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1 QBSERVED STRUCTURE OF THE MIDDLE ATMOSPHERE:

~ g

1.1 INTRODUCTION

The section of the atmosphere above the tropopause and below a height
of about 85 km is usually referred to as the middle atmosphere. In the
lower part, known as the stratosphere, the temperature generally increases
with height while above, in the mesosphere, it decreases with height (Fig.
1.1). Although the region contains only about one sixth of the mass of the
earth's atmosphere, it attracts much attention from meteorologists and
atmospheric chemists. This interest is stimulated, in part, by concern about
the ozone layer in the stratosphere, a possibly fragile layer of trace gas
which shields the earth's surface from the harmful effects of the sun's
ultraviolet radiation.

The first evidence that atmospheric temperature did not decrease
monotonically with height from the ground to cold space was obtained in
1902 by the French meteorologist, Teisserenc de Bort. He used unmanned
balloons, a measurement technique that is still in use today. Further
progress came with two companion inventions: the rocket and telemetry. In
conjunction with radiosonde ascents into the lower stratosphere, a three-
dimensional picture of temperature and wind structure in the middle
atmosphere began to be built up in the 1950s.

A limitation of such data is that their spatial coverage is not
uniform. Measurements are sparse over the oceans, and so the southern
hemisphere is especially poorly covered. In the last 15 years or so,
measurements from satellites have transformed the situation. It is now

possible to map the temperature distribution with good coverage in three
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dimensions, and to follow its changes day by day. Wind fields can be
obtained approximately from temperature fields (away from the equator),
affording a whole range of studies of the dynamics of the middle
atmosphere. A major advantage of using satellite measurements is that,

being obtained from a single instrument, they have uniform quality. So there
is no need to cross calibrate different types of in situ measurements.

Useful supplementary information, particularly on atmospheric motions
#ith small spatial or temporal scales, comes from two other measuring
techniques: radar and lidar. The MST (Mesosphere-Stratosphere-Troposphere)
radar obtains echoes from atmospheric irregularities and fluctuations in
electron density (the latter only in the mesosphere). The Doppler shift of
the echoes gives the line-of-sight velocity. The structures of tides and
gravity waves in the middle atmosphere can be obtained from radar data.
Lidars provide complementary information to that from radars. They use
Rayleigh scattering from atmospheric molecules to measure density and
temperature.

Observational data for the middle atmosphere are being augmented by
results of simulations with numerical models. A number of general
circulation models with levels in the middle atmosphere have been
integrated through a year or more with seasonal variations in the thermal
forcing (see lecture 10). A likely future development is the assimilation of
observations by a numerical model of the middle atmosphere (as is done at
present in operational models used for weather forecasting), with the aim
of improving the quality of analysed meteorological fields. The
Meteorological Office has plans to do this as part of its contribution to
an international project involving a new satellite - the Upper Atmosphere

Research Satellite, scheduled for launch in 1990.
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In the rest of this lecture, we shall consider the main features of the
thermal and wind structures of the middle atmosphere, noting variations
that occur on seasonal and longer time periods, and pointing out the main

differences between the northern and southern hemispheres.

1.2.1 zonally averaged structure of temperature and wind

Fig. 1.2 shows a representative cross-section of the zonally averaged
temperature field for January (panel (a)) and July (panel (b)). As expected
from radiative considerations, the highest temperatures are at about 1 mb
(near 50 km) over the summer pole, where the heating due to the absorption
of solar radiation by ozone is greatest. At the mesopause (near 0.01 mb,
about 85 km), however, the situation is reversed: temperatures increase
equatorwards from a very cold summer pole. In the lower stratosphere, the
main features are the cold tropical tropopause and the mid-latitude
temperature maximum in the winter hemisphere.

There are pronounced differences between hemispheres during winter in
the stratosphere and lower mesosphere at high latitudes (reflecting
different levels of dynamical activity). In the northern hemisphere, polar
temperatures are warmer through most of the stratosphere and colder near
the stratospause than they are in the southern hemisphere. During summer,
the stratopause is about 5 K warmer than it is in the northern hemisphere
(probably because the earth is closer to the sun in January than it is in
July).

The temperature structure shown in Fig. 1.2 departs significantly from

that of a hypothetical atmosphere in radiative-convective equilibrium. The
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winter pole in the middle atmosphere is as much as 100 K warmer than the
equilibrium value. A task for dynamical theory is to explain differences
like this.

The zonally averaged, zonal wind distribution is shown in Fig. 1.3.
Zonal winds in winter and summer are westerly and easterly, respectively,
with maxima at low latitudes in the lower mesosphere. Easterlies occupy
equatorial latitudes in the stratosphere at the solstices, except in the
westerly phase o1 the quasi-biennial oscillation (see below). In the middle
and upper mesosphere both easterly and westerly winds decrease rapidly
with height. This is thought to be due to the drag exerted by the
dissipation of gravity waves, which propagate upwards from the troposphere
(lecture %). A prominent feature is that zonal winds are typically much
stronger during winter in the southern hemisphere than they are during
winter in the northern hemisphere. This is consistent (through thermal wind

balance) with the colder polar temperatures in the southern hemisphere.

1.2.2 Monthly-mean horizontal fields

The monthly mean circulation in the stratosphere during mid winter
is illustrated in Fig. 1.4. The main features of the circulation have a
planetary scale; variations around latitude circles can mostly be
represented by harmonics with zonal wavenumbers 1 and 2 (notice the
absence of scales of motion typical of weather systems in the troposphere).
Large-scale disturbances in the stratophere are forced in the underlying
troposphere. In the northern hemisphere (panel (a)), the circulation is
dominated by a cold, cyclonic, polar vortex, displaced somewhat from the
pole. A persistent feature near 180°E is the so-called Aleutian High, a

strong anticyclone which fluctuates in intensity throughout the winter. The
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nid-winter circulation in the southern hemisphere (panel (b)), by contrast,
is far less disturbed, and the flow is much more zonal.

In summer, disturbances in both hemispheres are very weak. A warm
anticyclone lies almost directly over the pole, and streamlines of the time-
mean flow are so closely coincident with latitude circles that it is not

worth showing a figure!

1.3 IHE SEASONAL CYCLE

The march of solar heating drives a seasonal cycle in the middle
atmosphere. In the stratosphere, cold polar temperatures and a strong
westerly vortex in winter are replaced by warm polar temperatures and a
weak easterly vortex in summer. Because of dynamical disturbances, however,
the seasonal cycle does not proceed uniformly.

Fig. 1.5 shows the annual march of zonal mean radiance (proportional
to temperature) near the north and south poles in the upper stratosphere.
Vinter temperatures are much more variable in the northern hemisphere
because of 'sudden warmings' (lecture 2). The largest temperature
oscillations in the southern hemisphere occur during the transition in
spring from winter westerlies to summer easterlies.

Fig. 1.6 shows the evolution of zonal-mean wind in the upper
stratosphere. In the northern hemisphere, the zonal-mean westerlies are
strongly disrupted by disturbances (e.g. during January-February, 1981).
Should these disturbances occur in late winter, the westerly circulation may
never recover before summer easterlies are introduced by the evolving
radiation field. These 'final warmings' occur earlier in the seasonal cycle
in the northern hemisphere than in the southern hemisphere where winds

evolve more regularly.
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In equatorial regions the seasonal cycle of winds in the upper
stratosphere is dominated by a semi-annual oscillation (SAO), which has a
maximum amplitude of about 35 ms~'. In Fig. 1.6, easterly winds penetrate
from the summer hemisphere into the winter hemisphere twice a year; the
easterlies spread further across the equator during the southern hemisphere
summer. A time-height section of the SAO at the equator is shown in Fig.
1.7. Near the stratopause, the westerly phase of the oscillation appears at
the equinoxes and propagates downwards. WVesterly flows at the equator have
angular momentum in excess of that due to the earth's rotation, and thereby

pose interesting dynamical questions.

1.3.2 Inter-annual variability and the quasi-biennial oscillation

1.3.2.1 Extra-tropical latitudes

The circulation of the middle atmosphere has strong inter-annual
variability in winter. Fig. 1.8 is a frequency distribution of temperature at
30 mb for both poles, based on nearly 30 years' data. During summer when
prevailing winds are easterly, tropospheric disturbances do not penetrate
far into the stratosphere (see lecture 6 for a theoretical explanation). So
conditions are quiet and inter-annual variability is small, especially at
mid latitudes., In the northern winter and in spring, the frequency
distribution is broad: some winters are much more disturbed than others. It

is found that zonal wave 1 is strong in disturbed winters.
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Inter-annual variability is much smaller during southern winters
because large-scale waves are weaker than they are in the northern

hemisphere. Notice the greater variability in spring when disturbances are

strong.

In the equatorial stratosphere there is a long period variation of a
very different kind to that found at mid latitudes - the quasi-biennial
oscillation (QBO)>. Monthly-mean zonal winds in the tropical lower and
middle stratosphere have a strong quasi-cyclic behaviour (Fig. 1.9): the
winds alternate between easterlies and westerlies of about 20 to 30 ms—'
with a period that ranges between about 23 and 34 months. These jets
descend slowly, successively being replaced from above by one of opposite
sigh. There is some evidence that the tropical QBO contributes to the

inter-annual variability in the extra-tropics by influencing the planetary-

scale disturbances.

Andrews, D.G., Holton, J.R. and Leovy, C.B. (1987). 'Middle atmosphere
dynamics', Academic Press, New York.

Holton, J.R. (1979). 'An introduction to dynamic meteorology', Chap. 11, 2nd
ed., Academic Press, New York.

V.M.0. Global Ozone Research and Monitoring Project (1985). 'Atmospheric

Ozone 1985', Report No. 16, Vol. 1.




sl

Hirota, I. (1978). Equatorial waves in the upper stratosphere and mesosphere

in relation to the semiannual oscillation of the zonal wind. J. Atmos.

45}

it 8h, Tl4=722.

Hirota, I., Hirooka, T. and Shiotani, M. (1983). Upper stratospheric
circulation in the two hemispheres observed by satellites. Quart. J. Roy.
Met. Soc., 109, 443-454.

Labitzke, K. and Naujokat, B. (1983). On the variability and on trends of
temperature in the middle stratosphere. Beitr. Phys. Atmosph., 56, 495-507.

Naujokat, B. (1981) Long-term variations in the stratosphere of the northern

hemisphere during the last two sunspot cycles. J. Geophys. Res., 86, 9811-

9816.

Naujokat, B. (1986) An update of the observed QBO of the stratospheric

winds over the tropics. J. Atmos. Sci., 43, 1873-1877. ®




.oc T' T v T
.HER
“OSp" <40.00I
01 ERg 40002
| MESOPAUSE 40005
8O M 001
§ 002
0k 2 loos
OF s
. 0.1
60} s 02
€ . os £
B STRATOPAUSE e X
-

5 3 2 §
z 4 5 &
30} g 10
P 20
20} g '5:0

e
1o £ raorouust——',LZ’OO
TR°POSPHERE 4500
0 : 1000

180 200 220 240 260 280

TEMPERATURE (K)

Fig. 1.1 Schematic mid-latitude temperature profile.



12

sog A A A A A A A A A A A A A A
0.01 --—160%4///
180"~ 200 k11
e i
220 -10
\/~
0.1 = 230 L9
e DAy 240
250 260 -8

‘.:::::::‘\\\‘-270—'/’’—’---—_—~-_\\\\\\\.—_-—”zso 7

260"

280
260 2
10 4+—v—250 230
’——\240,/’_,,—"”’———— 220___,r”"i::::.4
100

ee— k-
e T 230 ——"’
= /14%——"—”230 -

(c-) 1000 3002 o

80° 70° 60° 50° 40° 30° 20° 10° 0 10° 20° 30° 40° 50° 60° 70° 80°
$ LATITUDE N
ZONAL MEAN TEMPERATURE (K) JANUARY

-

\
@ .

A 4 1 A A 1 1 1 3 B B A 1 1 i I 12
0.01 | 200 ~~160_150
220 \&:70’60\_* 11
180——__T
\ 210 10
0.1 —
o ——220
TRt 9
T 240

ot
:—___——___,——/._-——zﬁ)"" MZK\.‘l
(V) 1000_;/%0 270 m\ .

§80° 70° 60° 50° 40° 30° 20° 10° 0 10° 20° 30° 40° 50° 60° 70° 80°N
ZONAL MEAN TEMPERATURE (K) JULY SATIRURE

Fig. 1.2 Cross sections of zonal-mean temperature (K) for an average
over 5 years ot the monthly means for (a) January and (b> July. The
data are tor the combined SCR/PMR retrieval made at the University of
Oxford for the period January 1973 to December 1974, and July 1975 to

June 1978. (Supplied by J.J. Barnett and M. Corney)




-

0.01-1

0.1+

40
14 \o 40 7
/ L6
L5

10 - sy
o Tt s~ e
\/o \ / i

|/10 20 20
l/'—-/ao_/l T /v- 110"L

(a) Ll Al "20 = L\ L Al Al
80°70° 60° 50° 40° 30° 20° 10° O 10° 20° 30°40° 50° 60° 70° 80°

s LATITUDE N
ZONAL MEAN WIND (m/s)

i i 2 12

4

"IN

50

1

_N]:

10

L] L) L v L] L]

§80° 70° 60° 50° 40° 30° 20° 10° O 10° 20° 30° 40° 50° 60° 70° 80°N
ZONAL MEAN WIND (m/s) LATITUDE

0
|
L 3
() Lol /ﬁk. ',/, — 1

Fig. 1.3 Cross sections of zonal-mean geostrophic wind (m s™') for @)

January and (b) July. Data source as in Fig. 1.2.



432
32
-5

gt

s

}//! ,% N\
= el e

0w —

~ :
)
gl h\

—REPRESENTS 100 M/S 0

Fig. 1.4(a) Polar stereographic map at 10 mb of monthly mean
geopotential height <(km) for the northern hemisphere for January
1981. Data obtained from a stratospheric sounding unit on the
satellite KNOAA-6. Analysis made by the Middle Atmosphere Group,

Meteorological Office.

90E




(L)

180

—REPRESENTS 100 M/S

but for the southern hemisphere for

1l.4¢b) As for Fig. 1.4(a)

Fig.

July 1981.



110 T 2 I R, TR | [ \ o raare | ) G | T | SR (R TR T

80°N

©w
o
T

80°S

70} |

ZONAL MEAN RADIANCE

60 ¥

50 } 450

40

40 A A A IR Y 4 4 A A A A A A A 4 A A A A A v LAY - i

DJ FMAMUJ JAS ONDJFMAMUJIJ AS OND
1973 1974

Fig. 1.5 Annual march of zonal-mean radiance observed by the Nimbus 5
SCR channel B12 for 80°N and 80°S. Units are mW m = ster~'. Taken from

Hirota et al. (1983).




1mb GEOSTROPHIC WIND
R (L LR T T

80

LATITUDE

-80

O N D J F M A MJ - J ASTO N.D J-F M -A M I J-A
1979 1980 1981

Fig. 1.6 Latitude-time section of the zonal-mean geostrophic wind at

the 1 mb level estimated from the 20-day average height field observed

winds. Taken from Hirota et al. (1983).

. by the Tiros-N SSU. Units are m s~ '. Positive values denote westerly




100
= U: ASCENSION 1S.(8°S)
T

LA

i

‘%

\

N

o3

N\,
R St
-]
N
ANSANNANNY

R e s

7 / %
Q /
./,////// 7L

T R : J P Taln e 3ed
JASONDJFMAMJJASONDJFMAMJ) JASOND
1970 —fe- 197 + 1972

Fig. 1.7 Semiannual oscillation at Ascension Island (8°S).

Hirota (1978).

Taken from




I

30 mbar 90°N

-10 -5:0 -6[0 —70 '80

........ S et L —756
DEC nn nrnrnfg1ﬂ¥Ln -
. E LY ) =

NOV n BHHHRR o= 36
nE [T]: -624
ocCT fon on O = 1’4
E (T)= -516
SEP M Ush e
[T)=-426
AUG ey
E [T)=-384
uL_rf g O
i .
JUN ot I8
: [T)=-420
MAY ﬁl]l E‘}ﬂ g 2h
[T]=-47.4
Apno_.amr@g}rrﬂﬂ A G= 54
[T]“573
MAR o el afhdAARL o 7
[T]"657
FEB._.n N AN n Hnm&l—;ﬂl— o= 106
[T)= -715
[0 - s booA B RARSH 'y go

WWW*

=40 =50 -60 -70 -80

Fig. 1.8¢a) Frequency distribution of the monthly mean 30 mb
temperatures (°C) at the North Pole made from radiosonde data for the
period July 1955 to December 1982. The interval is 1°C. The long-term
average [T] is given on the right-hand side of the picture together
with the standard deviation ¢, and [T)] is also marked as a black box

in the frequency distribution. (Aiter Naujokat, 1981, and Labitzke and

Naujokat, 1983)




. [T)=-86 4 .18
JUN jﬁd o = 14
EE [T] --79'511:16
MAY, nually o= 12
[T)=-654,_18
APR r‘ﬁ n_ﬁ An o= 29
:E [T] =—509 =18
MAR H ] g = 0.9n
H
H [T)]=-410__
FEB Y o= 09"®
:
H [T)=-358,_
JAN ::E g = 0.9n 18
‘ A
|
1 =-329,_1
DEC B 1.2
[T] 371n=17
: wouRE B B -
73 [T]--61.3n,18
OoCT. e WA ¢ O 1 n:%m ﬂ:hn o= 171
: m--79 a0
SEP n B a = 26
F&}T] --904n=10
AUG
[T]=-90 7“'12
( l,) i e o= 18
AAAAAAAAAAAA AA....‘.‘...AA....A.AAA.......A: .nnn.nnnnilAAA-lnlLinm
30 -40 -50 -6'0 =70 -80 =90

Fig. 1.8(b) As for Fig. 1.8(a) but for the South Pole for the period

1961 to 1978 using, for each month, data for the number of years

specified by n.

-



MEAN MONTHLY ZONAL WIND COMPONENT |mys |

z o
») bo
» ko
n po
» o
-

»

1 =3
= . 5
» ™ po
ve| 0 Lo
2| o po
» o
3
-

} 3
30 ed
» oo
» bo
o =
” O
© bo
3
L

: -
2 hs
» po
- po
» <
n po
= o
-

-

Fig. 1.9 Time-height cross-section of monthly mean zonal winds (m s=')
at equatorial stations, calcualted from daily values:

Jan. 1953 - Aug. 1967, Canton Island, 3°S/172°W

Sep. 1967 - Dec. 1975, Gan/Maledive Islands, 1°S/73°E

Jan. 1976 - Apr. 1985, Singapore, 1°N/104°E
Note the downward propagating westerly (W) and easterly (E) regimes.

(After Naujokat, 1986)

A




- 2‘1_

2 OBSERVATIONS OF TRANSIENT DISTURBANCES IN THE MIDDLE ATMOSPHERE

In lecture 1 we considered some of the salient features of the
climatology of the middle atmosphere as revealed by monthly-mean fields of
winds and temperature. But a wide range of interesting dynamical bahaviour
happens on time scales of less than a month. There are dramatic sudden
warmings which develop over a week or so; there are large-scale travelling
waves (lost in a time-mean view); ephemeral gravity waves exert a brake on
the winds where they dissipate (particularly in the mesosphere); travelling
Kelvin and Rossby gravity waves are thought to be important in the semi-
annual and quasi-biennial oscillations; and there are atmospheric tides. The
term 'transient disturbance' is sometimes used (perhaps rather loosely) to

enbrace all of these.

2.2 IRANSIENT DISTURBANCES

2.2.1 Siratospheric sudden warmings

The most spectacular departures from a regular seasonal cycle in the
middle atmosphere occur during ‘sudden warmings' in the stratosphere in
winter, particularly in the northern hemisphere. The westerly circulation in
the stratosphere is disrupted on a very large scale, and locally
temperatures may rise by 80 K or more in a matter of a week or so
(temperatures have been recorded to exceed +20°C during strong events in
the northern stratosphere). Though much weaker, the atmospheric disturbance

can be detected at the mesopause and above.
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A warming is classified as major if it is strong enough for zonal-
mean westerlies to be replaced by easterlies at and above 10 mb (30km),
and poleward of 60° latitude. Otherwise it is called a minor warming. This
distinction should not be applied too rigidly as the two types have much in
common.

Varmings are also broadly divided into 'wave-1' and 'wave-2' types. In
the former, the Aleutian High grows and the cyclone is displaced farther
irom the pole than it normally is (see Fig. 1.4(a)); in the latter, the
cyclone may split as two anticyclones develop about 180° apart in
longitude.

A striking example of a wave-2 major warming took place in the
northern hemisphere at the end of December 1984. Fig. 2.1(a) is a map of
geopotential-height and temperature at 10 mb on 28 December. The Aleutian
high lies near the dateline as usual, but there is another strong (non-
climatological) anticyclone developing near 0°E. The cyclone is highly
elongated and just about to split into two separate vortices. Notice that
the two pools of warm air lie to the west of the anticyclones. This is a
characteristic of upward-propagating disturbances (lecture 6). By 2 January
1985, the cyclone has split (Fig. 2.1(b)). The two anticyclones have merged
to form one huge anticyclone of warm air over the pole, flanked by a pair
of cyclones.

During warmings there is a large exchange of air between high and low
latitudes (there may be considerable poleward transport of photochemically
important trace chemicals such as ozone). The movement of air can be
followed using maps of Ertel's potential vorticity on isentropic surfaces.
Over short periods (a week or so in the stratosphere), contours of
potential vorticity on such surfaces are approximately material lines. An

example for an early winter warming in the northern hemisphere is shown in



Fig. 2.2. A mass of air with low values of potential vorticity is being
injected from low latitudes into high latitudes. Associated with it is a
strong anticyclonic circulation with a long tongue of high potential
vorticity around its southern flank. The term 'wave breaking' has been
applied to the extreme and irreversible buckling of potential vorticity
contours such as that depicted in the figure.

Stratospheric warmings are thought to be caused by planetary-scale
disturbances in the troposphere which propagate upwards in winter, when
wind conditions are right for this to happen (see lecture 6). Major
warmings, involving the replacement of polar westerlies by easterlies, do
not occur in mid winter in the southern hemisphere. This is probably
because the southern troposphere does not contain such persistent large-

scale disturbances as does its northern counterpart.

2.2.2 Iravelling waves

A Fourier analysis of meteorological fields in the stratosphere will
generally yield some zonal harmonics with phases (longitude of peaks or
troughs) that change with time. These harmonics might be called travelling
waves. Whether these 'waves' are waves in the normal physical sense, with
theoretically predicted properties, is another matter altogether.

Some travelling waves in the stratosphere may be associated with
theoretically predicted 'normal modes'. (Normal modes have properties
independent of details of forcing, unlike the forced planetary waves
invélved in sudden warmings). Typically, they have much smaller amplitudes
than disturbances considered above, and can be studied fairly well with

linear wave theory.
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The most widely documented normal mode is the 5-day wave in zonal
wavenumber 1. It is global, symmetric about the equator, and propagates
westward around the earth once in 5 days. Satellite data have been Fourier
analysed and time filtered to produce the example shown in Fig. 2.3. The
analogue of this wave in wavenumber 2 has also been found. It has a 4-day
period.

Other waves in the stratosphere have been tentatively identified as

normal modes. Salby (1984) gives a comprehensive review.

2.2.3 Gravity waves

Gravity waves are believed to play an important role in determining
the large-scale circulation and temperature structure of the middle
atmosphere (particularly the mesosphere), where the turbulence generated by
breaking waves induces a drag on the mean flow. The main sources of these
waves are thought to be in the lower atmosphere, and include topography,
frontal disturbances, convective activity, geostrophic adjustment and shear
instabilities. |

The first information on gravity waves came from rockets, but now
radars are providing valuable data, albeit with limited geographical
coverage. Gravity waves have horizontal wavelengths of about 100-200 km,
vertical wavelengths of about 5-15 km, phase speeds of up to about 80 ms'
and periods of a few minutes to an hour or so. Radar measurements indicate
that the drag they exert on the mean winde in the mesosphere is about 20

to 80 m ' day™'.
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In the lower equatorial stratosphere, two basic types of planetary-

scale wave have been identified from radiosonde measurements: the eastward-

travelling Kelvin wave and the westward-travelling Rossby-gravity wave.

They are believed to be forced by convection in the tropical troposphere

(though the precise forcing mechanisme are not well understood), from where

they propagate upward into the middle atmosphere.

Some observations that seem to show Kelvin waves are shown in Fig.

2.4, and further details ot the two types of travelling wave are given in

the table below.

Observed equatorial waves

in the lower stratosphere Kelvin Rossby-gravity

Period (ground based) 15 days 4 - 5 days

Zonal wavenumber 1222 4

Vertical wavelength 6 - 10 km 4 - 8 km

Phase speed w.r.t. ground +25 m s~! =23 m s
(eastward) (westward)

Observed when basic flow is westward eastward
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2.2.5 Atmospheric tides

Tides in the upper mesosphere show up clearly in radar observations
of drifting meteor trails. In the middle atmosphere, the dominant tidal
motions are diurnal and semi-diurnal modes driven by solar heating (mainly
of water vapour in the troposphere and ozone in the stratosphere). In the
stratosphere, amplitudes of tidal wind oscillations are small (less than
about 1-5 m s '). But in the mesosphere, amplitudes can be large, and it
has been estimated that the dissipation of tides leads to the generation of -

easterly winds of up to 60 m s ' at equatorial latitudes.
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Fig. 2.1(a) Synoptic map at 10 mb of geopotential height (solid lines)

and temperature (dashed lines) for 28 December 1984. VUnits: dam for
geopotential height; K for temperature. <(Taken from Fairlie and

O'Neill, 1987)
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Fig. 2.1(b) As for Fig. 2.1(a) but for 2 January 1985.
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Fig. 2.2 Ertel's potential vorticity and geostrophic winds evaluated

on the 850 K isentropic surface near 10 mb on 4 December 1981. Unitse

are Kom= kg-l. g 1l 3 10-4

~ REPRESENTS 100 M'S

(Taken from Clough et al., 1985)
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3. THE PRIMITIVE AND QUASIGEOSTROPHIC EQUATIONS
IN LOG-PRESSURE COORDINATES

3.1 THE PRIMITIVE EQUATIONS

The atmosphere is a shallow envelope of compressible gas surrounding a
rotating planet. The equations of motion for such a gas are well known, but
are more complicated than necessary for understanding the large and medium
scale meteorological phenomena that will be considered in these lectures.
Scaling arguments (e.g. Holton, 1979, § 2.4) show that, for such phenomena,
the vertical momentum equation reduces to hydrostatic balance, and the
Coriolis force associated with the horizontal components of the earth's
rotation vector can be neglected. The resulting set of equations are called
the primitive equations. (See Phillips, 1973 and Gill, 1982 for derivationms.)
For simplicity, we shall mostly use the beta-plane approximation, which means
that, rather than employing the full spherical geometry, we work on a tangent
plane (with x = eastward distance, y = northward distance and z* = geometric
height) and approximate the vertical component of the earth's rotation vector
f = 20sing by the linear function f = f, + By: here f; and B are constants and

0= 2‘{1’(day)°1 and ¢ is latitude.

Even after these simplifications, the primitive equations are quite
cumbersome. They can however be made slightly neater by changing the vertical
coordinate. We note first that hydrostaiic balance in the vertical is

expressed by
pg = -o0p/oz* , (3.1a)
and the ideal gas equation of state by
p = RTp , (3.1b)

where p is density, g the gravitational acceleration, p pressure, T tempera-

ture and R the gas constant for dry air (= 287 J kq'l K'l).

Consider now an isothermal atmosphere at constant temperature Ts and with

constant pressure ps at the ground, which is assumed to be flat and located at




Z* 0. Egs. (3.1a,b) show that

where H = RTs /g is the scale height and ps = ps/RTs . Equivalently,
z* = -H 1n(p/ps) gives the relationship between geometric height and pressure

for this isothermal atmosphere.

Next consider a non-isothermal atmosphere: from (3.l1a) it can easily be
seen that =-1ln(p) increases monotonically with z*. Choose Ts to be some
representative middle atmosphere temperature (say 240 K) and define H = RTs/g
(~ 7 km if Ts = 240 K). Then define a "log-pressure" coordinate, with

dimensions of height,
z = -H 1In(p/ps) .

which increases monotonically with z* , and equals z* if T = Ts.everywhere.
(Typical stratospheric and mesospheric variations of T are usually small
enough that z = z* throughout the middle atmosphere if Ts is chosen
judiciously.) Note that p = psexp(-z/H). It turns out that if z is used in
place of z* as a vertical coordinate, with x,y,t as the other independent

variables, if w = Dz/Dt is used in place of the vertical velocity, where
D/Dt = 3/0t + ud/dx + vd/dy + wo/dz

is the material derivative, and if ¢ = gz* is the geopotential, the primitive

equations reduce to

Du/Dt - fv + 0, = 0 , (3.2a)
Horizontal momentum:

Dv/Dt + fu + Oy =0 (3.2b)
Hydrostatic balance: ¢, = RT/H , (3.2¢)
Mass continuity: Uy + vy + po'l(pow)z =0, (3.24)
Thermodynamics: DO/Dt = (J/cp)eX2/H u g , (3.2e)
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where friction has been ignored, but diabatic heating included. (See, e.g.

Holton, 1975.) Here suffixes x,y,z denote partial derivatives, the potential
temperature 6 is defined by

8 = T(p/ps)™® = Te*2/H | where x = R/co = 2/1, (3.2f)
and J is the diabatic heating rate per unit mass, which in the middle atmos-
phere equals the net radiative heating or cooling rate. The basic density is
defined by Po(z) = psexp(-z/H) and also equals p/RTs : some authors use P

instead of ps here. Note that in terms of temperature, (3.2e) becomes

DT/Dt + xTw/H = J/cp . (3.2¢"')

3.2 BOUNDARY CONDITIONS

To solve (3.2), or any approximate set of equations derived from them, it
is necessary to apply suitable boundary conditions. These will depend on the

physical problem being considered, and some common examples are given below.

3.2.1 Conditions at the lower boundary

(a) 1If the lower boundary is the ground, the shape of the topography
should be specified in terms of the geometric height z*, rather than z (this

is a slight inconvenience of log-pressure coordinates): for example
z* = h(x,y,t) at the ground.

(The t-dependence is a mathematical device that is sometimes useful in
idealised initial-value problems.) Since the ground is a material surface,
the kinematic boundary condition is

D(z* - h)/Dt = 0 at z* = h,.

In terms of ® = gz* we have

Do/Dt = gDh/Dt at © = gh . (3.3a)
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Flat ground can be taken as h = 0.

(b) Some models specify the geopotential or geometric height of a given
log-pressure level p = Po: ©.9.

O(xIYIZO[t) = F(X,Y,t) ' (3.3b)
where zj = -H In(py/ps) = constant.
(c) In simple mathematical models one sometimes specifies the log-pressure
at a lower material boundary. Thus z = {(x,y,t), say, at the boundary, and
the kinematic boundary condition is

w = Dz/Dt = DT/Dt at z = T(x,y,t). (3.3c)

3.2.2 Conditions at the upper boundary

Some idealised models of the troposphere impose a rigid lid at the tropo-
pause, which is supposed to partially represent the effect of the stable
stratosphere above. However, when considering the stratosphere and mesosphere
we must generally regard them to be unbounded as z* and z tend to infinity.

The boundary condition at great heights then falls into one of two categories:

(a) The disturbance tends to zero as z=> = (where a suitable measure of

the disturbance might be its energy per unit volume).

(b) A radiation condition applies: that is, "information" is transferred
upwards, not downwards, at large z.

These two possibilities will be discussed in Lecture 6, when planetary waves
are investigated.

3.2.3 Conditions at side boundaries

Conditions here depend on the geometry of the problem. On the sphere, it
is only necessary that all physical variables are bounded at the poles. In
idealised "channel" models (with vertical walls at y = Y1, Yy, say)l v =0 is
taken on the walls.
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3.3 STATIC STABILITY

It is useful to have a measure of the gravitational stability of a strati-
fied atmosphere to small disturbances. To obtain this, we introduce a
reference temperature profile To(z) (which could, for example, be the global
horizontal average of the observed temperature at each z or the schematic

profile of Fig.1.1). We then define

N2(z) = (R/H) [Ty, + xTo/H]. (3.4)

We can also introduce the reference potential temperature 8, = Toe“Z/H: then

0o, (2) = gN2R1ex2/H (3.5)

N2 and 902 are measures of static stability; it can be shown that if they are
negative, the atmosphere is gravitationally unstable, with "heavy" fluid over
"light". (For a compressible fluid it is the vertical stratification of
potential temperature, or entropy, rather than density, that determines
whether the fluid is statically stable or unstable.) Viewed on a large scale,
N? and 602 are basically positive in the stratosphere, which are therefore
stably stratified in general; a small-scale process that violates this is
mentioned in Lecture 7. [Note that N differs slightly from the usual defin-
ition of the buoyancy, or Brunt-Vdisdld, frequency, (9802/90)” ; see Gill
(1982), p. 184.]

3.4 QUASIGEOSTROPHIC THEORY

The primitive equations (3.2) are still complicated, despite the simplifi-
cations that have gone into them. Moreover, they are capable of describing a
very wide range of atmospheric flows, from slow motions of global scale to
quite rapid, medium-scale disturbances. To focus on the larger-scale, slower
motions, at least in extratropical regions, we can introduce further
approximations to obtain the quasigeostrophic equations. We shall proceed in
a non-rigorous manner: for a more detailed approach see, e.g., Pedlosky (1979)

or Gill (1982).
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Our starting-point is the fact that for large-scale, low-frequency, extra-

tropical flows, approximate geostrophic balance holds: that is, the Coriolis

terms (-fv, fu) in (3.2a,b) are roughly balanced by the horizontal gradients

of geopotential. Hence the horizontal wind (u,v,0) satisfies

where the geostrophic wind (ug, vg) is defined in terms of the geopotential by

(U vl ® LoV 3) (3.6a)
where

¢ = £,710 - 0p) (3.6b)

is the geostrophic streamfunction and 04(z) is a suitable reference geopoten-

tial profile, such as
o, (z) = J: Tolz')dz' .

From hydrostatic balance (3.2c) we have

T,57-T*= ER1f0Y, . (3.6c)
and
o, = 0 - 8y = BR1fne 2 hy, . (3.64)
Combining (3.6a,c) to eliminate §, we obtain the thermal wind equations
ugy = - R/ugg e/ oy vg, = (R/HEy) e *2/E 0, . (3.6e,£)

s to horizontal (potential) temperature

= 0, so by the continuity equation (3.24)
that satis-

which relate vertical wind shear

gradients. From (3.6a), Ugx + Vay
c wind is associated with a vertical "velocity" vy

the geostrophi
we must therefore

fies (Po'g)z = 0. To ensure that ¥g is bounded as z <% =,

take vg = 0,
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It will be noticed that (3.6a,b) are approximate versions of the horizontal
momentum equations (3.2a,b) in which Du/Dt and Dv/Dt are ignored and f = f, +
By is replaced by fp. To investigate the time development of the geostrophic
flow, we must go to a better approximation. This can be done by defining
ageostrophic velocities (suffix a) by

u = V=V, tV

g*'l.\a.
where |“a\ < (ug( - U, (val << ’vg] - U ; i.e., the ageostrophic terms (u,,
v,) are much smaller than the geostrophic wind, which is taken to be of order
U. Now let L be a typical horizontal length scale, so that &/0x, &/d4y are
0(L™1), and suppose that

(i) Ro = U/foL <1 , (ii) &/dt <« f5 , (131) "8y < 19
all hold. (Ro is called the Rossby Number.) It can be shown (e.g. Gill,

1982, p. 498) that (3.6a,b) are then a valid first approximation and that
(3.2a,b,d,e) then give the gquasi-geostrophic set

Dgug = So¥a = 5yvg o 1 (3.7a)
ngg + fou, + byug &0 (3.7b)
Uax * Vay * 00 *(Po¥a)z = 0 . (3.7¢)
Dge + w00, = 0Q, (3.74)

approximately, where
Dg E &/0t + ugblbx + vgb/éy

is the time derivative following the geostrophic wind, and (3.6a,b) have been
used to cancel out the leading-order geostrophic-balance terms in (3.2).It is
assumed that the departure 6, from the reference 8, is always small, in the
sense that (eez\ <« 8y, so that w,6, can be replaced by w,8y,. as in (3.74) .
This is a fair approximation in the middle atmosphere.



3.8

The quasigeostrophic equations (3.7) are still quite complicated; however,
they can be combined to yield a single useful and illuminating equation,

(3.11). First, we obtain the vorticity equation
Dol = £io “1(p,w.) (3.8)
g'g 0°0 '€o¥a’z :

by taking 4(3.7b)/dx - &(3.7a)/dy and using the identities (gg)x.va = 0,
(gg)y.Vug ® 0, which follow from (3.6), and Dg(fo + By) = ng, together with
(3.7c). Here

gg = fo + By + Vgx = ugy - f0 + By +‘¥xx i *yy

is the geostrophic approximation to the absolute vorticity, £ + i uy - The

term on the right of (3.8) is called a stretching term, since it can generate
vorticity by differential vertical motion. Next, multiplication of (3.7d) by

90/602 (a function of z, which can be taken through Dg) gives
DU(POG/BOZ) + Powa = POQ/GOZ . (3.9)
The z-derivative of this can be combined with (3.8) and the relation
2
9/9oz = £0¢Q/N . {3.10)

which follows from (3.5) and (3.6d), to give the important potential vorticity

equation

Dgdg = f000 1(P0Q/80,), (= T, say), (3.11)

where
g =l 2
qg = Cg + 800 " (poYp/NY),
= fo + By +'¢xx S #yy 2 90-1(90‘¢z)z (3.12)

is the gquasigeostrophic potential vorticity and e(z) = tozlﬂz(z). Eq. (3.11)
gives the time-development of qq- In particular, if Q = 0 (so that the flow

is adiabatic as well as frictionless) ng = 0, and g is conserved following

g
the geostrophic wind. Given qg we can in principle invert the operator on the
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right of (3.12), using appropriate boundary conditions, to get @ and hence
u

g Vg 6 etc., from (3.6).
Another useful equation is the omega equation, obtained by eliminating the
&/46t terms in (3.7) to get a diagnostic equation (involving no time deriv-

atives) for w, in terms of {: see, e.g., Holton (1979).
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4. ZONAL MEANS AND EDDIES

4.1 BASIC IDEAS

Many of the middle atmosphere phenomena to be considered in these lectures
can be regarded as involving the two-way interaction between a mean flow and
disturbances ("waves" or "eddies") that are superimposed upon it. We shall
mostly be concerned with cases where the mean is a zonal mean, to be denoted
by an overbar. On the sphere, the zonal mean is unambiguously defined as the
average around a latitude circle. On the beta-plane we can attempt to mimic
the sphere by supposing that everything is periodic in x, with period X, say:

thus u(x) = u(x+X), for example. In this case

u(y,z,t) = x'ljg u(x,y,z,.t) dx

is the zonal average. We denote the eddy or wave departure from the mean by a

prime:
u'(x,v.2,t) = a-10.

It should be emphasised that the zonal mean is a purely mathematical defin-
ition. It has the advantage of being a convenient way of organising, com-
pressing and summarising large quantities of atmospheric data. On the other
hand it suffers from the discdvantage of not necessarily representing the best
physical separation of eddy and mean quantities in all cases

— for example when the flow is strongly zonally-asymmetric. This is

particularly true near the poles.

We now proceed to examine the equations governing zonal-mean quantities
like U, &, etc. For simplicity we shall focus on quasigeostrophic flow, as
described by the set (3.7). [For brevity, the suffix g on geostrophic
quantities will mostly be dropped, although the suffix a will be retained.]
First, (3.6a) can be used to rewrite the nonlinear terms in D_u_ and the term

gg
Byvg in (3.7a), giving

ug + (W, + vy - £ov, - By, = 0.

Noting that (T.7), = 0, and in particular the important fact that the zonal
mean northward geostrophic wind is identically zero,




6& =V = fx = 0,

—

and using the relation Wv = (T + u')(V+ v') =T ¥ + u'v' = u'v' (since

u' =0, V=0), we obtain the zonal-mean zonal momentum equation

U - fOVa = - (v'u')y . (4.1a)

Likewise, from (3.7d,c) and (3.6e) we get the zonal-mean thermodynamic,
continuity and thermal wind equations

B + B,y = ~(VE), + T, (4.1b)
Voo + 06 S (pa.Y, = 0 (4.1c)
ay * o ‘Po¥a'z ' :

fouy =~ Ry tat /B g, (4.14)

The terms v'u' and v'6'are called the northward eddy fluxes of momentum and
heat, respectively (more correctly of zonal velocity and potential temper-
ature). Supposing these fluxes and J to be given, and suitable boundary
conditions to be imposed, we have a closed set of four equations for [T, &,
Va,ial. (The zonal mean of the y-momentum equation (3.7b) gives Ea' if
further eddy fluxes are specified; however, this quantity will not be needed
here.) From (4.1) [using (4.7), below] or from the zonal mean of (3.11), it

is easy to derive the mean potential vorticity equation

at * (V'Q')Y = fopo_l(poﬁ/%z)z . (4.2)

4.2 TRANSFORMED EULERIAN-MEAN EQUATIONS

The zonal average defined above is an example of an Eulerian mean, since it
averages over a set of points fixed in (x,y,z)-space. Likewise, egs.(4.1)
are sometimes called the Eulerian-mean equations. There are some advantages,
however, in transforming the latter, as follows.

First, we define a residual mean meridional circulation (V*, W*) by
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T x T, - pg (0gV8T/8g), . W E T, + (VET/8y,), .

These can be used to substitute for (Va, ia) in (4.1) to obtain the

transformed Eulerian-mean (TEM) equations

U, - £,7* = oo IV.F , (4.3a)
B, + 8y,7* =T, (4.3b)
5+ oo llegWr), = 0, (4.3¢)
and, as before,
£,0, = —RH'1e°“2/HHY : (4.3d)

Here

V.F = —(eov'u')y + (pgfgv'8'/8g,), (4.4a)
is the divergence of the quasigeostrophic form of the Eliassen-Palm flux (EP

flux) [see Eliassen and Palm, 1961],
F= (0, “Pov'u'. pofov'e'/8p,) . (4.4b)

Note that in (4.3) the only explicit appearance of eddy fluxes is in po‘lv.g
in the zonal momentum equation (4.3a): no eddy-forcing terms occur on the
right of the thermodynamic equation (4.3b). Thus, as far as their effects on
the mean-flow "tendencies" (0., B;) and residual circulation (V*, W*) are
concerned, the eddy momentum and heat flux do not act separately [as might be
thought from (4.1)], but in the combination V.F given by (4.4a). This is
emphasised by solving (4.3) [or (4.1)] to find the mean tendencies and the

residual circulation. For example it is easy to show that
pol62/0y? + 0, 18/0z2(pyed/02) 1Ty = (V.Flyy - (@ofg0/0p;) yz (4.5)

Pold2/3y? + pg™16/8z(pyed/02) 1£07* = = lpge (V.E/0g), 1, - (00f00/80;) yz. (4.6)
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Here the "rectified" effects of the eddies are expressed by the terms involv-
ing V.F on the right, and the effects of radiative heating by the terms in Q-
Note that these forcing terms produce nonlocal responses in Ut and fOV*, since

the operator in square brackets on the left is elliptic. To solve for W, and

t
fov*, given the right-hand sides, boundary conditions must be imposed.

An important alternative form for po-lv-f can be derived by simple manip-
ulations using the following identities (which stem from (3.6a), (3.10) and
(3:12) )¢

S g ' ' — 4¥ 2
S ¢ y . v' =’y 8/8; = fo¢' ,/N%,

=Ygt Vygyt 80-1(9054”z)z .

Integrations by parts and the fact that ()¢ = 0 give

v'q' = pg lV.E ; (4.7)

the term on the left is the northward eddy flux of potential vorticity. [Note
that (4.7) implies that (4.5) is the y-derivative of (4.2).]

4.3 THE GENERALISED ELIASSEN-PALM RELATION

We have seen that V.F plays an important role in the forcing of the mean
flow by the waves. It will now be shown that this quantity also figures in an
equation describing the propagation of the waves themselves. This will reveal

the kinds of physical process which contribute to v.r.
We start with the potential vorticity equation (3.11). We drop the suffix
g and split each quantity into a mean and an eddy part, e.g. :

where V = 0 identically, as before, and will be assumed zero. We also

T
suppose that the primed quantities u' , v' , etc., are small compared with u

in the sense that (u'l /[|= 0(a), a << 1, say.
we obtain the linearised equation

Then, to leading order in a
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(8/0t + T8/8x)q" + v'Fy = r' + 0(a?) (4.8)

(@ = 0, of course, and q¢ = O(az) by (4.2) with ¥ = 0]. By taking q'/iy
times (4.8) and averaging and manipulating, we obtain

3 hpoa'2/3,) /8t + V.F = py TC/T, + 0(ad) , (4.9)

using (4.7). This is the quasigeostrophic version of the generalised
Eliassen-Palm theorem (GEP theorem) [Andrews and McIntyre, 1976; McIntyre
1980; Andrews 1987, etc.]. When dissipation is absent (r' = 0) and 0(a3)

terms are neglected, it takes the form of a conservation law
OA/ot + V.F = 0 ; (4.10)

such conservation laws are of fundamental importance in many branches of
physics. The "density" A = ZPOETEVEY is sometimes called the (quasigeo-
strophic) wave-activity density: when 6& > 0 it is a useful measure of wave
amplitude. Eq. (4.9) shows how V.F [and hence the eddy-forcing of mean-flow
changes as given, for example, by (4.5)] depends on wave transience (the &/&t
term), wave dissipation or forcing (the r' term: collectively called non-
conservative wave effects) and wave nonlinearity (0(a3) terms). Eliassen and
Palm (1961) considered the case when all three of these are absent, and showed
that V.F = 0 then.

A useful alternative form of A is in terms of the northward parcel

displacement n' , defined by
(8/6t + T/dx)n' = v' + 0(al) . (4.11)

From (4.8) and (4.11) it follows that q' = - n'&& + 0(a2) if r' = 0, and hence

A = %Pon'zay .

change is made to the non-conservative term on the right.

This can be used in (4.9) when r' = 0 provided that a suitable

It will be noticed that for steady, conservative, linear waves, when
Eliassen and Palm's result V.F = 0 holds, the wave-forcing on the right of the
TEM equations (4.3) vanishes. Provided that boundary conditions are similarly
unforced, and if § = 0, it can easily be seen that a possible state is the
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steady one Et = Ut = V* = W* = 0. This is an example of the nonacceleration
theorem or Charney-Drazin theorem. Note that in this case we may still have

nonzero eddy-flux terms on the right of the untransformed eqs.(4.1), and Ga,
ié # 0.
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5. SOME SIMPLE ZONALLY-AVERAGED MODELS

In this lecture we shall consider some very simple "back of the envelope"
models of the stratosphere and mesosphere, in an attempt to isolate the basic
physical and dynamical processes that determine the zonally-averaged state of
this part of the atmosphere. These models will turn out to illuminate some
fundamental principles which can be obscured by more complex models. They
also point the way to methods of interpreting the more complicated models and

the atmosphere itself.

Three different models will be considered; each will be based on a slightly

modified version of the TEM equations (4.3), namely

Uy - fo7* = pg V. F+ X =D, (5.1a)
8, + 8,7 = T, (5.1b)

5+ pg tleg¥t), = 0, (5.1c)
£, = ~RR le N2/ 5, (5.1d)

Here an extra "friction" term X is included, which will represent an extra
forcing effect. It will later (in Lecture 7) be suggested that a possible
physical process producing a significant X in the mesosphere is the "breaking"
of small-scale gravity waves there. (Such waves are not described by quasi-
geostrophic dynamics, and their effects are not formally included in V.F

here.)

5.1 STEADY-STATE MODEL

If we set &/6t = 0 in (5.1a,b) we obtain
-fov* =D, 6027* = Q (5.2a,b)
which, when substituted into (5.1c) give

- £5710y + 097  (pg0/8g;); = O | (5.2¢)
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showing how the net radiative heating must be related to the wave and frict-

ional effects po‘lv.g + X =D.

If waves and friction are absent, so that D = 0, then ¥* = 0 by (5.2a);
from (5.1c) W* must therefore also vanish, if it is not to grow exponentially
with z. Then (5.2b) implies that the atmosphere will be in radiative equi-
librium, with § = 0 and T = T.(y.z), say. Associated with this radiative
equilibrium temperature we must have a zonal wind ur(y,z) satisfying thermal

wind balance,
fodu,./0z = - RH'léTr/éy .

(We can define u, completely by requiring it to vanish, or equal a zonal-mean
climatological value, at z = 0.)

The situation changes if D is nonzero and y-dependent; by (5.2c) 0 cannot
generally be zero now, so T # T, and U # u. . Moreover V* and W* are now
nonzero, by (5.2a,b). Because of the balance between 8g,%* and U in (5.2b),
(v*, w*) is sometimes called a diabatic circulation in the present context,
and in the past has often been thought of as "driven" by the net radiative
heating. However, it is in fact more appropriate to regard this circulation
and the net heating as eddy-driven, since they both vanish when D = 0, as

shown above.

5.2 TIME-DEPENDENT, ZONALLY-AVERAGED MODEL WITH NO WAVES OR FRICTION

Suppose we now set D = 0, but allow time-dependence by taking U = Q(y,z,t).
This could be due to the seasonal variations in solar position, for example.
More precisely, we can regard T, = Tr(y,z,t) as the "radiatively-determined" -
temperature calculated from a time-dependent radiative (and perhaps photo-
chemical) model: examples are shown in Figs. 5.1a and 5.2a. Putting D = 0 in
(5.1) we obtain a version of (4.5):

[82/8y% + py™10/82(pge0/02) 1T, = -po™ L (090T/00,) g - (5.3)

Further progress is difficult without a simple parameterization of U. We




shall adopt the Newtonian cooling form

V= (J/ep)er?/H = - (-0 )/1,

where 0. (y,z,t) = e"Z/HTr and 1,.(z) is a radiative relaxation time. This
parameterization mimics, albeit very crudely, the "radiative spring" (Fels,
1985) whereby temperatures are relaxed towards their radiatively-determined
values. (It also clearly illustrates how net heating arises when the actual
state is out of radiative balance.) Using the thermal wind equation and a

little manipulation, we then obtain
2N =1 = = - _ 5
[o4/dy“ + Po "0/0z(pged/dz)luy + pg “lpge(u - up), /7.0, =0 . (5.4)

In this equation we can regard that part of the radiative term involving u, as
providing the forcing, while U represents the response. Since OT, /0y « du,./0z
this forcing is zero unless latitudinal gradients of T, are present. In
general (5.4) suggests that u will follow u,., but will be somewhat lagged in
time and somewhat differently distributed in space. The dynamics provides a
kind of "inertia", and since U # u, in general, T # T., so § # 0 and hence
(v*, w*) # 0 by (4.6) and (5.1c). The non-vanishing of § and the residual
circulation again depend on dynamical, rather than purely radiative,

processes.

It is interesting to investigate how good a model this is of the zonally-
averaged middle atmosphere. This can be done by simple scaling arguments. We
assume that L is a typical y-scale and that h = O(H) is a typical height
scale. Very roughly we have f°2L2 - N%H2 in much of the middle atmosphere, so
that the operator in square brackets in (5.4) is 0(L™%). Likewise
Po 18, (pped,) is O(£g2N"2H72) - 0(L7?) so that, from (5.4),

0 - [up - /T,

in crude order-of-magnitude terms. However, if AU is the maximum annual
variation of @ and T is a seasonal timescale (say 3 months) we have u; -Au/T.
On the other hand typical relaxation times 7, are a few days (<< 1), except

perhaps in the polar night, so that

[up - §[ - (1./1AT AT,
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and departures of U from the radiatively-determined value u. are much less

r
than the maximum annual swing AW in this model. 1In this sense we can say that

u = u,.; a similar argument (see AHL § 7.2.2) shows that T = T, . (This would
not be true if 1 - Tr.) However, by comparing Fig. 5.1a with 5.1b and Fig.
5.2a with 5.2b, we can see that the middle atmosphere is not everywhere close
to radiative balance. For example T is far from T in the polar night
stratosphere and in the upper mesosphere. These discrepancies mean that the
present model fails to explain some of the most prominent features of the

observed middle atmosphere. We therefore turn to a more complex model.

5.3 TIME-DEPENDENT, ZONALLY-AVERAGED MODEL, INCLUDING WAVES AND FRICTION

If we include waves and time-dependence, and retain the Newtonian cooling
expression for U, (5.4) is replaced by
[82/8y2 + pa"18/32(poed/82)1T, + pg Llpge (T - w.), /7.1, = D (5.5)
Po Po t ¥ Po P r'z/Trlz vy
(1] [2] [3]

[cf.(4.5)]. We introduce a third timescale Yt representing the time over
vhich the wave or friction term D varies. Except for rapid wave events like
sudden warmings we have Ty = T »> 1. ; alternatively we can average over a
time 7, ~ T to smooth out such events. A scaling argument like that in §5.2
gives the ratio of terms in (5.5) as

(1] : (2] : [3] = W/ : |u, - W[/7, : AD

3f fozbz - N2H2 and AD is the variation in D over time Ty - In §5.2 we saw
that lur - il/rr >> U/t in the polar night stratosphere or the upper meso-
sphere, so here the balance must be between terms [2] and [3]. Thus we expect

?0.1“’0‘(lT T ) /Tl = Dyy (5.6)

to hold approximately in such regions; in other words the term in ﬁt in (5.5)
is small, so the balance examined in §5.1 and expressed by (5.2) holds
approximately there. Indeed (5.6) can be obtained from the y-derivative of
(5.2c) if § is given the Newtonian cooling form and thermal wind balance is
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used.

These simple models suggest that wave motions and friction, as represented
by the term D = 90‘1v.g + X, are likely to be important in various parts of
the middle atmosphere for accounting for departures from the radiatively-
determined state. There is clearly much scope for more sophisticated models,
including for example better radiative parameterizations, coupled photo-
chemistry, more detailed dynamics (using the primitive equations in spherical
geometry!) and so on, up to the full two- and three-dimensional general
circulation models (GCMs) of the middle atmosphere that are currently in
operation (see Lecture 10). Nevertheless it is important to bridge the gap
between the simple models described in this lecture and the GCMs with a
hierarchy of intermediate models.

The question remains as to what wave motions are responsible for producing

the requisite D. Candidates include:

(a) Planetary (Rossby) waves in the winter stratosphere,

(b) Gravity waves and tides in the upper mesosphere.
These will be discussed in later lectures. We note here that the GEP theorem
(4.9) has already pinpointed the important physical processes that give a
nonzero V.F, namely departures of the wave motion from steady, conservative,
linear conditions. Transient effects are to some extent averaged out in the
approach outlined above, and nonlinearity and dissipat.ive processes associated

with the waves are likely to be the most important factors determining V.F; a
similar statement is true of X, also.
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Fig. 5.1. (a) Radiatively-determined temperatures (K) for the Southern
Hemisphere middle atmosphere on 21 December (near summer solstice).

(b) Observed monthly-mean, zonal-mean temperatures for the Southern Hemisphere
middle atmosphere in December, interpolated from the climatology of Barnett
and Corney (1985). (Redrawn, with some smoothing of contours in (a), from
Shine 1987.) :
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6. EXTRATROPICAL PLANETARY WAVES

Planetary, or Rossby, wave disturbances are common features of the winter
stratosphere as revealed for example by satellite data. They can be separated
into stationary waves, whose phases are fixed relative to the ground, and
travelling waves, whose phases move. The kind of pattern that appears in the
monthly-mean map in Fig. 1.4a is sometimes regarded as a "stationary-wave"
pattern; travelling waves have been mentioned in § 2.2.2. Another classifica-
tion is in terms of whether the waves are forced or unforced. We shall
consider forced planetary waves (especially of the stationary variety) in this
lecture.

Global-scale waves of this type obey quasigeostrophic dynamics to quite a
good approximation. We shall suppose that they represent small departures
from a mean zonal flow U(y,z), so that the potential vorticity equation (3.11)

linearises to
(6/0t + Ud/dx)q' + v'iy =0, (6.1)

[cf. (4.8)], where diabatic and nonlinear effects have been neglected. Here
the mean northward potential vorticity gradient (sometimes called "effective
beta") is

o = -1 =
Ty = B - Uyy - po " (Potluz), (6.2)

and the disturbance potential vorticity is

' ' ' -1 J
= Y'ex t Y'yy 00 (Por¥ g i (6.3)
these derive from (3.12) and (3.6a).

For simplicity, we suppose that the waves are forced from below by fluct-
uations in the height of some isobaric surface p = p; , perhaps in the lower
stratosphere near 100 mb. Thus we specify o(x,y'zo,t), where
zg = -H In(py/ps); if we choose the reference pressure ps to equal pgy. then
2o = 0. 1In terms of Y[cf. (3.6b)] the linearised lower boundary condition can
then be written
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V' = $p'(x,y,t) at z =0 . (6.4)
We shall impose vertical sidewalls at latitudes y =0, L, so that
¢; =v'=0aty=0,L (6.5)

[see §3.2.3]; the upper boundary condition [§3.2.2] remains to be invest-
igated.

6.1 SIMPLE EXAMPLES

To make things as easy as possible, we first restrict attention to a
uniform mean zonal flow; thus ¥ = constant and Ey = B. We also take NZ =
constant, so that ¢ = constant. This was one of the cases investigated in the

celebrated paper by Charney and Drazin (1961). We take the boundary-forcing
term to be

¢b' = Re g elk(x-ct) g4y 1y, (6.6)
which represents a wavy pattern of zonal wavelength 2nk'1 and meridional
wavelength 2711 » moving with phase speed c (eastwards if c > 0, westwards if
¢ ¢ 0). For consistency with this we look for solutions of (6.1) in the form

§' = Re {l(z) eik(x-ct) g4 1y (6.7)
vhich satisfies (6.4) if §(0) = §o and (6.5) if 1 = npL™l , where n is a
nonzero integer [or if sin 1y is replaced by unity in (6.6) and (6.7)].

Substitution of (6.7) into (6.1) and use of (6.3) leads to the following
second-order ordinary differential equation for g(z) :

22 - BNy, + By =0, (6.8)
where
B= ¢ lig(m- o)l - (x2 +12))

and where we have used the definition Po = p.e'Z/H . The lower boundary
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condition is

¢ =fpatz=0, (6.9)
while the upper boundary condition is to be determined.
Looking for solutions § « e’ ye find
A= (20)71 ¢ [(2m72 - B)¥ .

Two possibilities arise, according as the term inside the radical is positive
or negative:

(a) (2H)"2 -p= u2 > 0 : In this case )\ = (211)'1 + g , where

p=+ [(28)72 - B1% , and Vv = yoexp([z/2H] % pz). The wave kinetic energy
per unit volume equals XQO(WX'Z + py'z), and will be proportional to exp(+2pz)
here. (The vertical component of the EP flux has the same z-dependence.)
Clearly the lower sign must be chosen, in accordance with condition (a) of
§3.2.2 . Then

V' = exp([z/2H] - pz) §y'(x,y,t) ; (6.10a)

this represents a vertically-trapped mode, and has no phase tilt with height.
Note that ¢' , u' , v' etc. actually grow with height if p« (2B)71 , i.e. if

B > 0; however the decreasing density Po more than compensates for this in the
kinetic energy density.

(b) (2H)"2 -Bw-m2<¢0: Now A= (20)71 + im, where m = + [B - (28)'2]”
and

¢' = Re @0 exp{[z/2H] + i(kx -kct + mz)} sin ly ; (6.10b)
the presence of im in the exponent indicates vertical propagation; phase
lines are no longer vertical, but tilt with height (see below). We can use

the definitions of B and m to obtain the equation

B/(T -c) =k +12 + ¢[m? + (2H)2) > 0 ; (6.11)
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the right-hand side is clearly positive in this propagating case (2 > 0) and
hence we must have @ > c. 1In other words the phase speed must be westward
with respect to the mean zonal wind for vertically-propagating Rossby waves to

occur. Moreover, for fixed k, 1, ¢, H, and with m? positive,
B/(T - c) » k2 + 12 + (¢/482) ,
so that
0 ¢U-c«plk?+1%+ (e/a82))7 ! = W, , say . (6.12)

Thus vertical propagation only occurs if @ - ¢ is not too large. For station-

ary waves, which have ¢ = 0,

0 ¢ W «T, (6.13)
for vertical propagation: that is, if ¢ = 0, the winds must be westerly (i.e.
eastward) and not too strong. Condition (6.12) is sometimes called the
Charney-Drazin criterion (not to be confused with the Charney-Drazin theorenm

mentioned in Lecture 4 !).

To estimate the typical size of ﬂé we can take the following values,
representative of midlatitudes: g = 60°, Q = 7.3x107° s'l, ag (earth radius) =
6.4x10° m, B = 20coss/ay = 1.1x10711 n°l 571, £ = 20sing = 1.3x107¢ 571, B =
7x10° m, N = 2x1072 s71, ¢ = £2N°2 2 4x1075, 1 =7/L, L~ 107 m, k =
s/(agcosg), where s = zonal wavenumber. We find U, = 110/(s? + 3) m s71 .

The present model is a highly simplified one, and suggests rather low values
of ﬁc (corresponding to a zonal jet that has been "smeared out" in the
meridional plane). However, it does illustrate the fact that the "window" for
propagation, given by (6.13), becomes smaller as the zonal wavenumber
increases. A more complex theory suggests that only the "ultra-long waves"

s =1, 2, 3 have any chance of propagation up into the stratosphere in the
winter westerlies; this is in qualitative agreement with the fact that
observed stationary disturbances tend to be of rather large scale in the
winter stratosphere. In summer, when W ¢ 0 in the stratosphere, no stationary
forced disturbances are observed, and this is again in accord with the
Charney-Drazin criterion.
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It remains to determine the sign of m; the radiation condition of §3.2.2 is
used for this purpose, since the wave kinetic energy density is here found to
be constant with height, irrespective of the sign of m. We calculate the
vertical component of the group velocity cg(Z), defined by

cg(Z) ®= 0w/dm , where ws=ck ,

[see texts on wave motion, e.g. Lighthill (1978), §3.6; also Gill (1982),
§5.4]. This group velocity component must be chosen positive, so that
information is carried upwards, rather than downwards. We can arrange (6.11)

to obtain w as a function of (k,1,m) (the Rossby-wave dispersion relation):
W = kT - pk{ k% + 12 + ¢[w? + (20)7%] }71 , (6.14)
so that

cg'?) = dwom = 2epxml X2 + 12 + c[n? + (20)7%) }72 . (6.15)

which is positive if m > 0 (we take k > 0 by convention). Thus
m= +[B - (2H)°2]% has the appropriate sign. The phase lines, kx - kct + mz =
constant, thus tilt westwards with height, as observed. [Note that for

stationary waves we put ¢ = 0 after differentiating @ to get cg(Z) 5

Another way of arriving at the sign of m is to include small dissipation. A
particularly simple case is that in which small Rayleigh friction and New-
tonian cooling, with equal relaxation coefficients, are included: see, e.g.,
AHL, pp. 179-80.

6.2 MORE GENERAL U(y,z) ANDgiy(Y,z)

Under certain assumptions, we can obtain some general information about
propagation of Rossby waves in more complex shear flows. We return to (6.1)
and substitute

¢' = Re PO-% U(y,z) eik(x - ct) (6.16)

We take £(z) = constant, for simplicity, and define a "stretched" vertical
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coordinate Z = Nz/fo - Then ¥ is found to satisfy

~l:Zyy t¥gg + nkzi =0, (6.17)
where

nl(y.2) = (@ - ©)7g, - k2 - (e/an2) . (6.18)

The quantity nkz is known as the refractive index squared, for zonal wave-
number k and phase speed c. Eq.(6.17) is identical to the equation for two-
dimensional sound (or light) waves in a medium of varying refractive index,
and we can make use of insights from the theory of acoustics or optics. In
particular, we expect waves to propagate in regions where nkz > 0 and avoid
regions where nkz ¢ 0. Note that nkz depends on the two-dimensional structure
of (u - c)'li& as well as on k. Thus propagation generally depends on more

complex criteria than the simple condition (6.12) of Charney and Drazin, which
applies when U is constant.

The kind of theory that can be used to tackle (6.17) is analogous to
"geometric optics", and supposes that the wavelength of ¥ in the meridional
plane is much less than the meridional scale of the mean flow, and thus of
nkz. This is the "WKBJ" or "Liouville-Green" approach. One looks for
locally-sinusoidal solutions for ¥ , calculates a local group velocity
€g = (cg(y), cng)), and computes "rays", which are paths — generally curved
— parallel to gg at each point, along which information propagates. A set of
ray-tracing equations allows a computation of how the local wavelengths, etc.,
vary along rays. Despite the approximations, this WKBJ theory is surprisingly
accurate, and has provided helpful insights into the behaviour of observed and
numerically-modelled planetary waves in the middle atmosphere.

6.3 BREAKING PLANETARY WAVES

The theory described above is linear, and can only be expected to apply to
small-amplitude disturbances. For upward-propagating waves, the amplitude
tends to grow exponentially with z [see (6.10b)] and nonlinear effects are
likely to become important at a great enough height. An example of a non-
linear planetary-wave-like phenomenon, observed in the middle stratosphere in
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January 1979, was discussed by McIntyre and Palmer (1983, 1984, 1985). The
presence of the wave led to a strong distortion of the basic cyclonic vortex
(see Fig. 6.1; cf. Fig. 2.2). Maps of a quasi-conservative tracer (Ertel's
potential vorticity: see Lecture 9) on the 850K isentropic surface (near 10 mb
or 30 km) show a "tongue" of air over North America that has apparently been
dragged out of the main vortex by the flow associated with the accompanying
Aleutian High.

The rapid, irreversible deformation of air masses in this way is certainly
a nonlinear process, and McIntyre and Palmer refer to the process as "planet-
ary-wave breaking”, by analogy with the breaking of surface waves on a beach
(see also Lecture 7). Such events are likely to lead to strong mixing, thus
having important implications for the transport of tracers (see Lecture 9) and
also for the production of significant values of the eddy-induced zonal force

90'17.2 in the winter stratosphere (hence leading to departures of the mean
state from radiative balance there: see § 5.3).

6.4 STRATOSPHERIC SUDDEN WARMINGS

An important stratospheric phenomenon involving large-scale nonlinear
disturbances is the sudden warming that was described in §2.2. A large body
of theory has been developed to model the process in terms of a two-way
interaction between planetary waves and the zonal-mean flow, using thc kind of
ideas introduced in Lecture 4 and §6.2. The planetary waves are assumed to be
generated in the troposphere and to propagate strongly into the high-latitude
stratosphere when zonal-mean conditions are right; they then bring about mean-
flow changes there. This theory has successfully accounted for several
aspects of the dynamics of sudden warmings, but more research will need to be
done to elucidate their full nonlinear behaviour. A comprehensive discussion
of this topic is beyond the scope of these lectures: for further details, see
AHL, Chapter 6.
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Fig. 6.1. Polar stereographic maps (outer circle: 20°N) of (a) 10 mb height
(decametres) on 26 January 1979, (b) Ertel's potential vorticity on the 850K
isentropic surface on 26 January 1979. (c) as for (b) but for 27 January.

(From McIntyre and Palmer 1984, g¢.v. for definition of potential vorticity
units.)




7. GRAVITY WAVES AND TIDES

In previous lectures it has been suggested that departures of the mean
state of the polar stratosphere from radiative balance are likely to be mainly
due to forcing by planetary waves. However, such an explanation cannot apply
to the summer upper mesosphere, since planetary waves are of rather small
amplitude there. It is believed that the deviations of the upper mesosphere
from the radiatively-determined state are due principally to breaking internal

gravity waves, and perhaps also atmospheric tides.

Gravity waves are a very common feature of the upper mesosphere, and some
radar observations are given in Fig.7.1. They have horizontal wavelengths of
up to about 100-200 km, vertical wavelengths of about 5-15 km, phase speeds of
up to about 80 ns~1 and periods of a few minutes to an hour or so. Theory
predicts that velocity and temperature amplitudes in such waves increase as
90'% a;eZ/ZH as z increases, and thus they eventually "break". The process
is illustrated in Fig. 7.2, which depicts some isentropes (surfaces of
constant 6) which are undulating as a gravity wave propagates upwards. 1In
the lower mesosphere, (a), the isentropes have a gentle sinusoidal variation.
In the middle mesosphere, (b), isentropes are still fairly sinusoidal, but of
larger amplitude. In the upper mesosphere, (c), isentropes are strongly
distorted by nonlinear effects, becoming vertical at some points and leading
to turbulence, small-scale mixing and dissipation. Such a process is called
gravity-wave breaking, since it is analogous to the overturning and breaaing
of surface gravity waves on a shelving beach. It will tend to limit the eZ%/2H
growth of the waves above the breaking level, and this has important cons-

equences for the mean flow, as will be seen later.

The quasigeostrophic equations do not describe rapid, small-scale motions
like gravity waves, so we must return to the primitive equations (3.2).
Adding a forcing term F to the right of (3.2a), averaging, and using (3.2d) we
obtain

e + (Ty - 7 + Wi = (W )y - po Lpgu'w'), + F

in place of (4.1a). The gravity waves will turn out to make important
contributions to the terms -po'l(pou'w')z + F= X , say. In considering
their effects on the large-scale flow we can retain X and otherwise apply
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quasigeostrophic scaling, to obtain
Up - £o7y = - (W'v')y + X
[cf.(4.1a)] or, in TEM form,
U - £ = pg lV.F + X,

which is precisely (5.1a). Our task is now to estimate X for breaking gravity

waves.

We use a simplified form of the non-rigorous but plausible approach due to
Lindzen (1981). We assume the waves to be two-dimensional (so that &/dy = 0,
v' = 0) and for simplicity linearise about a state of rest. Since the waves

are too small in scale to feel the earth's rotation we can take f = 0. Then
(3.2) reduce to

W'+ O =0, u'y+ps legn'), =0, o', + N2w' =0, (7.1a,b,c)
vwhere 6', T' have been eliminated. If a lower boundary condition is
¥ =wycos k(x-ct) atz=0

(wvhere ps can be chosen so that z = 0 is near the stratopause), it is easy to

show that a wave solution is

v' = wy e2/2H cos[k(x - ct) + mz] , (1.2)
where m? = (N2/c2) - (2H)"2 . Now it was mentioned above that je] < 80 m s,
so we have
lc| << 2NH - 280 m s~ 1 (7.3a)
(using N - 2x1072 s™1 , H - 7x103 m) and hence (2H)72 << N2/c? = m2 . Thus
|m| » 2B, (7.3b)

or, equivalently, the vertical wavelength (observed to be 5-15 km) satisfies
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21t/ Im| << 4wH - 80 km. Thus to a good approximation we can take
m = -N/c , (7.4)

where it can be checked that the minus sign implies an upward group velocity.
The inequality (7.3b) also implies that the continuity equation (7.1b) reduces
to u', + w', = 0, approximately; thus u' has a similar structure to (7.2)
where u' = -mw'/k, and so by (7.2), (o) uw

Therefore

- psmwg/ZR = constant.

]
o

po-l(pou'w')z

for the waves considered here. This is the primitive-equation version of the
EP theorem in the present case.

We now attempt a mathematical description of the wave-breaking process.
First, it can be shown from (7.1) and (7.2) that

®' = (N/k)wer/ZH cogfkix ~ ct) + mz] . (7.5)
Moreover, by (3.2c), (3.2f) and (3.5),

8, = 8g, + 0', = HR 1eX2/H[N2 4 o' + yn71o',] .

Noting from (7.5) that ©' grows exponentially with z, we can expect that the
terms in ¢' will at a sufficient altitude become large enough to cancel N2 at
some values of x, t, at the "crests" of the waves, giving 6, = 0 there, and
thus local breaking, in Lindzen's sense. This approach is not strictly self-
consistent, since the linear solutions will break down before such a height is
reached, and (7.5) will cease to be valid. Nevertheless we shall assume that
the linear approximation is not too bad, and define a breaking level zy by

{max [0',, + uH‘lO'z[ Joie A N2 .

We find

zp = 2H 1n [Nk/m?wg(= 2H 1n [c2k/Nwy]| , (7.6)
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using (7.4). Note that zy, depends on ¢ and k; it increases as wo decreases
because smaller-amplitude waves need to penetrate to greater heights before

they have grown enough to break.

We next model what happens above the breaking level. The turbulence that
presumably sets in leads to diffusion of heat and momentum, and a crude way of
parameterizing this diffusion is to modify (7.l1a,c) thus:

o'

u't + ¢0'_, = Ku'

- et ke (1.7a,b)

2z ! A

where K is a constant diffusion coefficient. If K is chosen so small that
n?K << |w| | (7.8)
where W= ck, it is straightforward to show that above zy
W' = wo expl[z/20] - (RN*/c¥k) (z - z,)} cos [k(x - ct) + mz] (7.9)

in place of (7.2): the extra exponential factor involving K results from the
diffusive effects due to breaking. Lindzen hypothesised that above zp, this
diffusion is just sufficient to keep the waves saturated, i.e. on the verge of
breaking; thus max [o‘zz + xH°10'zl = N2 for all z 2 zp . This saturation
condition means that diffusive decay is just such as to balance the

PO-% « e2/28

the exponential term in (7.9) vanishes, that is

growth; thus K must be chosen such that the coefficient of z in

K = c4x/20N3 . (7.10)

[This can be shown to satisfy (7.8).] Substitution of this value of K in (7.9)
gives

w' = Yo exp(zb/ZK) cos [k(x - ct) + mz] for z 2 2y ; (7.11)

thus Lindzen's hypothesis implies no further growth in amplitude above 2y
this is roughly consistent with observed gravity-wave amplitudes in the
mesosphere. By continuity we still have u' = -mw'/k above zp and it can be
shown, using (7.11), (7.6) and (7.4) that
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B = _90-1 (POF"—T)z = cak/ZNH = NZK/C = constant # 0, above Zy - (7.12)

Thus, if ¢ > 0, there is a vertical wave momentum flux convergence or EP flux
divergence above the breaking level, and vice versa if ¢ ¢ 0.

Lindzen also postulates that a similar diffusion acts on the mean flow.
Thus F, mentioned earlier, is chosen as Kﬁzz , and a similar diffusive term

Ksz is supposed to appear in the mean thermodynamic equation. (However, it
is not clear that the Ks should really be the same in each term.) The full
parameterization for X is

X = -pol(gguwT), + F = (SSk/2NE) + (chk/20%B)T,,

the sum of a constant force per unit mass and a diffusive term.

A crude estimate of B (using ¢ = 10 m s'l, k = 2w/(50 km), H = 7 knm,
N = 2x1072 s™1) is about 40ms! day'l, a considerable acceleration.
Likewise K - 10 m2 sl The breaking level tends to be in the lower or middle
mesosphere in winter and in the upper mesosphere in summer. Note that
breaking is likely to occur only intermittently, being concentrated near the
"crests" of the waves, and the estimates of B and K may need scaling down
significantly to account for this.

Lindzen's (1981) paper presents a more general treatment, using WKBJ
methods for waves in a basic shear flow U(z). He also considers the effects
of atmospheric tides, which are essentially global-scale gravity waves forced
by the daily variation of the solar heating. These, too, are expected to
break in the upper mesosphere, and may lead to values of B on the order of 10-
20 m s clay'1 above this level in equatorial regions.
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gravity wave momentum fluxes. J. Atmos. Sci. 40, 1321-1333.

BIBLIOGRAPHY

For more on gravity waves, see AHL, § 4.6, and the excellent review:

Fritts, D.C., 1984. Gravity wave saturation in the middle atmosphere: a review
of theory and observations. Revs. Geophys. Space Phys. 22, 275-308.



A\’Mc ?Jt # qi“;“
:W "4,1,5. "WI’I”“VW
MWM&:

RADIAL VELOCITY/MS™
1

111111;1111

0 0 0
12 13 12 13
ways EAST BEAM WEST BEAM
l
yAaN /\ ~ I~
94 R 8 4 N~ R \/
vf\ /\\ ~ o= V/\A\/ ‘
ln " p—— Ay R g = a0 \/ 1
2 X7
81 HRREE /\Vf\ /\\v P G B
@ - 8
% A i BE )
2 == i3 g e T
g /\ e NG ™ e P P
e gy o N i el A SO 3
/\ N\ P ~—"\. P - _ -
BT el 5 My — = TR = S
78 NS 4 mmeemmnes S W S NN —
1 )y o] b 1 B TR 5 (ol
12 13 12 13

Fig. 7.1. High-frequency radar measurements of line-of-sight velocities
between 78 and 94 km altitude, measured in two directions, equally inclined at
small angles to the vertical. Top: data filtered to include only periods from
8 min. to 8 hr. Bottom: data filtered to include only periods longer than 8
hr. Data were collected on 11-14 May 1981. (From Vincent and Reid 1983.)
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Fig. 7.2. Schematic of the breaking of vertically-propagating internal
gravity waves in the mesosphere. Curves (a), (b) and (c) denote isentropic
surfaces. For (a) and (b), linear nondissipative theory holds approximately.
For (c), nonlinear effects are important, with turbulence occurring near the
wave crests, presumably followed by small-scale mixing and dissipation. (From
AHL.)



8. EQUATORIAL DYNAMICS

In this lecture we look at the low-latitude middle atmosphere, between
about 20° N and S. In this region, quasigeostrophic scaling does not usually
apply., and dynamical phenomena occur that are not found at higher latitudes.
Examples include equatorially-trapped, planetary-scale wave motions, and long-
period oscillations of the mean flow.

8.1 OBSERVED WAVE MOTIONS IN THE EQUATORIAL REGION

In the lower equatorial stratosphere, two basic types of planetary-scale
waves have been observed in routine radiosonde measurements. These are the
Kelvin and Rossby-gravity waves, which are trapped near the equator but
propagate vertically and zonally. Some observations of these waves were
mentioned in §2.2.4. Two additional classes of Kelvin wave, with larger
vertical wavelengths and horizontal phase speeds, have been observed in
satellite data for the upper stratosphere and mesosphere. All of these waves
are believed to be forced by convective activity in the tropical troposphere
(although the precise forcing mechanisms are still not well understood),

whence they propagate up into the middle atmosphere.

8.2 OBSERVED OSCILLATIONS OF THE EQUATORIAL ZONAL-MEAN FLOW

Time-variations of the zonal-mean flow in the equatorial lower stratosphere
are dominated by the so-called quasi-biennial oscillation (QBO), in which the
winds fluctuate from easterly to westerly and back again with a period of
about 27 months: see §1.3.2.2. The time-height section of Fig.1.9 shows that
the alternate phases succeed each other in descending shear zones that move
downwards at about 1 km per month. Above about 35 km, the QBO is replaced by
a semiannual oscillation (SAO), which reaches its peak amplitude near the
stratopause and again (with a phase lag) near the mesopause: see Fig. 1.7.

Two major dynamical problems in the equatorial middle atmosphere are,
first, to understand the generation and propagation of the wave motions and,
second, to explain the QBO and SAO. It will be found that these phenomena are
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in fact intimately related.

8.3 THEORY OF EQUATORIAL WAVES

Investigation of the basic theory of equatorial waves is greatly expedited
by use of the equatorial beta-plane approximation, in which f = 20sing is
replaced by By, for small latitudes ¢, where the equatorial value of B is
ZQ/aO, ag being the earth's radius. Because f becomes small near the equator,
the Rossby number Ro = U/fL (see §3.4) cannot generally be expected to be
small, and so the primitive equations (3.2) must be used. When linearised
about a state of rest, these become

u't - Byv' + O'x =0, (8.1a)
¥is thvnl ¢ O'Y =0, (8.1b)
o', + Now' = 0 (8.1¢c)
zt '
' ] ‘1 ' =
U's + v y + 0o (pow )z =00 (8.1d)

on the equatorial beta-plane. Here we have eliminated T and 8, and intro-
duced the static stability defined by (3.4). Boundary conditions will be
ignored for the moment.

We now take N = constant for simplicity and look for separable solutions of
(8.1) in the form of zonally and vertically propagating waves:

fu',v' w',0) = e2/28 ge [{a(y),0(y),0(y) , B(y)jellkx *+ mz —wt)y

Then we obtain

-iwd - Byv + ik = 0 , (8.2a)
-iwd + Byd + Sy =0, (8.2b)
ik + ¢, - ium?N"%8 = o , (8.2¢)
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after elimination of %, and neglect of (2H) 2 against n? in (8.2¢). (The
latter is justified for waves of vertical wavelength of order 10 km, as in
Lecture 7.) Note that two y-derivatives appear in (8.2), indicating that a
second-order ordinary differential equation will normally have to be solved

for the latitudinal structure of the waves.

However, the simplest solution of (8.2) only requires the solution of a
first-order ODE. This corresponds to the observed Kelvin wave, in which
meridional wind fluctuations v' are found to be very small. Putting ¢ = 0 in
(8.2), we get

b+ =0, pya+8 =0, ki-wn?N=0. (8.3a,b,c)
From (8.3a,c) we get w= % Nk/m , so that the vertical group velocity
cg(Z) = 3w/dm = ¥ Nk/m? . Observations suggest that the waves are propagating

upwards from the troposphere, so that cg(Z) > 0, and the lower sign must be

chosen (if the convention k > 0 is retained). Thus
w = _Nk/m ’ (8-4a)
and
cg'?) = Nk/m? = w2/Nk . (8.4b)
From (8.3a,b) we have the first-order ODE 3Y + (kBy/w)® = 0 , with solution
0(y) = 8(0) exp(-Bky2/2w). (8.5)
We must have & bounded far from the equator ( (y| > =), so it is necessary that
V/k > 0, implying an eastward phase speed; by (8.4a) we must therefore have
m < 0. Thus the phase surfaces kx + mz -wt = constant tilt eastward with
height and move downward with time. Some idealised representations of the
Kelvin-wave structure are shown in Fig. 8.1. If allowance is made for a
uniform mean wind U by replacing w by the intrinsic, or Doppler-shifted value

W - kUi, one can get quite good agreement with observations.

If * # 0, elimination of G and $ from (8.2) gives
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Voot | (mfuhi™® - k8 s proil) - piatynded s 4 (8.6)
if (mw/N)2 # k2 . Given that ¢ is bounded at large |y|, this is an eigenvalue
equation that also arises in the theory of the quantum harmonic oscillator,
and has solutions in the form of Gaussians times Hermite polynomials. The
gravest solution is

<
]

#(0) exp (-B|m|y?/2N) , (8.7)
where

- sgn(w) N(B +wk)/w? , (8.8)

for upward propagation and @ > -B/k . This is the Rossby-gravity wave; it has
a westward phase speed, and details of its structure are shown schematically
in Fig. 8.2. Again, a simple Doppler shift allows quite good agreement
between theory and observations. For further details of this and the higher
equatorial modes (which include equatorially-trapped inertio-gravity and

Rossby waves), see AHL, §4.7.2 .

For zonal-mean winds U(y,z) that vary with latitude and height, this kind
of simple separation of variables is not applicable. However, asymptotic
theories (assuming that the shear is weak) and numerical approaches have been

used to good effect in such cases.

It should be noted that the solutions given here represent forced waves.
They can be matched to an artificial lower boundary condition like (6.6), but
a more realistic model would include a suitable heating term proportional to
J' on the right of (8.1c), to represent the large-scale cumulus convective
heating in the upper tropical troposphere. Models that allow such a heating
in the form of a standing oscillation (which can be split into two travelling
forcing effects, moving eastward and westward, respectively) generate a whole
set of equatorial modes, and have been moderately successful in accounting for
the observed Kelvin and Rossby-gravity waves [see AHL, §4.7.3, and Salby and
Garcia (1987) and Garcia and Salby (1987)].
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8.4 THEORY OF THE QBO

The most obvious peculiarity of the QBO of the lower equatorial strato-
sphere is its 27-month period. Early theories, based for example on postu-
lated biennial cycles in diabatic forcing or in the tropospheric circulation,
were unable to reproduce the observed structure of the oscillation, and also
failed to account for the non-biennial period. The currently-accepted theory,
due to Lindzen and Holton (1968) and Holton and Lindzen (1972), maintains that
the eastward and westward zonal wind accelerations that make up the QBO are
forced primarily by nonlinear rectified effects associated with upward-
propagating, dissipating, Kelvin and Rossby-gravity waves, respectively. The
period (which in fact fluctuates between about 22 and 34 months) depends in a
complicated way on the wave amplitudes (and hence the processes that generate
the waves) and the wave-dissipation mechanisms. The full theory is fairly
involved, and we shall only give a brief qualitative outline here: further
details can be found in Plumb (1984) and AHL, §8.3 .

Consider first the easterly phase of the QBO, when Kelvin waves are
observed in the lower equatorial stratosphere (see Fig. 8.3a). On the basis
of a WKBJ theory, it can be shown that these waves have a phase speed cg that
is eastward with respect to the zonal flow u (assumed to vary slowly with z),
and that their vertical group velocity cg(Z) = (3 - cK)zk/N . The latter
decreases 3s the waves propagate up into the shear region between the lower-
level easterlies and the upper-level westerlies, and as this happens the waves
become increasingly susceptible to dissipation. On the other hand, during the
westerly phase of the QBO, Rossby-gravity waves are found in the lower
stratosphere (see Fig. 8.3b). These have a phase speed Cpg that is westward
with respect to U, and their vertical group velocity decreases as they
propagate from the lower westerlies into the upper easterlies. Thus these

waves, too, become increasingly dissipated in the shear zone.

The next aspect of the Holton-Lindzen mechanism concerns the mean-flow
changes induced by these dissipating waves. Here the TEM formalism, as
applied to the primitive equations on an equatorial B-plane, is useful. Under
various scaling assumptions, including that the Richardson number Ri = (N/Ez)2
is large, and that the mean-flow height scale is much greater than a vertical
wavelength, the advection by the residual circulation in the zonal momentum
equation becomes negligible, and we get
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U = 90'1V.! + drag term . (8.9)

We suppose that the waves and the mean flow both have latitudinal scale L, and
define a meridional average

CioiwE J' {.as)dy. .

Now using WKBJ methods for the waves and a theory analogous to that of §4.3,
approximate expressions for r(2), (the meridional mean of the vertical
component of the EP flux) for the Kelvin and Rossby-gravity waves can be found
in terms of U, wave dissipation, wave amplitudes at some lower forcing level,
and phase speeds and zonal wavenumbers. By taking the meridional mean of

(8.9), Holton and Lindzen arrived at a model equation of the form
@y = oo 0 2o + (7200 1 4 kaD,, (8.10)

where the drag has been represented in terms of vertical diffusion with a
small viscosity coefficient K. They integrated this equation numerically, and
found that <> (z,t) could resemble the time-height section of Fig. 1.9 quite

closely when suitable wave amplitudes and dissipation were chosen (see
Fig. 8.4).

The theory of Holton and Lindzen has been extended in several ways. The
most sophisticated model of the QBO to date is that of Plumb and Bell (1982),
which uses the full TEM equations, rather than (8.9), and numerically cal-
culates the time-development of @W(y,z,t) and the full wave structure in this
time-varying flow. So far, general circulation models have been unsuccessful
in simulating the QBO, probably because of insufficient vertical resolution
and over-intense wave dissipation. An ingenious laboratory experiment (using
internal gravity, rather than equatorial, waves) was carried out by Plumb and
McEwan (1978), and demonstrated the viability of the Holton-Lindzen wave,
mean-flow mechanism in real fluids.

We finally mention the semiannual oscillations at the equatorial strato-
pause and mesopause. Current thinking generally ascribes the eastward
accelerations at the stratopause to the "fast" Kelvin waves that have been
observed by satellite instruments (see §8.1). The westward accelerations
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there may be forced by cross-equatorial advection of zonal-mean easterlies by |
the mean meridional circulation, or driven by meridionally-propagating

planetary waves from the winter hemisphere. It is possible that the mesopause
oscillation, which is in antiphase with the stratopause oscillation, is mainly

driven by breaking gravity waves that have been selectively filtered by

passing through the underlying mean winds (see e.g. AHL, §§8.5.1, 8.5.2).

Gravity waves may also play a role in forcing the stratopause oscillation.
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Fig. 8.1. (a) Schematic height-longitude section showing phase relations
between velocity, geopotential and temperature fluctuations at the equator in
an upward-propagating Kelvin wave. Thin sloping lines denote surfaces of
constant phase and thick arrows show direction of phase propagation. (From
Hol*on 1975.) (b) Schematic longitude-latitude section of geopotential and

horizontal wind fluctuations for the Kelvin wave. (From Matsuno 1966.)

Fig. 8.2. (a) As for Fig. 8.la but for a Rossby-gravity wave of westward
phase speed (-B/k ¢ w <« 0) north of the equator. (From Holton 1975.)
(b) As for Fig. 8.1b but for the Rossby-gravity wave. (From Matsuno 1966.)
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9. TRACER TRANSPORT

9.1 SOME BASIC DEFINITIONS

The most basic concept in the study of tracer transport is that of a
materially-conserved tracer (often called a conservative tracer), the amount
of which remains constant in time following each air parcel. If p is the
"amount" of conservative tracer per unit mass of air, then such a tracer

satisfies
Du/Dt = dp/dt + udu/dx + vou/dy + wou/dz = 0 , (9.1)

in the log-pressure coordinates of §3.1 . 1In practice no physical tracer is

precisely conservative, and we have
Du/Dt = S , (9.2)

where S represents sources and sinks of tracer. Using the mass-continuity

equation (3.2d) this can also be written in "flux" form,
(Pl ¢ + (pguul g + (pouvly + (pg¥) , = 0S5 - {9:3)

For many atmospheric tracers S is weak in the sense that relative changes
in p following an air parcel are small over relevant advection timescales:

is then called a quasi-conservative or long-lived tracer.

Another classification is into dynamically-active tracers, whose dynamical,
thermodynamic or chemical properties allow them to influence the flow field
that transports them and dynamically-passive tracers, which have no such

effect. The latter could, however, be chemically active.

9.2 SOME EXAMPLES OF ATMOSPHERIC TRACERS

The most well-known atmospheric tracer is the potential temperature 9,
defined by (3.2f). It satisfies (3.2e), which is of the form (9.2) with
S = Q. © is quasi-conservative for sufficiently weak heating rates; since it

is a basic thermodynamic variable, it is clearly a dynamically-active tracer.



Somewhat less familiar is Ertel's potential vorticity P, defined by

v, + 6 (9.4)

+ vx) = OV,

P=pg il 8,(f-u -

y yYz ]
in log-pressure coordinates. This is materially conserved (DP/Dt = 0) if the
flow is adiabatic and frictionless; in many atmospheric cases it can be quasi-
conservative on timescales of a week or so. It is also a dynamically-active
tracer in general: this follows from the invertibility principle, which states
that the field of P at any instant determines the velocity and temperature
fields at that instant, given suitable boundary conditions and the assumption
that the flow is in a "balanced" state. For discussion of this principle and

many other aspects of the use of P see Hoskins, McIntyre and Robertson (1985).

Other atmospheric tracers include the minor chemical species, with p given
by the mass or volume mixing ratio. Many such species (e.g. ozone in the
lovwer stratosphere, methane and nitrous oxide throughout most of the strato-
sphere) are long-lived. Much of the current interest in tracer transport has
been stimulated by the need for a better understanding of the ways in which
these chemicals are carried from one part of the atmosphere to another, and
especially how they move in the latitudinal and vertical directions from
source regions to sinks and reservoirs. There is also the possibility that
the observed movement of chemical and dynamical tracers may give useful
information on dynamical processes, such as the planetary wave-breaking

phenomenon mentioned in §§ 2.2, 6.3.

Of particular interest to middle-atmospheric scientists is the problem of
understanding how the distribution of ozone is determined, and the factors
that might affect it. Ozone absorbs solar ultra-violet radiation, thereby
heating the stratosphere and also protecting the biosphere. It is only
present in small amounts, less than about 10 parts per million by volume
(ppmv); indeed if all the ozone in the atmosphere were brought to standard
temperature and pressure, the resulting "ozone layer" would be only 3 mm
thick ! Our present concern centres around the question of whether man-made
pollutants, such as chlorofluoromethanes, are depleting the ozone. Whereas
ozone is mainly formed by photochemistry in the sunlit part of the upper
stratosphere (above about 25 km), much ozone is found at lower levels and in

the darkness of the polar night. Meridional tranmsport by atmospheric motions
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VMR = nT/nA = MMR x (MA/MT) - DT/D .
These distinctions should be kept clearly in mind when studying observational
or model data, and when passing between the dynamical and chemical literature.
For example, chemists often write equations of the form

énT/ét = "flux term" + "production term"

in place of equation (9.2) for the mixing ratio.

9.4 MODELS OF TRACER TRANSPORT IN THE MIDDLE ATMOSPHERE

9.4.1 One-dimensional models

One-dimensional models have been much used by atmospheric chemists to
predict the vertical structure of constituents. We define a horizontal global

integral by

Ly W IJ () dx dy {9.6)
globe
this is a function of z and t. On applying (9.6) to (9.3) and noting that the

global integral of the horizontal divergence vanishes, we obtain

Wy = -po'l(po<pw>)z + (8 . (9.7)
The term <(uw> represents the globally-integrated vertical flux of tracer. To
obtain a prognostic equation for <p> it is usually assumed that this flux can
be represented by diffusion down the (vertical) gradient of <p>; thus

(uw> = - K(z)du/dz , (9.8)

where K(z) is an empirical diffusion coefficient. On substituting (9.8) into

(9.7) we obtain a diffusion equation, with sources and sinks, for <u>:
d¢ur/dt = po™t 8/8z [ poKdcw/dz | + (5> . (9.9)

This approach can be generalised to allow for many constituents p, (n =
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must therefore play an important part in determining the ozone distribution.
Moreover, transport also plays an important role in distributing the species

that may react with ozone.

The full problem of understanding and simulating ozone behaviour is very
complex, and involves a treatment of photochemistry (perhaps including
hundreds of reactions), radiative transfer, dynamics and transport. These are
usually coupled in an intricate fashion, although some simplifications may
result from the fact that the ozone distribution in the upper stratosphere is
dominated by photochemistry, while in the lower stratosphere (where ozone is
long-lived) it is dominated by transport. Various ways of modelling chemical
transport are described below.

9.3 MEASURES OF TRACE CONSTITUENT CONCENTRATION

While the mass or volume mixing ratio is usually the best measure of
chemical concentration for transport studies, other measures are often used by
chemists. These include the number n of molecules per unit volume, the mass e

per unit volume, and the partial pressure p. Note that

Dy = ppN, » mpMp = EaN,

where Na is Avogadro's number (= 6x1026 molecules kmol_l), M is the molecular
weight and subscripts T and A denote the trace constituent and "air" excluding
the trace constituent, respectively.

Since trace constituents, by definition, are present only in small amounts,

Pr ¢Cpp =@ and Pp << Pp = p , where © and p are the total air density and
pressure. Then the ideal gas law gives

Pr = ppR*T/Mp . P = R*T/N, ,

where R* is the universal gas constant. Thus the mass and volume mixing

ratios satisfy

MMR = pp/@ = (pp/p) (Mqp/My) . (9.5a)
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Some early ideas about meridional tracer transport in the lower strato-
sphere were introduced by Brewer (1949) and Dobson (1956), who suggested that
observed distributions of water vapour and ozone might qualitatively be
accounted for by advection by a hypothetical zonally-symmetric circulation.
This flow consists of a rising branch passing through the tropical tropopause,
and poleward and downward flow in the extratropics; it has come to be known as

a Brewer-Dobson circulation.

In 1961, Murgatroyd and Singleton published a diagnostic calculation of a
"possible meridional circulation" in the middle atmosphere, (¥, #%) say, based

on the zonal-mean thermodynamic and continuity equations
Ut + VEY + ng = Q ' (9.113)
¥y + po tlegh), = 0 , (9.11b)

together with boundary conditions ¥ = 0 at the poles. The requisite ¥ was
obtained from observations of T and the heating § from a radiative calculation
using T and observed ozone. A sketch of the resulting circulation at the
solstices is given in Figure 9.1: in the lower stratosphere it resembles the
Brewer-Dobson circulation, while higher up it consists of rising motion in the
summer hemisphere, cross-equatorial flow in the mesosphere and descent in the
winter hemisphere. A circulation diagnosed in this way is often called a
"diabatic circulation". The Ut term is usually small, and is sometimes

omitted.

Murgatroyd and Singleton noted that their results, being based on zonal-

mean observations, necessarily omitted the "eddy heat flux convergence"
ST TR ‘1 gt
Cm = (v'0 )Y = PO (poﬂ 0 )Z

that would appear on the right of (9.11a) if (¥, %) were to be replaced by

(v, W). Thus their diabatic circulation differs from the Eulerian-mean
circulation in regions where C is significant, such as the northern winter
stratosphere: in this region Eulerian-mean ascent, rather than descent, is
found. However, the term 99& is usually small in (9.11a), which then becomes
formally identical to the TEM equation (4.3b); moreover, (9.11b) is formally
identical to (4.3c). Thus Murgatroyd and Singleton's circulation is in fact a
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1,2,...N) where the relevant sources (§,> may depend on all the CHp ? 7 in

general a different K, should be used for each constituent.

The advantage of the 1-D models is that the transport representation is so
simple that the available computer power can be devoted to consideration of
many chemical species and reactions. These models are therefore valuable for
testing and comparing photochemical theories. However, since they deal with
global (or sometimes hemispheric) integrals, it is difficult to justify their
comparison with local measurements. It is also difficult to give a convincing
justification of the "diffusive flux" parameterization (9.8), although some
rationale for this has been provided by Holton (1986) and Mahlman, Levy and
Moxim (1986).

9.4.2 Two-dimensional models

A less restrictive approach is to employ the zonal (Eulerian) average, as
defined in §4.1. Although this is again a non-local quantity, tracers are
often fairly zonally-symmetric in the absence of strong planetary waves.
Moreover, satellite measurements of composition are often averaged zonally to
improve signal-to-noise levels. A study of the transport of § in the merid-

ional plane is therefore of some interest.

The Eulerian zonal mean of (9.2) can be written

Py + Vﬁy + ﬁﬁé = - [ (v'u')y + Po'l(pow'p')z 35 e N (9.10)

using (3.2d). Thus the rate of change of § is determined not only by advec-
tion by (Vv ,%) and the sources and sinks S5 but also by the "eddy flux diver-
gence" (in square brackets). In practice, it is often found that the mean
advection and eddy flux terms almost cancel: the reason is that the Eulerian
mean circulation (¥, #) is not independent of the eddies — indeed, it is
usually largely determined by them. One should therefore not attach too much
physical significance to the labels "mean transport" and "eddy transport" that
are often given to these expressions. In fact, we shall see later that there
are other, quite different, ways of arranging (9.10) into "mean advective
transport" and "eddy flux divergence" terms. First, however, is is worth

recalling some history.

--------'---.----------J
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comparatively localised events and handle the transport of local injections of
tracer; this may make for more meaningful validation against observations.
Unlike the 1D and 2D models, no artificial separation is made into zonal or

global means and departures therefrom.

Owing to the large computer resources required for treating dynamics and
radiation, few 3D models have yet included any but the simplest chemical
schemes. A popular approach is to perform the tracer studies "off-line": the
model's velocity fields are stored, and then used in a separate calculation to
advect the tracer around. This allows dynamically-passive tracers to be
treated, with or without active chemistry. Examples include those of Mahlman
(1985) and Mahlman, Levy and Moxim (1986). Dynamically-active tracers, which
influence the motion or temperature fields, cannot be studied in this way, but
must be incorporated in a fully "on-line" approach; an example is that of
Cariolle and Déqué (1986).

Finally, it should not be forgotten that 3D models generate vast quantities
of data, which must be suitably organised and compressed if meaningful
comparisons with observations are to be made, and physical interpretation
carried out. There is still a need for improved diagnostics to aid in this

process.
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good approximation to the residual circulation in many cases. [It is also
quite closely related to the generalised Lagrangian-mean circulation; see
§6.5.2 of WMO,.]

We now return to the specification of 2D models for transport and chemical
studies. These tend to use either (a) the Eulerian-mean formulation or (b)
the residual, diabatic or similar formulation. 1In each case some form of eddy
flux convergence generally appears in the tracer continuity equation. The
eddy flux must be parameterized in terms of the zonal-mean state with which
the model is working; this is usually done by means of a two-dimensional
"diffusion tensor"” K, relating the vector eddy flux to the mean gradient
(iy, ﬁz). Such a parameterization is difficult to justify rigorously except
in one formulation of type (b), introduced by Plumb (1979) and called the
effective transport formulation. The effective transport circulation differs
slightly from the residual circulation, and considerably from the Eulerian-
mean circulation; the corresponding diffusion tensor is anisotropic. The
definitions of this circulation and diffusion tensor involve Lagrangian parcel
displacements, and they are generally difficult to estimate from atmospheric
observations. However they have been calculated from a 3D general circulation
model by Plumb and Mahlman (1987), and used by them in a 2D model with some

success.

Advantages of 2D models over 1D models include the facts that they can in
principle represent meridional transport in a fairly self-consistent manner,
and can be validated against zonal-mean observations at different latitudes.
Furthermore their dynamics is still simple enough to allow detailed chemistry
to be included. On the other hand, the eddy parameterizations mentioned above
are essentially "non-interactive", in the sense that they cannot respond to‘
changes in the mean state; this difficulty can only be circumvented by use of
3D models.

9.4.3 Three-dimensional models

In principle, 3D models may include the coupling between fully three-
dimensional dynamics, radiation and photochemistry. A major advantage is that
they explicitly describe the transport associated with the large-scale
planetary waves. Of course, sub-gridscale effects, including those due to

breaking gravity waves, must still be parameterized. 3D models can represent
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10. THE GENERAL CIRCULATION OF THE MIDDLE ATMOSPHERE

10.1 INTRODUCTION

There seems to be no very precise definition of the term "general circu-
lation". 1In this lecture we shall take it to mean the large-scale flow of the
atmosphere, in some loose sense. Since the troposphere certainly affects the
stratosphere, and the stratosphere has at least a minor influence on the
troposphere, the general circulation of the middle atmosphere cannot be

considered in isolation from that of the lower atmosphere.

In modelling the middle atmosphere, it is helpful to employ a whole
hierarchy of models, with the simpler ones aiding in the interpretation of the
more complex ones. In Lecture 5 we considered some of the simplest such
models. At the other end of the spectrum are the highly detailed general
circulation models (GCMs), which involve numerical solution of the primitive
equations with a minimum of assumptions and parameterizations. Ideally, one
would wish to specify only the initial state and the boundary conditions (the
solar radiation and the surface conditions); the model would then predict the
global time-development of temperatures, winds, chemical concentrations, etc.
In practice, limitations in our knowledge of the basic physics and in avail-

able computer resources force us to make certain compromises.

A major role of GCMs is to enable controlled experiments to be performed,
to test our understanding of how the atmosphere works. With these models,
hypotheses conccrning cause-and-effect relationships can be examined in a way
that is impossible using atmospheric observations alone. GCMs tend to be used
for two broad classes of experiment: short-term runs for the detailed simu-
lation of specific observed events (e.g. sudden warmings) and longer-terms
runs from which "climatologies" can be constructed for comparison with current
observational climatologies. As models become more successful in the latter
mode, we shall be able to place more confidence in lengthy runs intended to
predict possible changes in climate due, for example, to increasing levels of

carbon dioxide or pollutant chemicals such as chlorofluoromethanes.

Most GCMs have been designed primarily for study of the troposphere, and
include only a few stratospheric levels; even so, several of these have made

important contributions to our knowledge of the lower stratosphere. However,
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an increasing number of GCMs are now being built specifically with middle
atmospheric applications in mind; some of these are described in the next

section.

10.2 SOME MODELS OF THE GENERAL CIRCULATION OF THE MIDDLE ATMOSPHERE

Current general circulation models of the middle atmosphere include those
being used at GFDL (see Mahlman and Umscheid, 1984), NCAR (Pitcher et al.,
1983), NASA Langley Research Center (Blackshear et al., 1987), Goddard
Institute for Space Studies (Rind et al., 1987), CSIRO (Hunt, 1986) and the
Meteorological Office. These differ considerably in their formulation and
degree of completeness, and we shall mention only two of them in detail: the
GFDL model and the Met. Office model. We shall also mention a highly ideal-
ised model that may help elucidate aspects of the nonlinear dynamics of the
middle atmosphere.

10.2.1 The GFDL "SKYHI" model

This 40-level model extends from the ground up to about 80 km. It uses
terrain-following "sigma" coordinates below about 350 mb and pressure coor-
dinates above. The vertical resolution is variable, but averages about 2% km
in the middle atmosphere (see Figure 10.1). The model uses finite differences
in the horizontal, with a grid resolution that has varied from 9° latitude by
10° longitude in early runs, through 5°x6° and 3°x3.6° to 1°x1.2° in the
latest experiments. The model includes a fairly compleic set of physical
parameterizations in the troposphere (except that cloudiness, pack ice and sea
surface temperatures are specified from climatology). It has a state-of-the-
art treatment of radiation, with radiative heating calculated every 12 hours
using diurnally-averaged solar insolation. Below 35 km a zonally-symmetric
ozone distribution is specified; above 35 km a simple temperature-dependent
ozone photochemistry scheme is used. A nonlinear horizontal diffusion and a
Richardson-number dependent vertical diffusion are included in the momentum
equations. No parameterization of the drag and diffusion due to breaking
gravity waves is used, although the finest-scale version of the model does

explicitly represent some of these wave motions.

Most of the results published so far for the SKYHI model relate to the
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5°x6° version. January-mean cross-sections of U and T are depicted in Figures
10.1 and 10.2. Note that this version produces zonal jets that are much too
strong in the mesosphere compared with the observations in Figure 1.3. These
are consistent with the fact that the winter stratosphere is too cold (a
common problem with middle atmosphere GCMs) and the latitudinal temperature
gradient in the mesosphere is not reversed, as in the observations. These
deficiencies generally seem to be less pronounced in the higher-resolution
versions of the model (Fels, 1985). It appears that in the lower resolution
model the planetary waves are too weak in the troposphere, and are rapidly
damped in the lower stratosphere, leaving no wave activity to drive the
atmosphere far from the radiative state (see Lecture 5). At higher resolution

the planetary waves penetrate to a greater height.

The model simulates quite well the three observed types of Kelvin wave in
the equatorial middle atmosphere. It also produces equatorially-trapped
inertio-gravity waves (see Lecture 8). It simulates a realistic-looking
semiannual oscillation in equatorial latitudes (Figure 10.3) but not a quasi-
biennial oscillation; the latter deficiency may be due to insufficient
vertical resolution. Phenomena resembling minor and major stratospheric

sudden warmings have arisen spontaneously during integrations of the model.

10.2.2 The Meteorological Office Middle Atmosphere model

This model does not include a troposphere, and should perhaps not be
regarded as a general circulation model in the strict sense. It is forced
from below by prescribing the height of the 100 mb (or sometimes 300 mb)
pressure surface, using either observed or idealised data. Details of the
formulation are given in Fisher (1987); in summary, the model extends to about
80 km altitude and includes 33 levels, spaced at about 2% km in the log-
pressure coordinate z. Horizontal resolution is typically 5°x5°, with fourth-
order finite differencing being used. The model includes a state-of-the-art
radiation code, supplied by Dr K.P. Shine of Oxford University as part of a
joint Met. Office - Oxford modelling project (see Shine, 1987). The solar
heating uses zonal-mean ozone prescribed from climatology. At present the
model includes a Rayleigh friction in the mesosphere (with a relaxation time
decreasing from about 100 days at the stratopause to a day or so at 80 km) as

a crude representation of gravity-wave drag there. It is hoped to include a
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more sophisticated parameterization soon.

The Met. Office model has been used for a variety of middle atmosphere
studies. Several of these have been concerned with the stratospheric sudden
warming phenomenon (e.g Butchart et al., 1982; Fairlie and O'Neill, 1987).
Recently some annual integrations have been performed, and these are currently
being diagnosed, and studied in the light of insights from simpler models (see
Lecture 5). A number of more idealised experiments have been performed, in
which the lower-boundary forcing has been prescribed in rather simple ways,
and attempts made to interpret the resulting disturbances of the middle

atmosphere in terms of wave propagation or vortex-interaction dynamics (e.g.
O'Neill and Pope, 1987).

10.2.3 A barotropic model with extremely high horizontal resolution

Contrary to the general belief a few years ago, many middle atmosphere
modellers now feel that a good simulation of the dynamics and transport of the
stratosphere and mesosphere will require GCMs with rather high horizontal
resolution, so that the details of the potential-vorticity dynamics can be
represented reasonably faithfully. A model designed to investigate this
idea, though certainly not a GCM, has been reported by Juckes and McIntyre
(1987). This is a spectral, hemispheric, barotropic model, with very high
horizontal resolution (equivalent to less than 1° of latitude) but represent-
ing a single layer in the vertical. The model is forced by a vorticity source
in zonal wavenumber 1, with broad latitudinal scale: as Figure 10.4 shows,
after 17 days, the nonlinear terms in the barotropic vorticity equation have
led to the production of very fine-scale structures in the vorticity field.
Analogous structures can presumably occur in the real middle atmosphere (in
the isentropic potential vorticity field) and, although almost invisible to
current observational techniques, are likely to have profound effects on the
general circulation.

10.3 AN OVERALL DESCRIPTION OF THE GENERAL CIRCULATION OF THE MIDDLE
ATMOSPHERE

In this section we attempt to give a qualitative overall picture of the
large-scale circulation of the middle atmosphere, bringing together some of
the topics that have been described in previous lectures.
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At the most basic level, we can say that the zonal-mean temperature
structure is quite close to being under radiative control, except in the
winter stratosphere and the upper mesosphere. Thus the winter hemisphere is
generally cooler than the summer, and a clear stratopause is present. The
associated zonal-mean zonal winds, being in thermal-wind balance with this
temperature field, and tied to comparatively low values near the tropopause,

are generally westerly in winter and easterly in summer.

The presence of zonally-asymmetric wave or eddy motions modifies this basic
picture somewhat; these eddies exert an effective zonal force on the mean
flow, bringing about departures from the purely radiatively-determined state,
and associated mean meridional circulations. 1In particular the winter
stratosphere is warmer than expected on radiative grounds alone, and the
summer mesopause is cold and the winter mesopause warm. For the same reasons,
the basic winter westerlies and summer easterlies peak at about 60 km altitude
and decrease to low values near the mesopause, rather than increasing with
altitude throughout the middle atmosphere.

The waves that bring about this modification to the radiative state are
principally large-scale planetary waves in the winter stratosphere and small-
scale gravity waves in the mesosphere. Both types of wave are thought to be
forced mainly in the troposphere; their propagation up through the middle
atmosphere can be modified considerably by the mean state there. 1In general,
wave amplitudes (as measured, say, by temperature or wind fluctuations) tend
to grow with altitude, leading eventually to wave-breaking and nonlinear
effects that inhibit further growth. The forcing of the zonal-mean state is
intimately related to this "saturation" effect; the waves can usually be
thought of as transferring zonal (angular) momentum from their source regions
to the places where they become saturated or are otherwise dissipated
(McIntyre, 1987).

The same irreversible wave processes also lead to latitudinal and vertical
transport of tracers within the wave generation or dissipation regions. That
breaking planetary waves can move tracers latitudinally is evident from
isentropic maps like that in Figure 6.1. Such transport is temporary if the
waves are reversible, but becomes quasi-permanent if the wave breakdown is

irreversible. Similar sorts of ideas also apply to vertical transport of
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tracers by gravity waves, although the details of the dynamics are different
in important respects. A schematic illustration of the overall zonally-

averaged transport in the troposphere, stratosphere and mesosphere is given in
Fig. 10.5.

10.4 FUTURE PROSPECTS

We conclude these lectures with a few thoughts on the ways in which middle

atmosphere research may be moving in the next few years.

10.4.1 Observational studies

The next major initiative in the area of satellite observation of the
stratosphere and mesosphere is the Upper Atmosphere Research Satellite (UARS),
which is due to be launched by the Space Shuttle in about 1990. This will
carry several sophisticated instruments for sounding temperatures, minor
chemical species, and even winds, in the middle atmosphere. The Met. Office
is committed to the assimilation of data from these instruments, and the
preparation of global analyses which, it is hoped, will provide a much more
accurate picture of the middle atmosphere than is currently afforded by the
construction of geostrophic (or, at best, gradient) winds from height fields
obtained from retrieved temperatures. The Met. Office model will also be an

important tool in the study and interpretation of these data.

Another satellite experiment to be performed when Shuttle flights resume is
ATMOS (Atmospheric Trace Molecular Spectroscopy), in which high-resolution
spectroscopic measurements are made of the atmospheric spectrum between 2 and
16 pm. The first flight, in May 1985, provided tantalising new glimpses of
the chemistry and dynamics of the mesosphere.

Ground-based measurements are becoming increasingly important. For
example, radars and lidars, although only providing localised information in
the horizontal, have excellent vertical resolution and are now giving exciting
insights into the behaviour of gravity waves in the stratosphere and meso-
sphere. It is to be hoped that a global-scale network of such instruments can
be set up.
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The prospect of new measurements must not, however, deflect us from the
continued analysis and interpretation of the very large satellite data-set
that already exists, and the continued expansion of climatologies from current
instruments such as the SSU. Much of this information has not yet been fully

exploited, or subjected to the new diagnostic approaches that have recently
been suggested.

10.4.2 Modelling

Each new generation of computers offers the prospect of longer runs with
GCMs of higher and higher resolution. However, even with the two CYBER 205s
at GFDL, the 1°x1.2° version of the SKYHI model described in §10.2.1 only runs
in approximately real time ! Another problem with such large models is the
analysis of the huge amount of data that they generate. Such problems can,
and must, be tackled; indeed several U.K. universities are planning to exploit
the new Cray X-MP/48 at the Rutherford Appleton Laboratory for a global
atmospheric modelling project (including the middle atmosphere) using an
expanded version of the ECMWF forecast model. Nevertheless there is still a
great need for careful, well-planned, hypothesis-testing experiments with
smaller models such as the Met. Office middle atmosphere model and simpler

"mechanistic" or even analytical models.
10.4.3 Theory

The simplest models just mentioned are aspects of the "theoretical frame-
work" that is necessary foi any meaningful assessment of observational or
model data. For example, the simple zonally-averaged models of Lecture 5
provide a context for the discussion of zonally-averaged data, and point to
the kinds of mean quadratic eddy quantities that might be of interest. Such
models are of course over-simplified in many respects, and caution may have to
be exercised over conclusions drawn from them, especially those conclusions
involving causal relationships. While the models give a clue to the ways in
which eddies may influence the mean flow, they do not usually include the
back-effect of the mean flow on the waves!. An extension of these models to

incorporate such effects would be most valuable.

! An exception is the Holton-Lindzen model of the QBO: see Lecture 8.
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Another area in which simple theoretical models might be helpful is that of
the interaction of dynamics and photochemistry (and perhaps radiation as
well).

There is still some interest in the study of conservation laws for wave
properties in the form of (4.10), and nonlinear versions for waves obeying the
primitive equations have recently been found by Andrews (1987) and (in greater
generality) by Haynes (1987). Laws of this kind may possibly be of value in
diagnosing the behaviour of nonlinear planetary waves in models and in the
atmosphere. A related topic is the investigation of conservation laws to
provide diagnostics for waves on zonally-asymmetric basic flows; this is more
difficult than the case where the basic flow is zonally symmetric, but some
progress has been made. Also important is the study of the ways in which such

waves affect the basic state.

A further area in which theoretical studies are needed is that of the
dynamics of breaking waves, both gravity waves and planetary waves. This will
call for analytical and numerical (and perhaps also laboratory) work. A
clearer understanding of the dynamics of interacting vortices may help
disentangle some of the complications of the behaviour of large-amplitude
planetary waves, in which the separation into "waves" and "basic state" may be
blurred.
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Fig. 10.2. T (K) for January "1982" from the SKYHI model. (From Mahlman an
Umscheid 1984.)
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Fig. 10.3. Time-height section of U at 2.5°N for the SKYHI model, showing the
simulated semiannual oscillation near the stratopause. (From Mahlman and
Umscheid 1984.)
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Fig. 10.4. Polar stereographic map indicating the vorticity field on day 17
of an integration of Juckes and McIntyre's high-resolution barotropic model:

see text for details.
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Fig. 10.5. Schematic illustratio
double arrows

single arrows denote mean circulation;
d vertical diffusion. In the troposphere there is
lation, quasi-horizontal mixing by planetary and

In the stratosphere one finds

to the mesopause.
indicate quasi-horizontal an
advection by the Hadley circu
synoptic eddies and vertical convective mixing.
a mean cell and quasi—horizontal mixing, both mainly driven by planetary

waves. In the mesosphere the transport seems to be dominated by a pole-to-

pole circulation and vertical mixing, both mainly due to breaking gravity

waves. (From VMO3.)



