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Abstract

There are many benefits in knowing what seasonal climate anomalies are likely to
occur in the future. In recent years there has been a substantial increase in the seasonal
forecasting research and development activity needed to provide such information, and
in the provision of real-time predictions. This paper provides a selective overview of
current methods and examples.

1. Introduction

A seasonal forecast is a prediction of the value of some quantity (typically, surface
temperature or rainfall) when averaged over a few weeks, at lead time of zero to several
months. For example, a forecast issued in June could read 'there is a 70% chance that
the rainfall in July-August-September will be larger than normal'. The methods and
areas of application for seasonal predictions have increased substantially in the last few
years, and the purpose of this paper is to provide an overview, mainly from a research
and development point of view. This summary is necessarily selective: in particular,
forecasting on a monthly timescale is not considered (see e.g. Harrison 1994, ECMWF
proceedings 1996, and references therein). For other recent seasonal reviews, see e.g.
Palmer and Anderson (1994), Moura (1994), Hastenrath (1995), Rodenhuis (1995).

The potential importance of reliable seasonal predictions has long been recognised.
Monsoon forecasts based on pre-season observations were first attempted over a cen-

tury ago, when Blanford started issuing Indian monsoon forecasts (Blanford 1884).
Investigations of Indian monsoon predictability led Sir Gilbert Walker to discover many
statistical connections between remote parts of the climate system (e.g. Walker 1924),
including the now-famous Southern Oscillation (Walker and Bliss 1932). Early predic-

tion efforts using statistical models based on sparse data and short timeseries often pro-
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duced unreliable results. The availability of long (in many cases multidecadal) datasets
with stringent quality control, fast computers, more advanced techniques and improved
physical understanding of the climate system has led to substantial recent progress.

The following examples (some of many!) give some indication of the variety of
atmospheric seasonal forecasts that are being produced, both operationally and exper-
imentally. Further details about the methods, skills and predictors can be found in the
references cited.

(A) Asia: predictions of the Indian monsoon onset and strength, based on a wide
range of predictors, are issued by the Indian Meteorological Department (review by
Kumar et al 1995). Predictions of rainfall in Japan and China have been produced
(Sun 1994).

(B) Africa: rainfall forecasts are issued for several African regions. The 'Climate

Watch Africa' bulletin produced by the African Centre of Meteorological Applications
for Development (ACMAD) contains seasonal rainfall outlooks. West African July-
August-September rainfall predictions have been available since the mid 1980s (Folland
et al 1991), and East African 'short rains' forecasts have been issued experimentally
by UKMO (see also Mutai et al 1996). Southern Africa rainfall predictions have been
made (Landman 1994), and rainfall and temperature outlooks are issued regularly by
the South African Weather Bureau.

(C) Brazil: a region where seasonal predictive skill is particularly high is the

Nordeste region in Brazil, and various forecasts are produced for March-April-May NE
Brazil rainfall (Hastenrath and Greischar 1993, Ward and Folland 1991).

(D) North America: operational long-range seasonal outlooks for US surface tem-
perature and precipitation (Kerr 1994) based on several prediction methods (Barnston

1994, Huang et al 1996, Livezey et al 1996) are issued by the US National Centers for
Environmental Prediction (NCEP). Predictions of Canadian temperature and precipi-
tation have been produced (Shabbar and Barnston 1996).

(E) Australia: the Australian Bureau of Meteorology (BoM) Issues operational
seasonal outlooks for Australian rainfall.

(F) Europe: the analysis by Barnston (1994) showed evidence of modest but sig-

nificant seasonal prediction skill in parts of Europe. Forecasts have been produced at
the Swedish Meteorological and Hydrological Institute (Johansson et al 1996). Colman
(1996) has made an experimental forecast for Central England Temperature.

(G) Global: experimental global predictions of rainfall, surface temperature and
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500hPa anomalies are produced via a two-tier system (Bengtsson et al 1994) in a joint
program involving Scripps Institution of Oceanography (SIO) and the Max Planck In-
stitute for Meteorology (MPIM).

(H) Predictions of seasonal hurricane and tropical cyclone activity have been made
(Gray et al 1992, Landsea et al 1994, Nicholls 1985, 1992, Chan 1994).

Typical predictors are sea surface temperature anomaly patterns, the Southern
Oscillation Index (SOl), 500hPa height fields, the predict and in the previous season,
etc. etc.

Sea surface temperature (SST) is the most commonly used predictor. Although
persistence of anomalies is often assumed, the prediction of SST itself is an important
aspect of seasonal forecasting. In particular, there is good evidence that tropical Pacific
sea surface temperature anomalies are predictable at long lead times of many months:
see section 4. Predictions of the SOl, which is closely related to Pacific SST changes,
are also made routinely (Keppenne and Ghil 1992, Drosdowsky 1994).

Further details of many examples can be found in the NOAA Experimental Long-

Lead Forecast Bulletin, which has been issued quarterly since 1992, and which is now
available on the World Wide Web (see below). Other examples may be found in WMO

long-range forecasting progress reports, and in reports from the International Research
Institute for Climate Prediction (IRICP).

In some cases useful direct predictions of crop yields have been made. For example,
the maize yield in Zimbabwe is strongly connected to rainfall, which in turn is related
to sea surface temperature. The correlation between maize yield and sea surface tem-
peratures in the east-central region of the tropical Pacific is over 0.6 at a lead time of
4 months. By using predictions of Pacific sea surface temperature anomalies, useful
predictions of maize yield can be made (Cane et al 1994). Similarly, crop yields in
Australia (Nicholls 1988, Rimmington and Nicholls 1993) and soybean futures prices
(Keppenne 1995) have been related to the Southern Oscillation Index. Some crop yield
predictions are included in the statistical seasonal outlooks produced by the Climate
and Weather Research Laboratory at the University of Capetown. Further examples
can be found in Moura (1994).

There is an ever-increasing amount of information about seasonal predictions and
prediction methods available on the World Wide Web. A few examples are given below:
others may be found using search engines or following links from those provided. (Note:
the address details are subject to change.)
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http://nic.fb4.noaa.gov /products/predictions/ for US seasonal outlooks by NCEP,
and the Experimental Long-Lead Forecast Bulletin.

http://tropical.atmos.colostate.edu/forecasts/ for seasonal hurricane forecasts etc ..

http://www.pmel.noaa.gov/toga-tao/ for information about El Nino and the trop-
ical Pacific.

2. Why is seasonal forecasting possible?

We all know from expenence that, beyond a few days, the detailed day-to-day
changes in the atmospheric circulation are largely unpredictable. Even with a good
model and accurate initial conditions, weather forecasts quickly diverge from the true
atmospheric state. For seasonal forecasts we do not attempt to determine this high
frequency unpredictable 'weather' component, but aim instead to predict some longer
timescale, larger space scale component of the ocean-atmosphere system. A seasonal
forecast system needs information about this slowly-varying part. For the atmosphere,
much of this information lies in the boundary conditions (surface temperature, soil

moisture, snow cover etc.). The most important of these is sea surface temperature, as
discussed below. Other effects can be substantial (see e.g. Barnett et al 1989, Yang
1996 for snow cover, and a series of articles in Shukla 1993.)

The ocean has enormous mass and heat capacity compared to the atmosphere (in
a vertical column, 10 (4) metres of ocean has about the same mass (heat capacity) as
the entire overlying atmosphere), and changes more slowly. Through air-sea interaction
involving heat, moisture and momentum exchange, the ocean affects the atmosphere
both in the immediate vicinity and remotely via advection and planetary waves. This
interaction is strongly affected by SST. Large scale SST anomalies tend to last for
a few months, so the SST anomalies observed now can exert a systematic bias on the
atmosphere in future months. To a lesser extent, current SST anomalies can also induce
anomalies in the atmosphere/land system that in turn influence future atmospheric
behaviour. Thus sea surface temperature is a very important predictor for seasonal

forecasting.

To illustrate the persistent nature of sea surface temperature anomalies, Fig. 1
shows the correlation of observed monthly average sea surface temperature anomalies
in the tropical Pacific (Nin03 region, 5N-5S, 90W-150W) with the anomalies in the same
region some months earlier. Correlations remain above 0.7 for 3 months, and above 0.5
for 6 months. Thus a persistence forecast (that is, a forecast that assumes that anomalies
observed now stay unchanged in the future) is a simple and useful forecast method for
sea surface temperature. Persistence characteristics can depend on season and can vary

decadally, as found by Balmaseda et al (1995) for the Nin03 region.
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Persistence is effectively the sea surface temperature anomaly forecast used when
predictions are made with atmospheric general circulation models. For lead times longer
than a fewmonths, the anomalies are usually gradually reduced in amplitude. Statistical
methods to improve on simple persistence of SST anomalies are discussed in Ward et
al (1993).

One other predictor that deserves mention is the quasi-biennial oscillation (QBO)
in the stratosphere: unusual because it is not a surface boundary condition. There is
evidence that the QBO state, which is predictable on seasonal timescales due to its
slow oscillatory nature, influences the upper troposphere. In particular, the QBO is an
important factor in hurricane activity prediction.

3. Examples of seasonal forecast methods.

3a. Statistical methods

By analysing historical data extending over several decades, statistical relationships
between possible predictors and predictands can be established. Where significant con-
nections are found, statistical prediction models can be developed and tested.

The recent availability of carefully produced datasets extending over several decades
with wide spatial coverage, and the application of advanced statistical methods adapted
from other fields, has led to an increase in the skill and coverage of statistical seasonal
predictions.

One commonly used method that is simple to develop, test and apply IS linear
regression. Using the historical data, an equation like

ram = Ao + Al x predicior , + A2 x predictor- + ... (1)

can be determined in a best-fit sense. Then, given pre-season values of the predictors, a
rainfall prediction can be made. For example, given long records (e.g. several decades)
of seasonal rainfall for some region and of SST, SST patterns that seem to be associated
with that rainfall can be identified and tested as predictors.

A very important aspect of any sort of prediction is an assessment of the forecast
skill and reliability. One method of cross-validation is to use half of the data to determine
a prediction equation (,train the model'), then to make predictions of the rest of the
predictand data and measure the skill. Alternatively, in the jack-knife validation method
a forecast is made for each year in turn of the historical record by training the model

using all data but that for the year to be forecast. (For broader discussions of forecast
evaluation, see e.g. Livezey 1995, Potts et al 1996.)
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Another technique that also requires only limited resources (e.g. a moderate per-
sonal computer) is discriminant analysis, that makes use of probability distributions
based on the historical data. Ward and Folland (1991) provide a detailed description of
both linear regression and discriminant analysis as applied to prediction of rainfall in
NE Brazil, with validation using several different skill measures.

Yet another simple method is the use of optimal climate normals (Huang et al
1996). Basically, an average over the previous N years is used to estimate conditions
for the next season, and the best choice of N is determined from historical data. This
method takes advantage of slow changes that may occur on a timescale of several years.

A statistical technique that has recently found widespread application is canonical
correlation analysis, which is used to relate spatial patterns in the predictor and pre-
dictand. (See e.g. Barnett and Preisendorfer 1987, Barnston 1994, He and Barnston
1996, Barnston et al1996, Barnston and He 1996, Shabbah and Barnston 1996.) Other
methods such as neural nets (e.g. Hastenrath et al 1995, Tangang et al 1996), singular
spectral analysis (e.g. Keppenne and Ghil 1992) and principal oscillation patterns (e.g.
Xu and von Storch 1990, Penland and Magorian 1993, von Storch et al 1995) have also
been successfully applied. Most techniques are basically linear in approach. The advan-
tages of nonlinear methods are often offset by data limitations which make it difficult
to define the required parameters adequately.

Seasonal forecasts have been particularly successful for the March-May rainy sea-
son in NE Brazil (Ward and Folland 1991, Hastenrath and Greischar 1993), where the
seasonal movement of the convergence zone is strongly controlled by sea surface tem-

perature anomalies, principally in the tropical Atlantic ocean. Experimental real-time
forecasts based on linear regression and discriminant analysis methods have been issued

by the UK Meteorological Office since 1986. Preliminary (early February) and update
(early March) forecasts are made for various combinations of observing stations: Fig. 2
shows the track record for Fortaleza/Quixeramobim.

The following is an abbreviated example of the content of a typical NE Brazil
experimental forecast issued by UKMO:

Prediction of 1995 March-April-May rainfall
for Fortaleza/Quixeramobim, issued February 1995

The quint categories very dry (VD), dry (D), average (A), wet (W), and very wet
(VW) are based on 1951-80 observed rainfall.

Current state of the Atlantic and Pacific SST predictor patterns: there are warm
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SST anomalies in the south tropical Atlantic and cool SST anomalies in the north
tropical Atlantic, which favour above normal rainfall; there are warm SST anoma-
lies in the central and east tropical Pacific, which favour drier conditions.

linear regression:

normalised rain anomaly 0.06 - 0.75Atl - 0.10Pac

+0.68 (VW category)

discriminant analysis:

probability
VD
.02

D
.08

A
.05

W
.11

VW
.75

AGCM: regional rainfall 30% above model climatology.

Best estimate forecast: VERY WET

(The updated forecast issued in March was for WET conditions, and the observed
rainfall was in the WET category.)

This type of real-time forecast information has been used by Brazilian regional
authorities to aid agricultural and hydrological management (Moura 1994).

The UK Meteorological Office issues similar forecasts for July-August-September
rainfall in several regions in tropical west Africa, and for tropical east Africa October-
November 'short rains' rainfall. Skill is good, but not as high as for North East Brazil.
The rainfall-sea surface temperature link is more complicated, and other factors may
have a significant effect. For the Sahel region, there are clear signs of interdecadal
changes in rainfall that are related to interdecadal variability of an interhemispheric
SST anomaly pattern (Ward et al 1993). Potential impacts and uses of the Sahel
forecasts have been discussed by Hulme et al (1992).

Statistical forecast methods are inexpensive, requiring only a moderately pow-
erful personal computer, historical data, and some readily available software. More

widespread application of these methods, particularly by local meteorological services,
is being encouraged.

Although the above examples refer to tropical regions, significant statistical fore-
cast skill has also been obtained in extratropical regions. For example, Barnston has
recently used canonical correlation analysis in a thorough and systematic investigation
(Barnston 1994) relating northern hemisphere extra-tropical seasonal surface tempera-
ture and precipitation to SST, 700mb height, and prior values of the predictand. The
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most important predictor was found to be SST. He found skill 'good enough to be
beneficial to a variety of users' for some locations and times of year. Skill was best
for northern winter-spring in some North American regions, particularly in association
with ENSO episodes.

3b. Atmospheric general circulation models

The remarkable increases in computer power in recent years have allowed the ap-
plication of comprehensive dynamical atmospheric circulation models (AGCMs) to sea-
sonal forecasting. AGCMs are physically-based and nonlinear, and should be able to
simulate a wider variety of conditions than (mostly linear) statistical models which rely
on some best fit to past experience. AGCMs do not rely on extensive historical data,
and thus can provide forecast information for regions where data sparseness prohibits
construction of empirical models. AGCMs are not limited to specific regions, but cover
the globe: however, the model-specific forecast skill varies strongly with location and
season. The AGCMs used for seasonal timescales generally have spatial resolution that
is lower than that required for short-range numerical weather prediction, but sufficient
to resolve and reproduce main climatic features.

Slightly different initial conditions can give very different individual results, so
typically several AGCM runs are used to obtain an ensemble average. Where the scatter
is substantial relative to the seasonal signal, a large (and expensive) number of ensemble
members is needed to increase confidence in the predictions to expected levels. Estimates
of the required ensemble sizes have been made by Brankovic and Palmer (1996).

Although AGCMs have been used extensively for forecasts on lead times up to one
month, there has thus far been relatively little actual forecast work on the seasonal
timescale (but see below). However, AGCMs have been used to assess potential sea-
sonal predictability, by making ensemble runs with observed sea surface temperature.
By analysing the results from an ensemble, comparing for example observed and simu-

lated surface pressure, temperature, and precipitation, the amount of variability that is
associated with SST variations can be estimated. The ability of such a model to repro-
duce observed year-to-year variations can also be assessed. The results are, of course,

model dependent: low skill for a region in such an experiment does not necessarily mean
that the region is unpredictable. Moderate skill in a region does however indicate some
potential for useful predictions there. Such assessments show high levels of potential
predictability in tropical regions, with lower levels elsewhere. In the extratropics, pre-
dictability is best in parts of North America. For assessments based on several recent
years, see e.g. Kumar and Hoerling (1995), Kumar et al (1996), Stern and Miyakoda
(1995), Dix and Hunt (1995), Brankovic et al (1994).
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Extensive historical SST analyses are available: the UKMO Global Ice Sea Surface
Temperature (GISST) dataset extends from 1871 to 1993 (Parker et al 1995), and has
recently been revised (Rayner et al 1996). Multidecadal runs using GISST have been
carried out at UKMO. Results based on 6 integrations from 1949-93 are described in a
series of papers. Global maps of potential predictability for seasonal precipitation and
mean sea level pressure (MSLP) are included in Rowell (1996): highest predictability
is over the tropical oceans, with high predictability also over tropical island regions,
northern South America and parts of Africa. Predictability is moderate over North
America, and low (but sometimes significant) over Europe and mid-latitude Asia. The
North Pacific and American region is analysed in more detail by Renshaw et al (1996),
and the North Atlantic and European region is described in Davies et al (1996).

The recent completion of atmospheric re-analyses (e.g. by ECMWF, NCEP) for
several years introduces the possibility of extensive predictability assessments that in-
clude consistent atmospheric initial condition information: such work forms a major
part of the European PROVOST (PRediction Of Variability On Seasonal Timescales)
programme. Richardson et al (1996) have presented some early results using a 9 mem-
ber ensemble. Fig. 3 (taken from their report) shows spatial correlations R of simulated

and observed 500hPa height fields for the northern hemisphere (20N-80N) for the Dec-
Jan-Feb season, for the individual runs and the ensemble means. The AGCM runs used
with end-of-November initial atmospheric conditions and observed sea surface tempera-

ture, for 1979/80 to 1989/90. Fig. 3 demonstrates how skill can vary from year to year.
The most skilful year is 1982/83, when a very strong EI Nino occurred: each individual
member of the ensemble has positive skill (correlation ranging from 0.2 to 0.6). The
highest ensemble skill (about 0.8) was attained in 1988/89, during a strong La Nina

cold event in the Pacific.

Skill can be conditional: in some regions skill may be generally weak, but useful
forecasts may be made in e.g. EI Nino years. Extratropical skill is not necessarily linked

to ENSO: from AGCM experiments there is evidence of substantial skill in non-ENSO
years, and of weak skill in some ENSO years.

Such analyses are effectively forecasts with perfectly-predicted SST. For real-time
AGCM forecasts some estimate of the SST evolution over the forecast period is needed.
The simplest method is to persist the SST anomalies observed over e.g. one month prior
to the forecast period. From 1994 on this method has been used at UKMO to provide

additional forecast information for the NE Brazil and Sahel real-time seasonal forecasts.
In the tropics the seasonal signal from different runs is quite consistent in some regions:

for NE Brazil three-member ensembles have been used.

In some regions, notably the tropical Pacific, SST forecasts have been made that are
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more skilful than persistence (see section 4) at lead times beyond a couple of months.
The SST forecasts are typically made separately, then used to force the AGCM in
a two-tier strategy (Bengtsson et al 1993, Ji et al 1994). A comparison of the skill
obtained for a particular AGCM using observed, persisted and forecast SST has been
made by Livezey et al (1996). Hunt et al (1994) have used a two-tier strategy, as have
Barnett et al (1995) by way of statistical atmosphere/SST relationships for the northern
hemisphere.

4. El Nino

The largest interannual sea surface temperature variability signal is found in the
tropical Pacific, associated with the cycle between warm EI Nino and cold La Nina
events. The SST anomalies in the equatorial Pacific Nin03 region (5N-5S, 150W-90W)
shown in Fig. 4 indicate the nature of this variability: the peaks in 1976/77, 1982/83,
1986/87/88, 1991/92/93/94 correspond to warm events. EI Nino has a strong interactive
influence on convection in the tropical atmosphere, and hence on global circulation via
tropical-extratropical interaction. (Ropelewski and Halpert 1987, 1996). This makes
it the most important factor in seasonal prediction for many locations. Most of the
examples given above involve EI Niiio as a predictor to some extent. The book edited
by Glantz et al (1991) provides an excellent summary of EI Nino behaviour, its global
connections and its physical and societal impact. See also Glantz (1996). If EI Nino
could be predicted, then the accuracy and lead times for EI Nino-associated forecasts
can be improved. Thus an important element of seasonal forecasting research is the
prediction of EI Nino itself.

Through the WCRP Tropical Ocean Global Atmosphere (TOGA) Programme that

ended in 1994, major advances in our understanding of tropical variability were made
(TOGA, 1995). The importance of a network of observations of wind, sea surface
temperature and subsurface ocean temperature was recognised, and the Tropical Atmo-
sphere Ocean array was established in the tropical Pacific to provide in situ data (Hayes
et al 1991). A wide range of models to simulate and predict tropical Pacific variability
has been developed. This work continues as a major component of CLIVAR-GOALS
(CLIVAR Science Plan 1995).

A common measure of the skill of an El Nino forecast model is the ability to predict
sea surface temperature anomalies in the equatorial Pacific region. Several models have

demonstrated significant SST skill at lead times of up to a year. The types of models
range from statistical (e.g. Barnston and Ropelewski 1992) to simplified dynamical

(e.g. Cane et al 1986) to coupled GCMs (e.g. Latif et al 1993, Ji et al 1996). The
performance of several such models is discussed by Latif et al (1994) and Barnston et al
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(1994). Further examples, with real-time predictions, can be found in the Experimental
Long-Lead Forecast Bulletin.

El Nino prediction skill was high in the 1980s, but in the 1990s the pattern of
Pacific SST evolution has been different (sustained warm Pacific conditions, a sequence
of warm episodes) and skill has been lower. The warming in 1994 was particularly
difficult to predict.

The impact of El Nino may depend on the nature of individual events. Ward et al
(1994) identified two types of El Nino, with differing zonal SST gradient characteristics,
that are associated with markedly different atmospheric anomalies.

5. Summary

There is substantial evidence that seasonal forecasting of meteorological and oceanic
conditions is feasible, with significant levels of skill being attained. Skill is largest in
tropical regions, but is also substantial in some extratropical regions, particularly during
ENSO episodes.

For atmospheric conditions, the main predictor is sea surface temperature. SST
anomalies can persistent for several months, and in that time they can exert a systematic

bias on the atmosphere through air-sea interaction, which is strongest in the tropics.

The region of largest interannual SST variability is the tropical Pacific, and El Nino
events in that region have a global impact and a strong influence on seasonal predictions.
Fortunately El Nino is itself predictable several months in advance, and some schemes
make use of this SST forecast information to increase the accuracy and lead times of
predictions for land regions.

A wide range of prediction methods has been developed. Several inexpensive and
useful statistical techniques are in use: such methods rely on past experience to make
a forecast however, and hence are best applied in regions where accurate historical
records are available. The use of atmospheric GeMs is becoming more widespread as

computing costs decrease, although ensembles with many members may be required in
extratropical regions to obtain reasonably reliable forecasts.

An important message from this selective review is that an expanding range of
experimental and operational real-time forecasts is now available. The Experimental

Long-Lead Bulletin provides a forum for the presentation and dissemination of a wide
range of real-time seasonal predictions, and a substantial amount of information is
available on the World Wide Web.
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One aspect of seasonal forecasting that requires further research is the issue of
determining the circumstances for which forecasts are most reliable: i.e. predicting pre-
dictability. Some areas of the extratropics are best predictable during ENSO episodes,
for example, and there is evidence that different types of ENSO may have substan-
tially different impacts. Similarly, particular combinations of other SST anomalies may

generate particularly strong seasonal anomaly signals.

With several predictions of various types available for some predictands (notably EI
Nino), the possibility of combining different schemes to obtain better overall forecasts
is being investigated (Fraedrich and Smith 1989, Casey 1995, Unger et al 1996).

Another aspect is the issue of interdecadal changes (Parker et al 1994). In the
Sahel, for example, extended drought periods may be related to decadal changes in
interhemispheric SST contrasts. A better understanding of such decadal variations and
their possible impact on the skill of seasonal predictions could improve forecasts for
such regions. There is also evidence (Latif and Barnett 1994, 1996) of decadal ocean-
atmosphere interactions that may evolve in a predictable manner and thus offer the
opportunity of useful predictions about likely variability several seasons in advance. A
related issue is the impact of changes in climate variability induced by greenhouse gas
changes (IPCC 1996).

A very important aspect of seasonal prediction that has not been discussed in this
review is forecast application, through which the real benefits of seasonal forecasts are
realised. The question 'what is a useful level of skill?' cannot really be answered in a
purely meteorological or oceanic context, but depends on the application and requires
interaction between the forecast providers and users. At present data available on this
topic is very limited: however applications of seasonal forecasts are increasing and I
hope a future reviewer will be able to discuss this aspect in detail.
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Figure 1: Lag correlation of observed monthly average sea surface temperature anomalies in the Nino3

region with the anomalies in the same region M months previouslv. Data from GISST, 1965-1990.
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Figure 2: March-Max ~pasonal rainfall at Fortaleza and Quixcramobim in Nordeste Brazil, in terms

of five categories. Observed conditions are indicated by the solid line. Preliminary (dashed) and updated

(dotted) experimental forecasts were issued by UKMO in earlv February and early March of each year.
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Figure 3: Spatial anomaly correlation coefficients (ACC) between simulated and observed 500hPa

height fields for the northern hemisphere (20N-80\") for the Dec-Jan-Feb season. The AGC?v'I runs used

end-of-November initial atmospheric conditions and observed sea surface temperature. Values for each

of 9 realisations (solid bars) and of the 9-member ensemble mean (hatched bars) are shown. (From

Richardson et al 1996.)
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Figure -1: Sea surface temperature anomalies in the Nil-103 region of the tropical Pacific. Long ticks

indicate the beginning of the year indicated below. Data from G ISST, 1975-1995.


