The Squiggle is only useful for the
purposes of this note.

Next I present some pseudocode to calculate the Squiggle. Observe that the inputs, x, y and
z are directly represented as code variables, w, unlike the Banana’s pseudocode above. Although
this is entirely a matter of taste, [Gri00] does it, so I am doing it here.

1. Input x, y and z.

2. w1 = x

3. w2 = y

4. w3 = z

5. w4 = w1w2

6. w5 = w3w4

7. w6 = w2
5

8. w7 = w1
w2w3

9. w8 = sinw7

10. w9 = w4 + w6 + w8

11. w10 = w3
9

12. f = w10

13. Output f

Thus, for example, w5 = xyz. As with the Banana, all the symbols represent real numbers.

20.2.4 Differentiating the Squiggle: Forward Mode

To find the derivatives of f with respect to x, y and z, i.e. ∂f/∂x, ∂f/∂y and ∂f/∂z, we
differentiate this algorithm line-by-line. Each line’s right-hand side contains only variables that
have been calculated already, i.e. in lines above it5. By “differentiate”, I mean we form the
differential, not a single partial derivative. Thus:

5What would happen in a recursive statement, such as are allowed in modern Fortrans and some other lan-
guages? If you know, please tell me.
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1. Input x, d.x, y, d.y, z and d.z.

2. w1 = x

3. d.w1 = d.x

4. w2 = y

5. d.w2 = d.y

6. w3 = z

7. d.w3 = d.z

8. w4 = w1w2

9. d.w4 = d.w1 w2 + w1 d.w2

10. w5 = w3w4

11. d.w5 = d.w3 w4 + w3 d.w4

12. w6 = w2
5

13. d.w6 = 2w5 d.w5

14. w7 = w1
w2w3

15. d.w7 = d.w1
w2w3

− w1 d.w2

w2
2w3

− w1 d.w3

w2w2
3

16. w8 = sinw7

17. d.w8 = cos w7 d.w7

18. w9 = w4 + w6 + w8

19. d.w9 = d.w4 + d.w6 + d.w8

20. w10 = w3
9

21. d.w10 = 3w2
9 d.w9

22. f = w10

23. d.f = d.w10

24. Output f and d.f

As usual, all the symbols represent real numbers. This works just like differentiating the Banana
in forward mode, but it is a bit more complicated. Calculating the full gradient ∇f at some
point (x, y, z) requires three calls of the routine, with, respectively, (d.x, d.y, d.z) = (1, 0, 0),
(d.x, d.y, d.z) = (0, 1, 0) and (d.x, d.y, d.z) = (0, 0, 1). Calculation of a single directional deriva-
tive requires only one call.

20.2.5 The Reverse Mode of AD: the Recipe

The reverse mode is a more efficient way of calculating the gradient of a scalar function of more
than one input. I have nowhere seen an adequate explanation of reverse mode, which is why I
am writing it up here in detail, after eventually figuring it out. It works easily (once you know
how and why) with the Banana.

In reverse mode, we first calculate f by “running the code forward”, i.e. by running it in the
usual way from top to bottom. Then we calculate derivatives by stepping backwards through the
code — something that probably means nothing until you see an example. We are calculating
adjoint variables that are marked by an overbar. For example, we can have w4, which we define
to mean ∂f/∂w4, and generally wi ≡ ∂f/∂wi. The main rule is that, every time we see a
statement like this:

wq = g(wm, wn, wo, wp, . . . ), (20.4)
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we define these adjoint variables:

wm = wm +
∂wq

∂wm
wq, (20.5a)

wn = wn +
∂wq

∂wn
wq, (20.5b)

wo = wo +
∂wq

∂wo
wq, (20.5c)

wp = wp +
∂wq

∂wp
wq, (20.5d)

... (20.5e)

Note carefully how the overbars and subscripts are arranged in equations (20.4) and (20.5).
This works because in every statement like (20.4), the right-hand side variables will have

been defined already; and in the adjoint statements like (20.5), wq will have been defined already
because we are stepping through the code backwards.

20.2.6 Reverse Mode: How it Works (Rosenbrock’s Banana Revisited)

The pseudocode begins with the usual definition of the Banana, then goes back through the
code, defining the adjoint variables as in the rules above. The ordinary code ends with line 8
and the AD code begins with line 9. I have replaced the partial derivatives that arise in the main
rule, with their symbolic values. For example, from line 6 we have ∂w5/∂w4 = 200w4, which
comes up in line 15. Lines 9–11 initialise the adjoint variables in a way that is explained below
the code.

1. Input x and y

2. w1 = x

3. w2 = y

4. w3 = (1− w1)2

5. w4 = w2 − w2
1

6. w5 = 100w2
4

7. w6 = w3 + w5

8. f = w6

9. f = 1

10. x = y = 0

11. wα = 0, ∀α

12. w6 = w6 + (∂f/∂w6)f = f (from line 8)

13. w3 = w3 + (∂w6/∂w3)w6 = w6 (from line 7)

14. w5 = w5 + (∂w6/∂w5)w6 = w6 (from line 7)

15. w4 = w4 + (∂w5/∂w4)w5 = 200w4w5 (from line 6)

16. w2 = w2 + (∂w4/∂w2)w4 = w4 (from line 5)

17. w1 = w1 + (∂w4/∂w1)w4 = −2w1w4 (from line 5)

18. w1 = w1 + (∂w3/∂w1)w3 = −2w1w4 − 2(1− w1)w3 (from line 4)

19. y = y + (∂w2/∂y)w2 = w2 (from line 3)
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20. x = x + (∂w1/∂x)w1 = w1 (from line 2)

21. Output f , x and y

22. Note: ∇f = (x, y)

Remember that all these symbols and operations on them represent operations on real num-
bers, because they represent variables’ names and their interaction in a language such as Fortran.

I now assert that x = ∂f/∂x and y = ∂f/∂y, and explain why in §20.2.7.
Let us check the validity of this statement for the Banana example, before trying to prove

it. By pencil-and-paper calculus, we can show that:

∂f(x, y)
∂x

= 2(x− 1)− 400x(y − x2), (20.6a)

∂f(x, y)
∂y

= 200(y − x2). (20.6b)

By making all the substitutions in the pseudocode except for the initialisation of f , we find that:

x =
[
2(x− 1)− 400x(y − x2)

]
f, (20.7a)

y =
[
200(y − x2)

]
f. (20.7b)

If we had initialised f to one, the equations (20.6) and (20.7) would agree, i.e. the method works.
If we had not initialised f to one, these equations show that we would have had to set f = 1 to
get the right answers.

20.2.7 Reverse Mode: Why it Works (Rosenbrock’s Banana Revisited)

Above, I have shown how it works. Next, I show why. First, observe that in line 9, f is initialised
to one. This is because the recipe in §20.2.5 says that f = ∂f/∂f , which obviously is equal to
one. I gave another reason just after equations (20.7). Also, in lines 10 and 11, the adjointed
input variables and all the adjointed intermediate variables are initialised to zero. I will explain
this below.

Consider x only for now. With the correct initialisation, f = 1, we want to get from w6 =
∂f/∂w6 to x = ∂f/∂x. First, at line 12, we have by the chain rule:

∂f

∂w6
=

∂f

∂f

∂f

∂w6
, (20.8)

i.e. w6 = fw6 = f . Since w6 was initialised to zero, it does no harm to add it to the right-
hand side, and this will be a useful tactic in more complicated statements below. So we get an
expression for w6 that follows the main rule, equation (20.4) and equations (20.5).

At line 7 we see that w6 depends on w3 and w6. So we can get expressions for ∂f/∂w3 and
∂f/∂w5 like this:

∂f

∂w3
=

∂f

∂w6

∂w6

∂w3
= w6

∂w6

∂w3
= w3, (20.9)

∂f

∂w5
=

∂f

∂w6

∂w6

∂w5
= w6

∂w6

∂w5
= w5. (20.10)

Again, since w3 and w5 were initialised to zero, we can add them to the right-hand sides and not
change the results. We have now made w3 and w5 follow equation (20.4) and equations (20.5),
and got a bit closer to x and y.

At line 6, we can see how, using the same method, we get w4 from w5 and w5.
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Lines 5 and 4 introduce a complication. In line 5, the dependence of w4 on w2 is straight-
forward, since this is the first (going backwards!) occurrence of w2, so calculation of w2 is not
problematic. But w1 occurs on lines 5 and 4. Immediately after processing line 6, w1 still has its
initial value of zero, so the following holds as usual at line 5:

w1 = w1 +
∂w4

∂w1
w4 (20.11a)

=
∂w4

∂w1
w4. (20.11b)

But then, at line 4,

w1 = w1 +
∂w3

∂w1
w3 (20.12a)

=
∂w4

∂w1
w4 +

∂w3

∂w1
w3. (20.12b)

That is,

w1 =
∂f

∂w1
=

∂f

∂w4

∂w4

∂w1
+

∂f

∂w3

∂w3

∂w1
. (20.13)

This is why, in calculation of e.g. wn in equations (20.5), the existing value is added to the
partial derivative term. It allows f to depend on wn via multiple routes through the dependency
tree of the code. It also explains why wn must be initialised to zero, for if it were not, then the
first time it was encountered on a right-hand side (going backwards through the code), then it
would not be calculated correctly.

We can then continue the above method until we get to x, which, by reasoning identical to
that just presented, is ultimately equal to ∂f/∂x. Extension to y = ∂f/∂y follows the same
rules for the same reason.

20.2.8 Reverse Mode: Pearson’s Squiggle Revisited

Here, I present pseudocode to calculate the gradient of the Squiggle in reverse mode, without
explanation. It follows from the same rules as above, so it should be reasonably straightforward
to understand. If not, then this paper is deficient, so please tell me how I have not made it
understandable.

1. Input x, y and z.

2. w1 = x

3. w2 = y

4. w3 = z

5. w4 = w1w2

6. w5 = w3w4

7. w6 = w2
5

8. w7 = w1
w2w3

9. w8 = sinw7

10. w9 = w4 + w6 + w8 = w9

11. w10 = w3
9

12. f = w10

13. f = 1
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14. x = y = z = 0

15. wα = 0, ∀α

16. w10 = f

17. w9 = 3w2
9w10

18. w4 = w6 = w8

19. w7 = cos w7 w8

20. w1 = w7
w2w3

21. w2 = −w7w1

w2
2w3

22. w3 = −w7w1

w2w2
3

23. w5 = 2w5w6

24. w3 = w3 + w4w5

25. w4 = w4 + w3w5

26. w1 = w1 + w2w4

27. w2 = w2 + w1w4

28. z = w3

29. y = w2

30. x = w1

31. Output f , x, y and z

32. Note: ∇f = (x, y, z)

20.2.9 Nabla Forward Mode

Here is another way of doing AD, using the chain rule on the gradient operator,∇ = (∂/∂x, ∂/∂y, ∂/∂z).
I demonstrate only with the Banana, in which case we can leave out ∂/∂z.

1. Input x and y

2. ∇x = (1, 0)

3. ∇y = (0, 1)

4. w1 = x

5. ∇w1 = (∂w1/∂x)∇x

6. w2 = y

7. ∇w2 = (∂w2/∂y)∇y

8. w3 = (1− w1)2

9. ∇w3 = (∂w3/∂w1)∇w1

10. w4 = w2 − w2
1

11. ∇w4 = (∂w4/∂w1)∇w1 + (∂w4/∂w2)∇w2

12. w5 = 100w2
4

13. ∇w5 = (∂w5/∂w4)∇w4

14. w6 = w3 + w5
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15. ∇w6 = (∂w6/∂w3)∇w3 + (∂w6/∂w5)∇w5

16. f = w6

17. ∇f = ∇w6

18. Output f , ∇f

Observe that, at every derivative step, everything on the right-hand side is already available,
because it has already been calculated — just as in the simpler forward mode of §20.2.2. At the
end, we get the gradient of the Banana with respect to the two input variables.

In fact, this method is just the same as running through the forward mode code twice, once
for ∂/∂x and again for ∂/∂y. It is not significantly more efficient than that, because it contains
about the same number of floating point operations.

Directional derivatives can be calculated outside the routine.

20.2.10 Remarks

The simple forward mode to calculate directional derivatives is easy to understand, by virtue
of its working step-by-step with the original code, using the chain rule as taught to students.
It is best when you have a lot of output variables but few input variables. By “best”, I mean
computationally cheapest.

If you want the full gradient of a scalar, you can use the nabla forward mode. Although I
figured it out independently, it is not new. Something that I think is the same thing is covered
in [Gri00].

The other way to get the full gradient is to use reverse mode. This is a bit hard to get,
because it does not immediately flow from one’s intuition, and I have, despite looking at many
explanations, not found one that makes any sense to me. [Gri00] says, “To some casual observers,
the reverse mode always remains a little mysterious”. So I figured it out and presented it in
— I hope — enough detail here. Reverse mode has the merit of working with scalars only,
even though it gives the multidimensional gradient at the end. It does this by calculating the
dimensions separately, e.g. x and y are calculated separately. It is best when you have few output
variables (e.g. one cost function) and many input variables (e.g. a bunch of parameters and/or
initial values).

According to [Gri00], forward mode and reverse mode codes each cost only a small scalar
times their undifferentiated codes’ costs, even if — for example — a reverse mode AD calculates
a gradient of a function of millions of input variables. I have seen this stated elsewhere, too, but
I do not know of a proof that I can both understand and cite.

20.3 Operator Overloading and AD in Fortran

20.3.1 Introduction

In the source transformation method, we take an algorithm and insert statements that explicitly
calculate differential quantities. For example, in forward mode AD, we might have the following
piece of Fortran90 code to calculate the Rosenbrock banana:

! banana = (1-x)**2 + 100(y - x**2)**2
temp1 = 1 - x
temp2 = temp1 ** 2
temp3 = y - x**2
temp4 = 100 * temp3**2
banana = temp2 + temp4

To calculate the differential of the banana, we transform the code, either automatically or
by hand (or both), like this:
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! banana = (1-x)**2 + 100(y - x**2)**2
temp1 = 1 - x
d.temp1 = -d.x ! Differential of temp1
temp2 = temp1 ** 2
d.temp2 = 2 * temp1 * d.temp1 ! Differential of temp2
temp3 = y - x**2
d.temp3 = d.y - 2 * x * d.x ! Differential of temp3
temp4 = 100 * temp3**2
d.temp4 = 200 * temp3 * d.temp3 ! Differential of temp4
banana = temp2 + temp4
d.banana = d.temp2 + d.temp4 ! Differential of banana

We can calculate ∂banana/∂x by setting d.x ← 1 and d.y ← 0. We can calculate ∂banana/∂y
by setting d.x ← 0 and d.y ← 1. We can calculate a directional derivative of the banana by
setting d.x← ξ and d.y← ζ, with ξ2 + ζ2 = 1.

Another method involves hiding the differential quantity in an augmented variable, and
redefining Fortran’s mathematical operators so they can handle — and differentiate properly —
these augmented variables. Fortran90 and its descendants can do this fairly easily, but Fortran77
and its ancestors probably could not.

It is a bit fiddly, and involves some of the weirdness of modern Fortran, but once you have
figured it out then it is not too bad. The basic idea is put all the definitions in a module. A
working example is in §E. A working program that demonstrates differentiation of the banana
is in §F, and the output from running it is in §G. I will go through these bit-by-bit as well.

20.3.2 Details

The whole thing revolves around the new kind of variable — known as a “derived type”. The
following part of the module defines a derived type called diffy:

type diffy
real :: value , differential

end type diffy

A diffy variable is a container, holding two variables. If x is a diffy variable, then it contains
two real variables called x%value and x%differential. As the names suggest, the former is
the value of the variable, and the latter is its differential.

Fortran does not have an intrinsic routine for adding diffy variables. We could write one,
called, for example, add two diffy, but then we would have to replace every addition in the
code with a call to add two diffy. And so on with every other mathematical operation. We
would have a huge code-transformation job to do, and we would have to re-do it every time the
code changed.

A better way is to redefine the + operator so it knows what to do when given a pair of diffy
variables to add. The following fragments of the module do this:

interface operator (+)
module procedure diffy_plus_diffy

end interface

function diffy_plus_diffy(x1 , x2) result(sum)
type(diffy) , intent(in) :: x1 , x2
type(diffy) :: sum
sum%value = x1%value + x2%value
sum%differential = x1%differential + x2%differential

end function diffy_plus_diffy
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The first part informs the compiler that the + operator can be augmented — “overloaded”
— with the function called diffy plus diffy. The second part defines that function. As you
can see, it takes in two diffy variables and returns their sum. The values add, and so do
the differentials, because d(x + y) = dx + dy. The important thing to understand here is that
the compiler knows that if the + is between two diffy variables, instead of two
“ordinary” Fortran variables, it will send them to the diffy plus diffy function and
add them as diffy variables. What would happen if we tried to add an ordinary variable to
a diffy variable? This situation is not defined, and a compile error would happen. If we want
to do this kind of addition, we need another function called something like diffy plus real,
and another called real plus diffy . . . and so on.

The program main.f90 in §F demonstrates addition of diffy variables:

x = diffy(10.0 , 0.1)
y = diffy(3.141 , 0.7654321)
z = x + y
print *, "diffy plus diffy:"
print *, "(+) Result should be " , &

(10.0 + 3.141) , &
" , " , &
0.1 + 0.7654321

print *, "(+) Result is " , z

The output file shows that this works as it should:

diffy plus diffy:
(+) Result should be 13.14100 , 0.8654321
(+) Result is 13.14100 0.8654321

We need another overload for the - operator:

interface operator (-)
module procedure real_minus_diffy , diffy_minus_diffy , int_minus_diffy

end interface

This says that the - operator is to be overloaded with three new functions, as listed. These are
defined in the module, thus:

function diffy_minus_diffy(x1 , x2) result(sub)
type(diffy) , intent(in) :: x1 , x2
type(diffy) :: sub
sub%value = x1%value - x2%value
sub%differential = x1%differential - x2%differential

end function diffy_minus_diffy
!-----------------------------------------------------|

function real_minus_diffy(r1 , x2) result(res)
real , intent(in) :: r1
type(diffy) , intent(in) :: x2
type(diffy) :: res
res%value = r1 - x2%value
res%differential = - x2%differential

end function real_minus_diffy
!-----------------------------------------------------|

function int_minus_diffy(i1 , x2) result(res)
integer , intent(in) :: i1
type(diffy) , intent(in) :: x2
type(diffy) :: res
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res%value = i1 - x2%value
res%differential = - x2%differential

end function int_minus_diffy

Observe that the non-diffy variables involved in these functions do not contribute any differ-
entials to the results.

There is not much more to say on operator overloading in the present context, except perhaps
in the case of nonlinear combinations of variables, such as the * operator:

interface operator (*)
module procedure diffy_times_diffy , real_times_diffy , diffy_times_real

end interface

function diffy_times_diffy(x1 , x2) result(prod)
type(diffy) , intent(in) :: x1 , x2
type(diffy) :: prod
prod%value = x1%value * x2%value
prod%differential = x1%value * x2%differential + x2%value * x1%differential

end function diffy_times_diffy

This is so because d(xy) = xdy + ydx.
A slight complexity arises in overloading an external function, such as our banana function

rose(). We have:

interface rose
module procedure r_rose , d_rose

end interface

This says that when rose() is encountered, then either r rose() or d rose() is called, de-
pending on the kind of arguments that are supplied (“ordinary” or diffy). These two functions
are:

function r_rose(x , y) result(rosy)
real , intent(in) :: x , y
real :: rosy
rosy = (1 - x)**2 + 100.0 * ((y-x**2)**2)

end function r_rose
!-----------------------------------------------------|

function d_rose(x , y) result(rosy)
type(diffy) , intent(in) :: x , y
type(diffy) :: rosy
rosy = (1 - x)**2 + 100.0 * ((y-x**2)**2)

end function d_rose

At first, it looks a bit strange that the functions are the same. But observe that the inputs and
result in d rose() are diffy variables. All the operators in the function (1− x)2 + 100(y− x2)2

have already been overloaded in the module, so the compiler knows what to do. The main
program tests this by comparison with a divided-differences approximation, and the output file
shows that this works well.

Instead of this overloading of rose, we could have said:

interface rose
module procedure rose , d_rose

end interface
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This says that when rose() is encountered, then either rose() or d rose() is called, depending
on the kind of arguments that are supplied (“ordinary” or diffy). These two functions are:

function rose(x , y) result(rosy)
real , intent(in) :: x , y
real :: rosy
rosy = (1 - x)**2 + 100.0 * ((y-x**2)**2)

end function rose
!-----------------------------------------------------|

function d_rose(x , y) result(rosy)
type(diffy) , intent(in) :: x , y
type(diffy) :: rosy
rosy = (1 - x)**2 + 100.0 * ((y-x**2)**2)

end function d_rose

That is, rose(x real , y real) would call the function rose(), which, now, is just the same
as the old r rose(). That is, we do not have to give the function a new name.

20.3.3 Practical Use

At first sight, it might appear that we need to make very few changes to the code, in order to
make this work. These changes could be:

• Make a module for overloading of all math operators that are used in our program;

• Put a USE in each subprogram, pointing to our module;

• Put IMPLICIT NONE everywhere;

• Change all relevant real (or double precision, or whatever) variables to diffy;

• Write a routine that goes between inputting all the initial values and parameters and
running the rest of the code, to convert the real input numbers to diffy.

Having done this, future code changes would not require major changes to the differentiation part
of the code, because it is dealt with automatically by the overloaded operators. This contrasts
with source transformation, which needs new differentiation code to be explicitly written when
the value code is changed. I suspect, however, that operator overloading is not that easy in
practice, for a large code.

20.4 The Complex Step Method

20.4.1 How and Why

This method is easy to understand and relatively easy to implement by hand. Modern references
are [ST98] and [BCFH03].

As [ST98] points out, divided difference methods are far from ideal in numerically calculating
derivatives. That paper discusses accuracy problems in the central difference formula. Another
difficulty in the present context of data assimilation, is that divided difference methods need a
lot of evaluations of the function that is to be differentiated.

As we have seen, algorithmic differentiation, a.k.a. automatic differentiation, is a way around
these problems. Another way is the complex step method. It works like this. We want to differ-
entiate a real function f(·) w.r.t. its single real scalar argument. Here, f can be represented by
an arbitrarily large and loopy code. But let us instead give it a complex argument, x + iδ, and
make a Taylor series around x:

f(x + iδ) = f(x) + iδf ′(x)− δ2

2!
f ′′(x)− δ3

3!
if (3)(x) + O(δ4). (20.14)
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There are probably important considerations of analyticity and convergence here, but [ST98] is
reassuring on these. Anyway, we can immediately say

=[f(x + iδ)]
δ

= f ′(x) + O(δ2). (20.15)

The squiggly = is LATEX’s version of the Im function. Observe two things: (i) this is second-order
accurate in δ; and (ii) we do not have the trade-off between truncation error and cancellation
error that damages the divided differences methods.

However, this does rely on the complex functions’ behaving themselves in whatever program-
ming language we are using. It should be OK in Fortran90, and it seems to work in R, as I have
shown but not included here.

For a function of more than one variable, we can add a tiny imaginary number to the argu-
ments one-at-a-time, each time keeping the others constant and real, to give a set of numerical
partial derivatives. This is akin to working with a function of more than one argument in the
forward source transformation method.

For functions that are not one-liners, but are made up of many steps (including subroutines,
etc.), it all still works. We do not have to worry about chain rules for derivatives (which, in
essence, is what AD is all about), because in the end we just have a complex number that comes
from x+iδ through a complicated series of steps. Applying the =/δ operator to our final complex
number gives the derivative of the function.

For functions that evolve in time, like Cl(t), we can get the derivative at each time-step,
because at each time-step we have a complex scalar that we can apply the =/δ operator to.
Each time-step follows from the previous one, so it all works out nicely.

20.4.2 Remark(s)

I had not tried this before, because I was worried about the integrity of the complex library
functions in Fortran90 and R. But when I tried it, certainly did work. Whether it will work in
complicated codes (e.g. JULES) is a matter for testing. As AD needs testing anyway, in any
practical use, this is not in itself a strong reason not to use the complex step method.

I dimly foresee problems that may arise when complex step is applied to iterative problems,
which loop a number of times that is not known in advance. Real problems usually contain
iterative sub-problems, e.g. to solve implicit equations or to solve matrix equations. But a similar
caveat applies to the application of the other AD methods to iterative problems, and I suspect
that wider knowledge of iterative AD will inform iterative complex-step.

21 Topics Not Covered

21.1 Introduction

As the title suggests, this paper is an introduction to data assimilation. There are many others.
This one goes into an unusual amount of detail, which is something that I would have found
useful a few years ago when learning about all this stuff. Especially confusing was the question
of what, exactly, was in the model state vector. Following [Coh97a], I have therefore defined xt

and model error carefully. It also presents some simple, but instructive, examples of the plain
KF and EnKF operating on the linear rotational system. It brings to the fore the statistical
relationship between the EnKF and the fundamental plain KF. This paper also uses a carbon
cycle model, courtesy of Matthew Williams at the University of Edinburgh, to demonstrate
Var and the EnKF, and how things can go wrong. This is one reason I think it is especially
useful for beginners. All this detail notwithstanding, the field of data assimilation is a huge one,
and I have omitted most of it. But maybe the literature will be more accessible if you have
this paper alongside. If you want another overview, I recommend Kalnay’s book for depth and
breadth [Kal03].
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21.2 Some Subjects I Have Omitted

1. Large problems, such as operational NWP, need even more help than linearisation and
incrementalisation. The problems must also be preconditioned. This is a large sub-topic in
Var, as well as being an important part of numerical analysis generally. There are many
methods of preconditioning. The method in use at the Met Office for NWP is known as
transforming the control variables. This consists of finding a linear transformation of the
physical variables of interest (velocity components, etc.) that generates new variables that
are approximately statistically orthogonal to each other. Then further transformations
break up the new variables geometrically. I suggest [Ban07] and references to and from it,
to understand this topic.

2. A fundamentally different way of looking at Var arises from consideration of constrained
variational (in the classical mathematical physics sense) problems. For example, you might
want to find a minimum of some function of the observations, subject to the condition
that the system obeys a certain differential equation (the model). A basis for estimating
parameters can be established this way. See [WLNR07] and [EDS98] for more about this.

3. I have not said much about model bias. [Dd98] is good on this.

4. I have not said much about filter divergence and filter tuning. [BH97] and [AM05] cover
these topics in readable ways.

5. Generally, I highly recommend [Kal03] if you want a broader knowledge of research into,
and the practice of, data assimilation for continuous systems. That book covers all or
most of the contents of this paper, albeit with less attention to detail; and the things I
have listed in this list of omissions; and very much more, such as singular values, 3D-Var,
optimal interpolation, questions of predictability, the method of representers, et cetera.

A Scalar and Vector Random Variables

A.1 Introduction

This section provides an overview of some manipulations on families of random variables. (I
say “family” instead of “set” or “group”, because this has nothing to do with set theory or
group theory. I could have said “collection” instead of “family”.) I do not think it is necessary
to define a random variable in detail here. Suffice it to say that a scalar random variable X has
a realisation x, i.e we denote random variables with capital letters and their realisations with
lower case letters. X has probability density function pX(·). It usually makes sense to say pX(x),
but we could equally write pX(ξ) or, for that matter, pX(♣) — the important thing is the pX ,
which shows that we are thinking about the probability density of the RV6 X, for X = x or
X = ξ or X = ♣, etc. This lets us use dummy arguments in integrals of densities.

A.2 Scalar Random Variables

A quick reminder of results on pairs of random variables. We will call these X and Y . Their
joint density is:

pXY (x, y) = probability(X = x and Y = y). (A.1)

6I use “RV” to mean “random variable”, but it may also mean “random vector”, according to context.
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Their marginal densities are:

pX(x) =
∫ ∞

−∞
pXY (x, y) dy, (A.2a)

pY (y) =
∫ ∞

−∞
pXY (x, y) dx. (A.2b)

The means or expectations of X and Y are:

〈X〉 =
∫ ∞

−∞

∫ ∞

−∞
x pXY (x, y) dx dy, (A.3a)

〈Y 〉 =
∫ ∞

−∞

∫ ∞

−∞
y pXY (x, y) dx dy. (A.3b)

The expectation of any function f(X, Y ) is:

〈f(X, Y )〉 =
∫ ∞

−∞

∫ ∞

−∞
f(x, y) pXY (x, y) dx dy. (A.4)

The conditional density of Y given X and of X given Y :

pY |X(y|x) =
pXY (x, y)

pX(x)
, (A.5a)

pX|Y (x|y) =
pXY (x, y)

pY (y)
, (A.5b)

whence Bayes’ Rule:

pY |X(y|x) =
pX|Y (x|y)pY (y)

pX(x)
. (A.6)

The RVs are said to be uncorrelated if and only if:

〈XY 〉 = 〈X〉〈Y 〉. (A.7)

The conditional expectation of f(X, Y ) is defined like this:

〈f(X, Y )|Y 〉 =
∫ ∞

−∞
f(x, y)pX|Y (x|y) dx. (A.8)

Multivariate normal (MVN) random variables, also known as multivariate Gaussian random
variables, play a large part in the theory. The univariate normal, or Gaussian, RV is defined by
the following density:

N(µ, σ2) ∼ pX(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
, (A.9)

where µ is the mean and σ is the standard deviation. The MVN density is then given by
equation (A.19), below.

A.3 Vector Random Variables

Now we extend our family of random variables to a larger number, ν = n + m. We call the RVs
Xi, with 1 ≤ i ≤ ν. We can then write the joint density pX1X2...Xν (x1, x2, . . . , xν). But this is
cumbersome, and even more so when we try to write equations for marginal densities and all
the rest. So instead we assemble families of RVs into vectors, which enables a concise and fairly
transparent notation.

60



A Primer on Data Assimilation . . .

Now let X be an (n × 1) vector of random variables. This means merely that we have n
RVs that are jointly distributed as pX1X2...Xn . No relation between any sub-family of them is
implied. Any or all of them could be dependent or independent — putting them into a single
vector implies nothing other than that we are thinking about them together. Now instead of
writing pX1X2...Xn , we write pX(x).

The vector notation can be used to concisely represent 〈X〉 as follows.

〈X〉 =


〈X1〉

〈X2〉
...

〈Xn〉

 =



∫∞
−∞. . .

∫∞
−∞ x1pX(x) dx1 . . . dxn∫∞

−∞. . .
∫∞
−∞ x2pX(x) dx1 . . . dxn

...∫∞
−∞. . .

∫∞
−∞ xnpX(x) dx1 . . . dxn

 (A.10a)

=
∫

x pX(x) dx. (A.10b)

The first equality just defines 〈X〉 as a vector containing the expectations of the individual RVs
that populate X. The second equality just fills in the definitions of these expectations, in terms
of the family of RVs. The third equality defines the concise notation

∫
xpX(x) dx.

Now for the vector extensions of the rest of equations (A.1)–(A.8), we need another random
vector Y ∼ (m × 1). We are now thinking about ν = n + m RVs again, but in two separate
families arranged into vectors. We can, at the same time, think about all ν RVs as a single vector
Z = (XT ,Y T )T , i.e. the vector formed by joining Y to the bottom of X.

Then the joint density is:
pZ(z) = pXY (x,y). (A.11)

The marginal densities are:

pX(x) =
∫

pZ(z) dy =
∫

pXY (x,y) dy, (A.12a)

pY (y) =
∫

pZ(z) dx =
∫

pXY (x,y) dx. (A.12b)

The means or expectations of X and Y are:

〈X〉 =
∫

x pZ(z) dz =
∫

x pXY (x,y) dx dy, (A.13a)

〈Y 〉 =
∫

y pZ(z) dz =
∫

y pXY (x,y) dx dy. (A.13b)

The expectation of any function f(Z) = f(X,Y ) is:

〈f(X,Y )〉 =
∫

f(z) pZ(z) dz =
∫

f(x,y) pXY (x,y) dx dy. (A.14)

The RVs are said to be uncorrelated if and only if:

〈XY T 〉 = 〈X〉〈Y T 〉. (A.15)

The conditional density of Y given X and of X given Y :

pY |X(y|x) =
pZ(z)
pX(x)

=
pXY (x,y)

pX(x)
, (A.16a)

pX|Y (x|y) =
pZ(z)
pY (y)

=
pXY (x,y)

pY (y)
, (A.16b)
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whence Bayes’ Rule:

pY |X(y|x) =
pX|Y (x|y)pY (y)

pX(x)
. (A.17)

The conditional expectation of f(X,Y ) becomes:

〈f(Z)|Y 〉 = 〈f(X,Y )|Y 〉 =
∫

f(x,y) pX|Y (x|y) dx. (A.18)

The MVN density is:

N(µ,Σ) ∼ pX(x) =
1√

|Σ|(2π)N/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, (A.19)

where x is a random vector, µ is its mean, and Σ is its covariance matrix.

A.4 Covariances

Another useful bit of notation is that for the covariance of a random vector:

cov(X) = 〈X − 〈X〉〉〈X − 〈X〉〉T =


var(X1) cov(X1, X2) . . . cov(X1, Xn)

cov(X2, X1) var(X2) . . . cov(X2, Xn)
...

...
. . .

...

cov(Xn, X1) cov(Xn, X2) . . . var(Xn)

 . (A.20)

Then the covariance of two random vectors is:

cov(X,Y ) = 〈X−〈X〉〉〈Y −〈Y 〉〉T =


cov(X1, Y1) cov(X1, Y2) . . . cov(X1, Ym)

cov(X2, Y1) cov(X2, Y2) . . . cov(X2, Ym)
...

...
. . .

...

cov(Xn, Y1) cov(Xn, Y2) . . . cov(Xn, Ym)

 . (A.21)

A.5 The Chain Rule

The chain rule for conditional expectations of scalars is this:

〈〈f(X, Y )|Y 〉〉 = 〈f(X, Y )〉. (A.22)

But what does this mean? In equation (A.22), 〈f(X, Y )|Y 〉 is a function of Y only, because the
dependence on X is integrated away in (A.8). Let us call this g(Y ). So we can then calculate
the unconditional expectation of this new function g(Y ), as in (A.4) (with g(Y ) in place of
f(X, Y )), to give a single number. Equation (A.22) asserts that this single number is equal to
the unconditional expectation of f(X, Y ), as calculated by (A.4).

Here is proof:

g(Y ) = 〈f(X, Y )|Y 〉 =
∫ ∞

−∞
f(x, y) pX|Y (x|y) dx (A.23a)

=
∫ ∞

−∞
f(x, y)

pXY (x, y)
pY (y)

dx. (A.23b)
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Then

〈g(Y )〉 =
∫ ∞

−∞
g(y) pY (y) dy (A.24a)

=
∫ ∞

−∞

(∫ ∞

−∞
f(x, y)

pXY (x, y)
pY (y)

dx

)
pY (y) dy (A.24b)

=
∫ ∞

−∞

∫ ∞

−∞
f(x, y) pXY (x, y) dx dy (A.24c)

= 〈f(X, Y )〉. (A.24d)

For random vectors, the proof is similar. We get:

〈〈f(X,Y )|Y 〉〉 = 〈f(X,Y )〉. (A.25)

A.6 Useful Results on MVN and Block Matrices

Matrices are upper case bold, like A. Vectors are lower-case bold, like y. A partitioned matrix
(a.k.a. block matrix) is like this:

A =
[
A1,1 A1,2

A2,1 A2,2

]
, (A.26)

where Ai,j is a matrix, which may be square or not, and may contain only one element or more
than one.

A.6.1 The Inverse of a Block Matrix

You can find two versions of this result in [PTVF92], but not a derivation.
The job is to find the inverse of a block matrix. Let us call the inverse B. Then by definition,

B = A−1 =
[
A1,1 A1,2

A2,1 A2,2

]−1

=
[
B1,1 B1,2

B2,1 B2,2

]
. (A.27)

It is assumed that A1,1 and A2,2 are square, and similarly for B. Using an obvious notation for
the partitioned identity matrix,[

A1,1 A1,2

A2,1 A2,2

] [
B1,1 B1,2

B2,1 B2,2

]
=

[
I1,1 I1,2

I2,1 I2,2

]
. (A.28)

Writing this out in full gives:

A1,1B1,1 + A1,2B2,1 = I A1,1B1,2 + A1,2B2,2 = 0 (A.29)
A2,1B1,1 + A2,2B2,1 = 0 A2,1B1,2 + A2,2B2,2 = I (A.30)

First we eliminate B1,2 between equations (A.29-RHS) and (A.30-RHS). We easily find that:

B1,2 = −A−1
1,1A1,2B2,2, (A.31)

so:

I = −A2,1A
−1
1,1A1,2B2,2 + A2,2B2,2 (A.32)

= (A2,2 −A2,1A
−1
1,1A1,2)B2,2, (A.33)

and we thus get:
B2,2 =

(
A−1

)
2,2

= (A2,2 −A2,1A
−1
1,1A1,2)−1. (A.34)
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Then equations (A.31) and (A.34) immediately give us B1,2:

B1,2 = −A−1
1,1A1,2(A2,2 −A2,1A

−1
1,1A1,2)−1. (A.35)

We could have found a different but equivalent result by first swapping equation (A.30-RHS)
around to get an expression for B1,2 then plugging this into equation (A.29-RHS). And two other
forms could have been found by eliminating B2,2 from one or the other of the two equations
also. These are not shown here — you can do it yourself now you know how.

Next we swap equation (A.29-LHS) around to get:

B1,1 = A−1
1,1(I −A1,2B2,1). (A.36)

This plugs into equation (A.30-LHS) to give:

0 = A2,1A
−1
1,1 −A2,1A

−1
1,1A1,2B2,1 + A2,2B2,1 (A.37a)

= A2,1A
−1
1,1 + (A2,2 −A2,1A

−1
1,1A1,2)B2,1 (A.37b)

= A2,1A
−1
1,1 + B−1

2,2B2,1, (A.37c)

so:
B2,1 = −B2,2A2,1A

−1
1,1. (A.38)

which also gives us B1,1 through equation (A.36). Again, we could have done this in three other
ways. We could also have worked one row at a time instead of one column, but I do not know
if this would give the same expressions or yet more equivalent forms.

Another form of B2,1 and B1,1 will be useful in the discussion of MVN below. Plug B2,1

back into equation (A.29-LHS):

A1,1B1,1 −A1,2B2,2A2,1A
−1
1,1 = I, (A.39)

so
B1,1 = A−1

1,1 + A−1
1,1A1,2B2,2A2,1A

−1
1,1. (A.40)

After fiddling around with these equations for a while, I found that the shortest forms of
Bi,j are found by eliminating the other Bi,j in the homogeneous equations in equations (A.29)
and (A.30). Thus, to get B1,1, rearrange equation (A.30-LHS) to get an expression for B2,1 and
plug this into equation (A.29-LHS). These simplest forms are:

B1,1 =
(
A1,1 −A1,2A

−1
2,2A2,1

)−1

B1,2 =
(
A2,1 −A2,2A

−1
1,2A1,1

)−1

B2,1 =
(
A1,2 −A1,1A

−1
2,1A2,2

)−1

B2,2 =
(
A2,2 −A2,1A

−1
1,1A1,2

)−1

(A.41)

Well, maybe not the simplest, but there is a nice symmetry in this pile of equations.
Here is a summary of the other forms obtained.

B1,1 = A−1
1,1 + A−1

1,1A1,2B2,2A2,1A
−1
1,1,

B1,2 = −A−1
1,1A1,2B2,2,

B2,1 = −B2,2A2,1A
−1
1,1,

B2,2 = (A2,2 −A2,1A
−1
1,1A1,2)−1.

(A.42)
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A.6.2 Conditional MVN

There is some excellent tutorial material in chapters I and IV of Giri’s book, [Gir77]. But I could
not figure out Giri’s derivation of the fact that a conditional MVN is also MVN, so I give my
own derivation here.

We start with a random vector x with expectation µ. This means just a collection of random
variables x1 . . . xN . By assumption, the vector has a MVN probability density, i.e. the collection
of random variables has a MVN probability density. We write the covariance matrix as Σ and
its inverse as Ξ (Greek upper-case xi). Then by the definition of MVN, the density of x is given
by:

fx(x) =
1

(2π)N/2
√
|Σ|

exp
[
−1

2
(x− µ)TΞ(x− µ)

]
. (A.43)

We are now going to partition the random vector into components of length p and N − p,
and similarly with µ and Σ and Ξ. The two blocks of x will be denoted x1 and x2, and similarly
for other relevant vectors and matrices (the latter having four blocks, of course). Thus:

Σ =
[
Σ1,1 Σ1,2

Σ2,1 Σ2,2

]
, Ξ =

[
Ξ1,1 Ξ1,2

Ξ2,1 Ξ2,2

]
, (A.44)

where Σ1,1 and Σ2,2 are square (but not necessarily the same size, so the other two blocks can
be non-square), and similarly for Ξ.

Equations (A.42) translate into “Σ−Ξ” notation as follows.

Ξ1,1 = Σ−1
1,1 + Σ−1

1,1Σ1,2Ξ2,2Σ2,1Σ−1
1,1, (A.45)

Ξ1,2 = −Σ−1
1,1Σ1,2Ξ2,2, (A.46)

Ξ2,1 = −Ξ2,2Σ2,1Σ−1
1,1, (A.47)

Ξ2,2 = (Σ2,2 −Σ2,1Σ−1
1,1Σ1,2)−1. (A.48)

Note that Ξ1,1 = (Σ−1)1,1 6= Σ−1
1,1.

Observe the following important fact:

ΞT
1,2 = −(Σ−1

1,1Σ1,2Ξ2,2)T (A.49)

= −ΞT
2,2Σ

T
1,2(Σ

−1
1,1)

T (A.50)

= −Ξ2,2Σ2,1Σ−1
1,1 (A.51)

= Ξ2,1. (A.52)

The first equality is the result derived earlier; the second just uses the rule for transposition of
matrix multiplication (i.e. “transpose all the matrices and reverse the order of multiplication”);
the third exploits the symmetry of the covariance matrix; the last is again an earlier result.

Before going further, we need to know something about the marginal densities.

A.6.3 Marginals of an MVN

[Gir77] shows fairly straightforwardly:

Statement 1. If the partitioning is like this:

Σ =
[
Σ1,1 0
0 Σ2,2

]
, (A.53)

then x1 and x2 are independently MVN with means µ1 and µ2, respectively, and covariance
matrices Σ1,1 and Σ2,2 respectively.
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Proof. Although it is not necessarily true that Σ−1
i,j = Ξi,j , in this case it is easily seen by matrix

multiplication that [
Σ−1

1,1 0
0 Σ−1

2,2

]−1

=
[
Σ1,1 0
0 Σ2,2

]−1

=
[
Ξ1,1 0
0 Ξ2,2

]
. (A.54)

Furthermore, |Σ| = |Σ1,1| |Σ2,2|. So

(x− µ)TΞ(x− µ) = (x1 − µ1)TΞ1,1(x1 − µ1) + (x2 − µ2)TΞ2,2(x2 − µ2), (A.55)

and

fx(x) =
1

(2π)p/2
√
|Σ1,1|

exp
[
−1

2
(x1 − µ1)TΞ1,1(x1 − µ1)

]
×

1
(2π)(N−p)/2

√
|Σ2,2|

exp
[
−1

2
(x2 − µ2)TΞ2,2(x2 − µ2)

]
(A.56)

Now we follow Giri again and show that:

Statement 2. x1 and x2 − Σ2,1Σ−1
1,1x1 are independently MVN with respective means and

covariances µ1, µ2 −Σ2,1Σ−1
1,1µ1, Σ1,1, Ξ−1

2,2.

Proof. Let

C =
[

I1,1 0
−Σ2,1Σ−1

1,1 I2,2

]
, (A.57)

which is nonsingular (i.e. has an inverse) because the determinant of a triangular matrix is just
the product of the terms in the leading diagonal. In fact, |C| = 1. Transformation of an MVN
by a nonsingular matrix gives another MVN (not proved in this note, but fairly easy given the
rule for transformation of a multivariate density). Thus

Cx =
[

x1

x2 −Σ2,1Σ−1
1,1x1

]
(A.58)

is a N -variate MVN with mean:

Cµ =
[

µ1

µ2 −Σ2,1Σ−1
1,1µ1

]
(A.59)

and covariance matrix:

CΣCT =
[
Σ1,1 0
0 Ξ−1

2,2

]
. (A.60)

This is the kind of matrix we saw in Statement 1, hence the result.

Giri makes the following statement in his Corollary 4.1.1(b), but does not explain why it
works.

Statement 3. The marginal distribution of x1 is p-variate MVN with mean µ1 and covariance
matrix Σ1.

Proof. I do not follow Giri’s line of reasoning here. However, I do prove it the hard way,
below.
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A.6.4 Conditional MVN

Now we are ready to show that:

Statement 4. The conditional distribution of x2 given x1 is MVN with mean µ2+Σ2,1Σ−1
1,1(x1−

µ1) and covariance matrix Ξ−1
2,2.

Proof. Writing out the exponent in equation (A.43) in partitioned form:

(x− µ)TΞ(x− µ) = (x1 − µ1)TΞ1,1(x1 − µ1) + (x1 − µ1)TΞ1,2(x2 − µ2)+

(x2 − µ2)TΞ2,1(x1 − µ1) + (x2 − µ2)TΞ2,2(x2 − µ2) (A.61)

This is going to get messy, so let us define δi = xi − µi. Then:

δTΞδ = δT
1 Ξ1,1δ1 + δT

1 Ξ1,2δ2 + δT
2 Ξ2,1δ1 + δT

2 Ξ2,2δ2. (A.62)

We now plug in the results for Ξi,j :

δT
1 Ξ1,1δ1 = δT

1 Σ−1
1,1δ1 + δT

1 Σ−1
1,1Σ1,2Ξ2,2Σ1,2Σ−1

1,1δ1 (A.63)

δT
1 Ξ1,2δ2 = −δT

1 Σ−1
1,1Σ1,2Ξ2,2δ2 (A.64)

δT
2 Ξ2,1δ1 = −δT

2 Ξ2,2Σ2,1Σ−1
1,1δ1 (A.65)

Giri’s equation (4.4) has this in the exponent:

(δ2 −Σ2,1Σ−1
1,1δ1)TΞ2,2(δ2 −Σ2,1Σ−1

1,1δ1) =

δT
2 Ξ2,2δ

T
2 − (Σ2,1Σ−1

1,1δ1)TΞ2,2δ2 − δT
2 Ξ2,2Σ2,1Σ−1

1,1δ1

+ (Σ2,1Σ−1
1,1δ1)TΞ2,2Σ2,1Σ−1

1,1δ1

= δT
2 Ξ2,2δ

T
2 − δT

1 Σ−1
1,1Σ1,2Ξ2,2δ2 − δT

2 Ξ2,2Σ2,1Σ−1
1,1δ1

+ δT
1 Σ−1

1,1Σ1,2Ξ2,2Σ2,1Σ−1
1,1δ1. (A.66)

Thus we see that

δTΞδ = δT
1 Σ−1

1,1δ1 + (δ2 −Σ2,1Σ−1
1,1δ1)TΞ2,2(δ2 −Σ2,1Σ−1

1,1δ1). (A.67)

Now the following is true:

|Σ| = |Σ1,1||Σ2,2 −Σ2,1Σ−1
1,1Σ1,2|. (A.68)

To see this, first believe that the determinant of a block-triangular matrix is the product of the
determinants of the blocks on the leading diagonal. Thus:∣∣∣∣I −Σ−1

1,1Σ1,2

0 I

∣∣∣∣ = 1, (A.69)

and so:

|Σ| =
∣∣∣∣Σ1,1 Σ1,2

Σ2,1 Σ2,2

∣∣∣∣ ∣∣∣∣I −Σ−1
1,1Σ1,2

0 I

∣∣∣∣ =
∣∣∣∣Σ1,1 0
Σ2,1 Σ2,2 −Σ2,1Σ−1

1,1Σ1,2

∣∣∣∣ (A.70)

= |Σ1,1||Σ2,2 −Σ2,1Σ−1
1,1Σ1,2| (A.71)

That is,
|Σ| = |Σ1,1| |Ξ−1

2,2|. (A.72)

Furthermore,
(2π)N/2 = (2π)p/2(2π)(N−p)/2. (A.73)
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Finally, pulling all these strands together:

fx(x) =
1

(2π)p/2
√
|Σ1,1|

exp
[
−1

2
δT

1 Σ−1
1,1δ1

]
×

1

(2π)(N+p)/2
√
|Ξ−1

2,2|
exp

[
−1

2
(δ2 −Σ2,1Σ−1

1,1δ1)TΞ2,2(δ2 −Σ2,1Σ−1
1,1δ1)

]
. (A.74)

This is the product of two MVN densities, the first being MVN (µ1,Σ1,1), the second being
MVN (µ2 + Σ2,1Σ−1

1,1(x1 − µ1),Ξ−1
2,2). But the second one is just another way of looking at the

MVN vector that was discussed in Statement 2, so we know that it is independent of the first.
Therefore we see that the first is the density of an MVN vector in its own right, and indeed that
it is the marginal density of x1. Thus Statement 3 is proved, as promised.

Now fx(x) = fx1∩x2(x1 ∩ x2). This is because it is the density of getting x1, x2, . . . , xN at
the same time, which is the same as the probability of getting x1 and x2 at the same time. But
by the definition of a conditional density,

fx1∩x2(x1 ∩ x2) = fx2|x1
(x2|x1)fx1(x1). (A.75)

Therefore the second density on the RHS of equation (A.74) is equal to fx2|x1
(x2|x1).

B Traces and Derivatives of Them

Given a square matrix A, its trace is the sum of the elements in its leading diagonal, and this
is written tr(A). Being the sum of some scalars (the numbers along the diagonal of A), it is a
scalar. Thus

tr(A) =
∑

i

Aii = Aii, (B.1)

where the first equality just says what tr(A) is, and the second says the same thing using the
summation convention [Wik07a].

Now we need to define the derivative of a scalar with respect to a matrix. Call the scalar ξ,
and define:

dξ

dA
=


∂ξ

∂A11

∂ξ
∂A12

. . .

∂ξ
∂A21

∂ξ
∂A22

. . .
...

...
. . .

 (B.2)

We can use these two results to evaluate d tr(AB)/dA, for two conformable matrices A
and B. It only makes sense if AB is square — which it is in this paper. Using the summation
convention, (AB)mn = AmoBon, which I think of as “the Moon rule”. Then tr(AB) = AmoBom.
In the following equations, there will be a lot of contraction over indices. It can be hard on the
eyes and brain to follow what is happening. To help the reader (and the writer), I have used
boxes to show which objects combine on a LHS to form an object on a RHS. To illustrate:
δop Amo Bpn = Amo Bon . So:

d tr(AB)
dA

=
d(AijBji)

dAαβ
= δiα δjβ Bji = δjβ Bjα (B.3a)

= Bβα = (B)T
αβ (B.3b)

= BT . (B.3c)
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We will also need d tr(ACAT )/dA.

d tr(ACAT )
dA

=
d(AijCjkAik)

dAαβ
= δiα δjβ Cjk Aik + Aij Cjk δiα δkβ (B.4a)

= δiα Cβk Aik + Aij Cjβ δiα = Cβk Aαk + Aαj Cjβ (B.4b)

= (ACT )αβ + (AC)αβ (B.4c)

= ACT + AC (B.4d)
= 2AC if C is symmetric. (B.4e)

C R Code for the DALEC Model

Fortran code for DALEC is available at [Fox]. I have translated it into R, and that code is shown
here, without much comment. But if you look at Figure 9 at the same time as reading this, it
might make sense. The main things to note are:

1. it is an Euler method encoding of a finite difference algorithm;

2. various coefficients and other constants are used, but are not presented here;

3. the latter can be found in, or inferred from, [Fox] and [WSL+05].

The first chunk of code calculates the changes in the carbon pools in one day:

# Function to update carbon pools for one day.
carbon.one.day <- function(x , drive , p , a , others , stats=NULL) {
# carbon.one.day <- function(x , drive , p , a , others) {

# x vector: is the control variable: c( c.f , c.r , c.w , c.lit , c.som )
# drive vector: contains the drive data: c(yearday , mint , maxt , c.a , rad )
# p vector: contains the 11 p-parameters
# a vector: contains the 10 a-parameters
# others vector: contains other stuff: c(psid , rtot , nit)
c.f = x[1] ; c.r = x[2] ; c.w = x[3] ; c.lit = x[4] ; c.som = x[5]
yearday = drive[1] ; mint = drive[2] ; maxt = drive[3] ;
c.a = drive[4] ; rad = drive[5]
psid = others[1] ; rtot = others[2] ; nit = others[3]
#
lai = max(0.1 , c.f/lma)
gpp.arg = list(); gpp.arg$p = p ; gpp.arg$a = a ; gpp.arg$lai = lai
gpp.arg$maxt = maxt ; gpp.arg$mint = mint ; gpp.arg$psid = psid
gpp.arg$rtot = rtot ; gpp.arg$nit = nit ; gpp.arg$c.a = c.a
gpp.arg$yearday = yearday ; gpp.arg$rad = rad
# Carbon fluxes
g = gpp(gpp.arg)
t.rate = 0.5 * exp(p[10] * 0.5 * (maxt + mint))
r.a = p[2] * g
a.f = (g - r.a) * p[3]
a.r = (g - r.a - a.f) * p[4]
a.w = g - r.a - a.f - a.r
l.f = p[5] * c.f
l.w = p[6] * c.w
l.r = p[7] * c.r
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rh.1 = p[8] * c.lit * t.rate
rh.2 = p[9] * c.som * t.rate
d = p[1] * c.lit * t.rate
# Pools:
c.f = c.f + a.f - l.f
c.w = c.w + a.w - l.w
c.r = c.r + a.r - l.r
c.lit = c.lit + l.f + l.r - rh.1 - d
c.som = c.som + d - rh.2 + l.w
new.pools = c( c.f , c.r , c.w , c.lit , c.som )
lai = H %*% new.pools
obs = lai
return( c( new.pools , g , r.a , a.f , a.w , a.r , l.f , l.w , l.r , rh.1 ,

rh.2 , d , (r.a+rh.1+rh.2-g) , lai , obs ) )
}

#

The next chunk of code calculates GPP in one day:

# Function to calculate GPP for one day:
gpp = function(gpp.arg) {

# gpp.arg is the stuff it needs.
# Returns gpp for one day.
#
p = gpp.arg$p
lai = gpp.arg$lai
maxt = gpp.arg$maxt
mint = gpp.arg$mint
psid = gpp.arg$psid
rtot = gpp.arg$rtot
nit = gpp.arg$nit
c.a = gpp.arg$c.a
yearday = gpp.arg$yearday
rad = gpp.arg$rad
# Calculate
t.range = 0.5 * (maxt - mint)
g.s = abs(psid)**a[10] / ((a[6] * rtot + t.range))
pp = lai * nit / g.s * a[1] * exp(a[8] * maxt)
qq = a[3] - a[4]
c.i = 0.5 * (c.a+qq-pp + ((c.a+qq-pp)**2 - 4 * (c.a*qq-pp*a[3]))**0.5)
e.0 = a[7] * lai**2 / (lai**2 + a[9])
dec = -23.4 * cos((360.0 * (yearday+10.0) / 365.0) * pi/180.0) * pi/180.0
mult = tan(lat) * tan(dec)
if (mult >= 1.0 ) {

dayl = 24.0 } else
if (mult <= -1.0 ) {

dayl = 0.0 } else
{ dayl = 24.0 * acos(-mult) / pi}

cps = e.0 * rad * g.s * (c.a-c.i) / (e.0 * rad + g.s * (c.a-c.i))
model = cps * (a[2] * dayl + a[5])
gpp = model # Return this
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}
#

D Multivariate Taylor Series

We have some vector-valued function of a vector-valued argument, f(x). Lengths of these
vectors are f ∼ n and x ∼ m. We want to find a first-order Taylor series, i.e. a linearisation,
of f around some point x. But first, we will linearise a scalar function of a a vector argument,
f(x):

f(x + ξ) = f(x) +
m∑

i=1

ξi
∂f(x)
∂xi

+ O(|ξ|2). (D.1)

So:

f(x + ξ) =


f1(x + ξ)

f2(x + ξ)
...

fn(x + ξ)

 =


f1(x) +

∑m
i=1 ξi

∂f1(x)
∂xi

+ O(|ξ|2)

f2(x) +
∑m

i=1 ξi
∂f2(x)

∂xi
+ O(|ξ|2)

...

fn(x) +
∑m

i=1 ξi
∂fn(x)

∂xi
+ O(|ξ|2)

 (D.2a)

' f(x) +



∂f1(x)
∂x1

∂f1(x)
∂x2

. . . ∂f1(x)
∂xm

∂f2(x)
∂x1

∂f2(x)
∂x2

. . . ∂f2(x)
∂xm

...
...

. . .
...

∂fn(x)
∂x1

∂fn(x)
∂x2

. . . ∂fn(x)
∂xm

 · ξ = f(x) + Fξ, (D.2b)

which defines the Jacobian F .
This result is very well known, but the ordering of the F and the ξ always eludes me unless

I derive it from scratch. Hence this section.

E The Module

! David Pearson
! Module to define overloading of (real , differential) pair operators
! Version 071126a
!-----------------------------------------------------|
module diffy_maths
!-----------------------------------------------------|

implicit none
!-----------------------------------------------------|

type diffy
real :: value , differential

end type diffy
!-----------------------------------------------------|

interface operator (+)
module procedure diffy_plus_diffy

end interface
!-----------------------------------------------------|

interface operator (-)
module procedure real_minus_diffy , diffy_minus_diffy , int_minus_diffy

end interface
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!-----------------------------------------------------|
interface operator (*)

module procedure diffy_times_diffy , real_times_diffy , diffy_times_real
end interface

!-----------------------------------------------------|
interface operator (**)

module procedure diffy_sup_int
end interface

!-----------------------------------------------------|
interface rose

module procedure r_rose , d_rose
end interface

!-----------------------------------------------------|
contains
!-----------------------------------------------------|

function diffy_plus_diffy(x1 , x2) result(sum)
type(diffy) , intent(in) :: x1 , x2
type(diffy) :: sum
sum%value = x1%value + x2%value
sum%differential = x1%differential + x2%differential

end function diffy_plus_diffy
!-----------------------------------------------------|

function diffy_minus_diffy(x1 , x2) result(sub)
type(diffy) , intent(in) :: x1 , x2
type(diffy) :: sub
sub%value = x1%value - x2%value
sub%differential = x1%differential - x2%differential

end function diffy_minus_diffy
!-----------------------------------------------------|

function real_minus_diffy(r1 , x2) result(res)
real , intent(in) :: r1
type(diffy) , intent(in) :: x2
type(diffy) :: res
res%value = r1 - x2%value
res%differential = - x2%differential

end function real_minus_diffy
!-----------------------------------------------------|

function int_minus_diffy(i1 , x2) result(res)
integer , intent(in) :: i1
type(diffy) , intent(in) :: x2
type(diffy) :: res
res%value = i1 - x2%value
res%differential = - x2%differential

end function int_minus_diffy
!-----------------------------------------------------|

function diffy_times_diffy(x1 , x2) result(prod)
type(diffy) , intent(in) :: x1 , x2
type(diffy) :: prod
prod%value = x1%value * x2%value
prod%differential = x1%value * x2%differential + x2%value * x1%differential

end function diffy_times_diffy
!-----------------------------------------------------|

function real_times_diffy(r1 , x2) result(prod)
real , intent(in) :: r1
type(diffy) , intent(in) :: x2
type(diffy) :: prod
prod%value = r1 * x2%value
prod%differential = r1 * x2%differential
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end function real_times_diffy
!-----------------------------------------------------|

function diffy_times_real(x1 , r2) result(prod)
type(diffy) , intent(in) :: x1
real , intent(in) :: r2
type(diffy) :: prod
prod%value = r2 * x1%value
prod%differential = r2 * x1%differential

end function diffy_times_real
!-----------------------------------------------------|

function diffy_sup_int(x1 , n2) result(expy)
type(diffy) , intent(in) :: x1
integer , intent(in) :: n2
type(diffy) :: expy
expy%value = x1%value ** n2
expy%differential = n2 * x1%value ** (n2 - 1) * x1%differential

end function diffy_sup_int
!-----------------------------------------------------|

function r_rose(x , y) result(rosy)
real , intent(in) :: x , y
real :: rosy
rosy = (1 - x)**2 + 100.0 * ((y-x**2)**2)

end function r_rose
!-----------------------------------------------------|

function d_rose(x , y) result(rosy)
type(diffy) , intent(in) :: x , y
type(diffy) :: rosy
rosy = (1 - x)**2 + 100.0 * ((y-x**2)**2)

end function d_rose
!-----------------------------------------------------|
end module diffy_maths
!-----------------------------------------------------|
! FIN
!-----------------------------------------------------|

F The Main Program

! David Pearson
! Main prog to banana-test diffy_maths
! Version 071126a
!-------------------------------------------------------------------------------
program main
!-------------------------------------------------------------------------------
use diffy_maths
!
implicit none
type(diffy) :: x , y , z
real :: r , s , t , t1 , t2 , delta , deriv
integer :: nexpp
!-------------------------------------------------------------------------------
!
! First try some elementary mathematical operations:
x = diffy(10.0 , 0.1)
y = diffy(3.141 , 0.7654321)
z = x + y
print *, "diffy plus diffy:"
print *, "(+) Result should be " , &
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(10.0 + 3.141) , &
" , " , &
0.1 + 0.7654321

print *, "(+) Result is " , z
!
print *, "diffy minus diffy:"
z = x - y
print *, "(-) Result should be " , &

(10.0 - 3.141) , &
" , " , &
0.1 - 0.7654321

print *, "(-) Result is " , z
!
z = 100.0 - y
print *, "real minus diffy:"
print *, "(-) Result should be " , &

(100.0 - 3.141) , &
" , " , &
- 0.7654321

print *, "(-) Result is " , z
!
print *, "int minus diffy:"
z = 100 - y
print *, "(-) Result should be " , &

(100 - 3.141) , &
" , " , &
- 0.7654321

print *, "(-) Result is " , z
!
z = x * y
print *, "diffy times diffy:"
print *, "(*) Result should be " , &

(10.0*3.141) , &
" , " , &
(10.0*0.7654321 + 3.141*0.1)

print *, "(*) Result is " , z
!
z = x * (x + y)
print *, "diffy combination diffy:"
print *, "(*,+) Result should be " , &

(10.0 * (10.0+3.141)) , &
" , " , &
( (10.0+3.141)*0.1 + 10.0*(0.1+0.7654321) )

print *, "(*,+) Result is " , z
!
nexpp = 2
print *, "diffy sup int:"
z = (x + y) ** nexpp
print *, "(+,**) Result should be " , &

((10.0+3.141)**2) , &
" , " , &
( 2*(10.0+3.141)*(0.1+0.7654321) )

print *, "(+,**) Result is " , z
!
! Rosenbrock next:
r = 1
s = 1
t = r_rose(r , s)
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print *, "Real banana:"
print * , "rosenbrock(" , r , "," , s , ") = " , t
!
! Rosenbrock next:
!
! REAL
r = 1.1
s = 2.4
x = diffy(r , 0.0) ! For ...
y = diffy(s , 0.0) ! ... later
t1 = rose(r , s)
print *, "Real banana:"
print * , "rosenbrock(" , r , "," , s , ") = " , t1
!
! Another real for the derivative:
delta = 0.0001 * r
r = r * 1.0001
t2 = rose(r , s)
print *, "Real banana:"
print * , "rosenbrock(" , r , "," , s , ") = " , t2
!
! And the derivative:
deriv = (t2 - t1) / delta
print *, "Real banana diff:"
print * , "d(rosenbrock(" , r , "," , s , ")) / dr = " , deriv
!
! DIFFY
x%differential = 1.0
z = rose(x , y)
print *, "Diffy banana:"
print * , "d(rosenbrock(" , x , "," , y , ")) / dr = " , z
!-------------------------------------------------------------------------
!
! REAL
r = 1.1
s = 2.4
x = diffy(r , 0.0) ! For ...
y = diffy(s , 0.0) ! ... later
t1 = rose(r , s)
print *, "Real banana:"
print * , "rosenbrock(" , r , "," , s , ") = " , t1
!
! Another real for the derivative:
delta = 0.0001 * s
s = s * 1.0001
t2 = rose(r , s)
print *, "Real banana:"
print * , "rosenbrock(" , r , "," , s , ") = " , t2
!
! And the derivative:
deriv = (t2 - t1) / delta
print *, "Real banana diff:"
print * , "d(rosenbrock(" , r , "," , s , ")) / ds = " , deriv
!
! DIFFY
y%differential = 1.0
z = rose(x , y)
print *, "Diffy banana:"
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print * , "d(rosenbrock(" , x , "," , y , ")) / ds = " , z
!-------------------------------------------------------------------------------
stop
end
!-------------------------------------------------------------------------------
! FIN
!-------------------------------------------------------------------------------

G The Output

diffy plus diffy:
(+) Result should be 13.14100 , 0.8654321
(+) Result is 13.14100 0.8654321
diffy minus diffy:
(-) Result should be 6.859000 , -0.6654321
(-) Result is 6.859000 -0.6654321
real minus diffy:
(-) Result should be 96.85900 , -0.7654321
(-) Result is 96.85900 -0.7654321
int minus diffy:
(-) Result should be 96.85900 , -0.7654321
(-) Result is 96.85900 -0.7654321
diffy times diffy:
(*) Result should be 31.41000 , 7.968421
(*) Result is 31.41000 7.968421
diffy combination diffy:
(*,+) Result should be 131.4100 , 9.968422
(*,+) Result is 131.4100 9.968421
diffy sup int:
(+,**) Result should be 172.6859 , 22.74529
(+,**) Result is 172.6859 22.74529
Real banana:
rosenbrock( 1.000000 , 1.000000 ) = 0.0000000E+00
Real banana:
rosenbrock( 1.100000 , 2.400000 ) = 141.6200
Real banana:
rosenbrock( 1.100110 , 2.400000 ) = 141.5624
Real banana diff:
d(rosenbrock( 1.100110 , 2.400000 )) / dr = -523.5152
Diffy banana:
d(rosenbrock( 1.100000 1.000000 , 2.400000 0.0000000E+00
)) / dr = 141.6200 -523.4000
Real banana:
rosenbrock( 1.100000 , 2.400000 ) = 141.6200
Real banana:
rosenbrock( 1.100000 , 2.400240 ) = 141.6772
Real banana diff:
d(rosenbrock( 1.100000 , 2.400240 )) / ds = 238.1007
Diffy banana:
d(rosenbrock( 1.100000 0.0000000E+00 , 2.400000 1.000000
)) / ds = 141.6200 238.0000
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Figure 3: Forward run of the circular motion system. The starting position is x = 1, y = 0.
The angular velocity is ω = 1, giving a rotational period of 2π. Total run time is 100 with a
time step of 0.2. The time step is 0.2. After every time step, Gaussian noise with Q = I is
added to the co-ordinates. Observations are simulated every 5 time units. The measurement
is y = (x, y) + N(0,R), with R = 10I. The top plot is x vs. time as a wriggly line, with
observations as circles, and observation times shown by tick-marks on the interior of the time
axis. The next is the same, but for y vs. t; and the third shows radius r vs. t. The big plot at
the bottom shows the trajectory, starting at the red open circle close to the origin, ending at
the filled red circle.
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Figure 4: Forward run of the circular motion system. Same as Figure 3, but now with anticor-
related system noise.
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Figure 5: Part 1 of 2. KF analysis of the circular motion system that is summarised in Figure 3.
The top three plots show estimated x, y and r vs. time. Coloured curves show the forward
run; black curves show the KF estimate; and the shaded region represents ±2σ error bars, as
calculated from P (t). The bottom plot shows the forward run and the filtered trajectory.
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Figure 5: Part 2 of 2. More output from the KF job. The top three plots show estimated x, y
and r vs. time, with the forward run values subtracted. The bottom three plots show entries
in the evolving P matrix.
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Figure 6: Part 1 of 2. As Figure 5 but with incorrect initialisation of the starting position and
of P0.
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Figure 6: Part 2 of 2.
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Figure 7: Part 1 of 2. As Figure 6. but with Q too small.
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Figure 7: Part 2 of 2.
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Figure 8: Part 1 of 2. As Figure 6. but with Q too big.

91



A Primer on Data Assimilation . . .

0 20 40 60 80 100

−
20

0
20

t

K
F

(x
)−

x

KF(x)−Forward(x) pm 2 sigma

0 20 40 60 80 100

−
20

0
20

t

K
F

(y
)−

y

KF(y)−Forward(y) pm 2 sigma

0 20 40 60 80 100

−
10

10

t

K
F

(r
)−

r

KF(r)−Forward(r) pm 2 sigma

0 20 40 60 80 100

0
40

80

t

P
(x

,x
)

0 20 40 60 80 100

−
1e

−
14

3e
−

14

t

P
(x

,y
)

0 20 40 60 80 100

0
40

80

t

P
(y

,y
)

Figure 8: Part 2 of 2.

92



A Primer on Data Assimilation . . .

Figure 9: DALEC for evergreen forests. I scanned this diagram from the files available at [Fox].
Carbon pools are denoted by symbols in boxes: Cf is foliage; Cr is fine roots; Cw is woody stems
and course roots; Clit is litter; and Csom is soil organic matter and coarse woody debris. Carbon
fluxes are indicated by symbols associated with the “bow tie” markers: Ra, Rh1 and Rh2 are
respiration fluxes; and D is decomposition. Decomposition and respiration vary exponentially
with temperature T . Gross Primary Productivity (GPP) depends on Cf , T , radiation, length
of day, and Ca. It is allocated in fixed proportions to the different carbon pools. Various
parameters are fixed by calibration against models or data. Units for pools are (gC)m−2.
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Figure 10: Part 1 of 2. Simple Var job to estimate initial carbon pools. The cost function had
only observation terms, i.e. no background constraint. The target function was LAI(t). Each
circle represents one Var job, each having a different simulated observation error. The coloured
fiducial lines cross at the correct values. The coloured spider is at the centroid of the distribution
of circles.

94



A Primer on Data Assimilation . . .

● ●● ●● ●●● ●●●●●● ●●●●●● ●

●

●
●●

●

●

●

●

●

●●● ●

●

●

●

●
●● ●

●
●●● ● ●

●●
●●●●●●●

●

●●●●●● ●

●

●● ● ●● ● ●●
●

●●

●

●
●●● ●● ●● ●● ●● ●●●

●●
●●

●

●

● ●

248 249 250 251 252

10
1

10
2

10
3

10
4

C.f

C
.r

●

●●●●●●●
●
●●●●●●●●●●●●●

●
●●●

●

●

●

●

●

●●●●

●

●

●

●●●●●●●●●●
●
●●●●●●●●

●
●●●●●●●

●

●●●●●●●●
●

●●

●

●●●
●
●●●●●●●●●●●●●●
● ●● ●●

101 102 103 104

74
5

75
5

76
5

77
5

C.r

C
.w

●

●●●●●
●

●
●●

●●●●●●●●●●●●●
●●●

●

●

●

●

●

●●●●
●●

●

●●●●

●

●●●
●●

●●●●●●●
●●●●●●●●●●

●

●●●●
●●

●
●

●

●●

●

●●●●●●●●●●
●
●
●
●●

●

●●
●

●

●●●

745 755 765 775

39
.4

39
.8

40
.2

40
.6

C.w

C
.li

t

●

●●●●●● ●

●

● ●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●
●

●

●

●●●●●
●●
●
●●●

●●●●●●
●●●●●●●●●●

●
●●●●●●● ●

●

●●

●

●
●
●

●

●●●●●●● ●● ●●
●

●●

●
●

●●●

39.4 39.8 40.2 40.698
00

99
00

10
00

0
10

10
0

C.lit

C
.s

om

●

Figure 10: Part 2 of 2. The same, but with incorrect initialisation of the Var jobs’ initial values.
The scales on the axes are not the same as on the preceding page.
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Figure 11: Part 1 of 2. Ensemble Kalman filter with Ne = 25. This repeats the KF job that led
to Figure 6, but uses the EnKF instead of the plain KF.
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Figure 11: Part 2 of 2.
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Figure 12: Part 1 of 2. Ensemble Kalman filter with Ne = 250. This repeats Figure 11, but
with a larger ensemble.
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Figure 12: Part 2 of 2.
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Figure 13: Part 1 of 2. Ensemble Kalman filter with Ne = 5. This repeats Figure 11, but with
a smaller ensemble.
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Figure 13: Part 2 of 2.
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Figure 14: Part 1 of 4. Forward run of DALEC. The five carbon pools are shown, along with
the modelled (line) and “observed” (circles) LAI. Units are (gC)m−2
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Figure 14: Part 2 of 4. For Ne = 100, with sparse LAI observations, and correct initial values
of the carbon pools, we get these results. Observe that Csom and Cw are not well constrained
— their error bars continually increase.
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Figure 14: Part 3 of 4. As part 2, but here the filter is started with doubled initial conditions.
The failure to correct Csom is now even more apparent.
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Figure 14: Part 4 of 4. As part 4, but now Csom is given a smaller variance in Q. The failure
to correct Csom is now convincing.
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