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ABSTRACT

Atmospheric or oceanic flows strongly constrained by rotation and
stratification can be described by a set of Lagrangian partial
differential equations called the semi-geostrophic equations. In these
equations the trajectories have to be determined implicitly. Generalised
solutions of these equations are defined as a sequence of rearrangements
of the fluid, which need not be smooth. These solutions are closely
related to generalised solutions of the Monge-Ampere equation. Existence
and uniqueness of such solutions is proved. The evolution is shown to be
a sequence of minimum energy states of the fluid, giving strong physical

plausibilty to the solutions.

Abbreviated title: Generalised Lagrangian solutions.

Key words: semi-geostrophic, Monge-Ampere equation, discontinuities,
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1. INTRODUCTION

This paper describes a new type of generalised solution of a set of
partial differential equations that are important in meteorology and
oceanography. In the atmosphere and ocean much of the flow is smooth and
large scale, but there are also small very active regions which form an
essential part of the large scale dynamics but where the flow is highly
complex and often turbulent. The solutions described in this paper
simplify the flow in these active regions so that, for instance, a
turbulent shear layer becomes a discontinuity. It can then be shown that
these simplified solutions can be uniquely determined in terms of the
large scale dynamics, in an analogous fashion to the determination of
the propagation speed of a hydraulic jump by large scale conservation
laws. The simplified solutions are not an accurate approximation to the
full equations of motion in the active regions, any more than the one-
dimensional shallow water equations are accurate at a hydraulic jump.

The equations used are the semi-geostrophic equations, which are a
standard model for slowly varying flows constrained by rotation and
stratification. They were introduced by Eliassen [11 and further
developed by Hoskins [2]1. Salmon [3] has shown how they can be derived
from a Hamiltonian formulation. In the simplest case of a coordinate
system rotating at a constant rate, the evolution equations can be
written in Lagrangian form as a set of ordinary differential equations
with no spatial derivatives. The fluid trajectories are determined
implicitly, by the requirements of geostrophic and hydrostatic balance.
Classical solutions of these equations can be obtained by the
geostrophic coordinate transformation introduced by Yudin [4). It can be
shown by using this method that discontinuities can form in a finite
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time from smooth initial data, Hoskins and Bretherton [5]. They also
show that the equations for determining the trajectories can be written
as a Monge-Ampere equation.

The analytic solution in geostrophic coordinates derived in [5] can
be calculated for all time, but the transformation of it back to
physical space becomes multi-valued after the initial formation of a
discontinuity, and the results are then unphysical. Cullen and Purser

[6] introduced a method of continuing the solutions that made physical
sense, and constructed solutions for piecewise constant data by using a
geometrical method. Cullen et al. (71, Chynoweth [8], and Shutts [9,10]
have constructed solutions by this method in a number of situations and
obtained agreement with observed behaviour, lending physical
plausibility to the solutions. In this paper we show that these
solutions can be defined in a mathematically rigorous way, and existence
and uniqueness proved. This is done by identifying the method of finding
the trajectories with a generalised solution of the Monge-Ampere
equation, and making use of the large body of theory available for that
equation, [11]. We then show that the solutions can be interpreted as a
sequence of minimum energy states. At each time instant the energy is
minimised with respect to rearrangements of the fluid that conserve
parcel properties, essentially entropy and a form of momentum which
allows for the rotation of the coordinate system. This relies on recent
results in rearrangement theory proved by Burton [12)]. This
characterisation gives a strong physical justification to the model.
2. DESCRIPTION OF SOLUTIONS

Consider the unforced semi-geostrophic equations in the form used by

Hoskins [2],




Dug/Dt + d¢/dx - fv = 0 (21
Dv,/Dt + d¢/dy + fu =0 (229
De/Dt = O (23
(fvg, -fug, g6/6.) = Vy (2.4)
D/Dt = d/dt + u.V (2.5
Vou=0 (2.6)

These equations are to be solved in a closed region Q in R® with u-n
given on »Q. f is the Coriolis parameter, here assumed constant, g is
the acceleration due to gravity, 6. is a reference value of the
potential temperature 6, and ¢ 1is the geopotential. Equation (2.4)
includes the definition of geostrophic wind and the statement of
hydrostatic balance. The velocity u has to be determined implicitly.

The structure of the solutions becomes clearer by making the
substitutions used in [2] and (3] and Purser and Cullen [13]. Set

X=xtv/f, Y=y-ug/f, Z=gb/f28,, P=(¢/f2)+%(x2+y2). The equations then

become:
DX/Dt = f(y-Y) 237
DY/Dt = f (X-x) (2.8)
DZ/Dt = 0 (2.9
(X,Y,2) = VP, (2.10)

The continuity equation (2.5) can be combined with the other equations
as in [2] to give the inverse potential vorticity equation:

Dp/Dt = 0, (2.11)
where

p = 0o(x,y,2)/0(X,Y,2). (212D
It is sometimes more convenient to write this as

Dq/Dt = 0, (2.13)



where gq=p~'. It 1s also convenient to define a dual potential R(X) as
RX) = x*X - P(x(X)), (2.14)
whence it is shown in [13] that
VR = x. (2.15)

In cases where the solutions are sufficiently smooth

p = det {H(R))}, (2.16)

q = det {H(P)}, (2.17)
where H denotes the Hessian matrix whose components are d2/®x,dx;.

This notation has been <chosen to emphasise a geometrical
interpretation of the problem in which the solution at any time consists
of a transformation between physical space (x space) and data space (X
space). As well as considering the solution conventionally as finding
X(x) for x€Q, it can be considered as the dual problem of finding an x
in Q for each X for which p(X)#0. The first stage in the solution is to
solve this dual problem, for which the only information needed is p(X).
The Monge-Ampere equation (2.16) is then solved for R using the boundary
condition that VRedQ as X+w,which is a standard boundary value problem
for this equation.

The evolution equations can now be solved by reinterpreting
equations (2:7) to (2:9) as defining a particle velocity field

U=(f (y-Y), f (X-%),0) (2-18)

in X space. Physical particles preserve their values of p because of

(2-11), so the p equation in X space becomes the standard conservation
law

op/dt + Vy- (pU) = 0. (2:19)

This equation can be used in integral form for non-smooth solutions

where p is a generalised function. It is then integrated forwards in
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time to give a new p distribution and the transformation between x space
and X space is reconstructed.

This type of solution procedure can be applied to several of the
approximate systems of equations used in meteorology and oceanography,
as described by Hoskins et al. [14]. It also forms the natural extension
of the coordinate transformation method of [4] to generalised solutions.
The physical interpretation is that fluid parcels of specified volume
and with specified 'absolute' momentum (X,Y) and buoyancy Z can be
uniquely arranged in the fixed volume Q so that a potential function P
exists and the geostrophic and hydrostatic relations (2.10) are
satisfied. It turns out that an additional dynamical stability
condition, equivalent to parcel stability (Shutts and Cullen [151) is
needed to make the arrangement unique. The values of X and Y for fluid
parcels change with time according to (2.7) and (2.8), and the parcels
move in physical space in such a way as to satisfy (2.10). This motion
is well-defined if the unique rearrangement result can be proved. In the
unforced problem it can be shown that the required motion of particles
is continuous and can be used to define a velocity field u. This
velocity field need not be smooth and, in particular, fluid can separate
from the boundary though it cannot pass through it. If source terms are
included in (2.7) to (2.9), fluid parcels may sometimes jump
discontinuously to new positions. Under these conditions a u field
cannot be defined, though the generalised solution still exists.

In subsequent sections we prove the existence and uniqueness of
solutions to this problem under the additional condition that P is a
convex function. This 1is the extra dynamical stability condition
referred to above. It requires P to be continuous and differentiable

-7 -



J

almost everywhere but requires no other smoothness. The dual potential R
is then also convex. The proof identifies the problem with a generalised
solution of the Monge-Ampere equation at each time, combined with a
solution of ordinary differential equations in time. Results proved in
Pogorelov [11] for the Monge-Ampere equation are extended as necessary
for this problem. Uniqueness of solutions to the ordinary differential
equations can also be proved, though a redefinition is required in
situations where the data are constant in regions of physical space. In
that case p is an unbounded distribution and the right hand sides of
equations (2:7) and (2-8) are multivalued. A weak form of the equations
must then be used instead.

An important characterisation of these solutions, which greatly
enhances their physical importance, is that they minimise the energy of
the fluid at each time instant under rearrangements of the fluid which
conserve parcel values of X. This is closely related to the Hamiltonian
interpretation of these equations by Salmon [3] and Shutts [16]. The
proof of this for generalised solutions is set out in a later section.
The argument is illustrated here for smooth solutions.

The kinetic energy of the fluid is approximated by its geostrophic
value. It is then shown in [2] that the total energy density E of a
fluid parcel relative to its value in an isentropic basic state
atmosphere can be written as

E = %lustty _2) - giz/f (2.20)

f72E 5 B (x2+X24p24Y2) = (xXpyY+zZ), (2.21)
It can then be shown that equations (2.1) to (2.5) imply the energy
equation

DE/Dt = -u'Vg. (2.22)



Given a smooth volume-preserving rearrangement of the fluid, if 3§
denotes a change under the rearrangement, then &x can be written as
proportional to VxA for some vector potential A. The rearrangements
conserve X and the integral of x2 is independent of the rearrangement.
The resulting change in the total energy of the system deduced from
(2.21) is then proportional to
8[(-x X,
==[(-8x'X),
== [(-VxA: X).
=[(A-VxX) + a boundary term.
If the rearrangement is within a rigid boundary, the boundary term
vanishes and the condition for the energy change to vanish for arbitrary
displacements is that X=VP for some P. This identifies the geostrophic
and hydrostatic relations with the condition for the energy to be
stationary. A rather longer argument set out in [15] shows that the
condition for the energy to be a minimum is that P is convex.
3. Constructio the solution at i time
Suppose that at some time t, p is given as a function of X, subject
to the condition that integrating p over all X gives the volume of the
given region Q in physical space. Then the remaining variables can be
computed in principle by the following steps:
1) Use the definitions of p and R to give
det (d2R/dX;0X;) = d(VR)/D(X) = p. (3.1)
(13) Equation (3.1) is a Monge-Ampere equation for R in terms of
p. It must be solved given the boundary conditions that VR = x is
always within Q for all X. The equation can also be given the
geometric interpretation of finding a convex surface with given
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curvature.

(1ii) The solution for R(X) allows VR to be calculated, and hence

the mapping X-+x which assigns data values to points in physical

space.

aw) All information required to advance the solution of (2.6) -

(2.10) in time is now available.

The values of the total velocity u in physical space do not have to be
computed to advance the solution in time, but can be diagnosed by
calculating Dx/Dt.

The key result required is that (3.1) can be solved with the given
boundary conditions. In [6] it is solved using a piecewise constant
approximation to the data. This is equivalent to specifying a discrete
set of data values X;. Associated with each value is a p,, which is the
volume of fluid with this value. Provided the p; add up to the volume of
Q, it is shown in [6] show that the fluid can be arranged uniquely in
physical space so that geostrophic and hydrostatic balance, expressed
by X=VP, is satisfied, and so that the fluid is stable to overturning
motions, expressed by the fact that P is convex.

This finite dimensional result is proved as the first step in the
theory of generalised solutions to the Monge-Ampere equation, Pogorelov
[111. The results are then extended to general data and allow the proof
of existence and uniqueness of solutions to (2.13) to be completed.
Though many of the results in [11] are stated in two-dimensions, they
actually hold in any number of dimensions. Three-dimensional versions
are required here. The geometrical interpretation of the problem
requires construction of the hypersurface P(x,y,z). This is a surface in
four dimensional space, and we use s to denote the fourth coordinate.
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Only the theorems are stated in this paper, since the proofs are trivial
modifications of those given in [11].
Definition ([11], Chapter III, p.19)

Let V be an arbitrary polyhedral angle having convexity in the
direction s<0, with vertex (X,Y,Z). The total curvature associated with
the angle V is defined as the projection of the angle on X space

AV = [[]eosN (x,y,2)dxdydz, 3.2)
where the integration is carried out over all planes of support of the
angle V and \'(x,y,z) is the function 1//(1+x2+y2+z2), If, instead, A'
is an arbitrary positive continuous function of x, X, and s, and is
nonincreasing with respect to s, the function A defined by (3.2) is
called the generalised curvature B
Theorem 1 ([ 111, Chapter III, Theorem 3a, p.23)

Let V be a polyhedral angle which projects onto the whole of (X,Y,Z)
space, having convexity in the direction s<0, let (g,,'':,g.) be lines
parallel to the s axis, let (A,,''*,\,;) be positive numbers, let \' be
the function defined above. Suppose that

$ Il osht (x, s z)andydz = D N, (3:3)
Then there exists an infinite convex polyhedron which projects in a
single-valued manner into X space, having convexity in the direction
s<0, with limit angle V, vertices on the lines g., and curvatures A. at
these vertices.

This polyhedron is unique to within displacements in the direction
of the s axis B

This construction will be used to give a surface R(X). The
prescribed limit cone will be chosen to satisfy VRedA, where dA is the
boundary of the given region in physical space. The curvatures A. will
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be given by values of p.
Theorem 2 ([ 111, Chapter IV, Theorem 3a, p.33)

Suppose given a completely additive set function p(X) which is non-
negative in the convex region I' and zero in the exterior of this region.
(A set function is a function which takes values on subsets, rather than
Just at individual points). Suppose V is a convex cone which projects
onto the whole of X space, having convexity in the direction s<O.

Let A'(x) be the function defined above. Suppose that it satisfies
the condition

TN (x,y,2)dxdydz = p(I). (3:4)
Then there exists an infinite convex surface R with limit cone V and
curvature A equal to p K

This theorem extends the geometrical construction used in [6] to
general convex surfaces, and allows semi-geostrophic solutions to be
constructed for general, not just piecewise constant, data. No results
on uniqueness appear in [11] for this case. Uniqueness is proved there
for the polyhedral case and the case with strictly positive curvature.
The method is to suppose there are two different solutions R, and Ra.
The arbitrary constant allows it to be assumed that R>-R,20 with
equality somewhere. If the two R surfaces then separate from each other,
there must be some subset of I' on which R, and R. subtend different
solid angles, which contradicts the requirement that they have equal p.

In the general case needed here, the difficulty is that the solid
angle subtended by a subset of I' may not be well-defined because p may
have singularities. This difficulty, however, only arises if p has an
integral on the boundary of the chosen subset of I' which is greater
than some non-zero value v. Since the integral of p over I' is finite,
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there can only be a finite number of such disjoint boundary sets. An
arbitrarily small shrinkage of the subset will then make the solid angle
well-defined. The version of this argument needed for proof of
continuous dependence of the solution on the data is given below.
Lemma 1

Any connected set B of X with finite measure contains a subset A of
finite measure with the following properties. Given a neighbourhood A(e)
of A with maximum distance € from A, and a similar neighbourhood A'(g)
of the complement A' of A in T, then p(A(e))9p(A) as €40, and
pC(A' (g)')3p(A) as €90.
Proof

A connected set A which does not have this property must have a
boundary ®A containing singularities of p whose integral over d®A is
greater than some v>0. Since the integral of p is finite, there can only
be a finite number of such disjoint boundary sets within I' and therefore
within B, so there exists n with 0<n<1 such that A can be shrunk by the
factor n with respect to a point within A to give a new set nA
satisfying the conditions of the lemma B
Theorem 3

The convex surface R of Theorem 2 is unique up to an additive
constant.
Proof

Theorem 2 ensures that such a R exists, call it R,. It is clear from
Theorem 2 that if R is a solution, so is R+c, where ¢ is a constant.
Suppose Theorem 3 is false, then there are solutions R, and R, with R,-
Ro#c. Without loss of generality, assume that R, is changed by a
constant so that R.’R, everywhére. and that there is at least one point

_13_




O with R,=R.. Note that this assumption uses the fact that R, and R.
have the same limit cone.

Continuity of R, and R. and convexity of I' ensures that R,=R. on a
closed subset C of I' including O. If the theorem is false then R.-R,
must be strictly positive somewhere in 'y and continuity of R, and R:
means that this strict inequality must hold on an open subset of I' with
finite measure. There must thus be a point ¢ with X=X, on the boundary
of C, and a closed neighbourhood D of ¢ in I in which R>-R, is
increasing in every direction away from c, and an open set of directions
in which R2-R, 1is strictly increasing for a finite distance. This
neighbourhood must contain a neighbourhood A of ¢ satisfying the
conditions of Lemma 1. The total solid angle of R. within A is well
defined and is the integral of all the gradients of R. within A which is
therefore strictly less than that of R,. This contradicts the
requirement that both are equal to the integral of p over A R
Remark

It is not true that the curvatures of R, and R> at c¢ have to be
distinct to allow the surfaces to separate. A different form of this
theorem which states that the function X(x) can be uniquely rearranged
to form the subdifferential of a convex function has been claimed by
Brenier [19].

These two theorems show that the solution of (3:1) can be uniquely
constructed at any time. In order to extend this result to existence and
uniqueness of a solution to the time-dependent problem (2:7) to (2:11),
a form of continuous dependence of R on p is required. In order to solve
the physical problem, continuity of R with regard to displacements of
existing values of p is necessary, and any p satisfying the conditions
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of Theorem 2 must be allowed. Note that R is not continuous with respect
to variations in p 1in the conventional sense, because a small
perturbation to p could create negative values, and R could not then be
calculated at all.
Definition
A displacement p' of p is defined by setting
p' (X+A X)) =p (XD (357
for all subsets of X space, where the mapping X2X+A(X) maps I' into
itself with max|A(X)|=A. The displacement mapping need not be volume
preserving. Define a displacement R' of R by solving (3-1) with right
hand side p'
Theorem 4
The convex function R' generated from R by a displacement as defined
above tends to R as A tends to zero.
Proof
Let p' be the displacement of p. Then Lemma 1 means that any
connected subset of I' contains a set A of finite measure so that p'
tends to p. Suppose that R' does not tend to R. Then for any & however
small there is an R" with associated curvature p" a finite distance €
from R generated by a displacement less than 8. As in the proof of
Theorem 2, the arbitrary constants can be chosen so that R"?R with
equality on a closed subset C of I'. In order for R" and R to separate
the required distance, there must be a neighbourhood A of some cé€dC
satisfying the conditions of Lemma 1 with p"(A) different from p(A) by
OCe). Lemma 1 however requires this difference to be 0¢(8), which is a
contradiction B
A stronger result can be proved if p is bounded. In this case a
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theorem quoted in [11,p.36] states that R 1is smooth, and hence
continuously differentiable, [17,p.246].
Theorem 5

Under the conditions of theorem 4, if p 1is bounded and if the
displacements conserve volume in X space then VR' tends to VR as A tends
to zero.
Proof

The boundedness of p is preserved under such displacements, so the
continuity of VR is preserved. Convergence of VR then follows from
convergence of R, [17,p.248] R

This result is not true is p 1s unbounded because VR 1is then

discontinuous.
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4. Existe enes t e evo ti

In this section we discuss the solution of the evolution equations (2:7) to
(2:11), or the alternative dual space form (2:19). Given initial data pX) for all
X with [p equal to the volume of Q and with the support of p within a bounded
set I in X space, calculate the velocity U using (2:18). This velocity is bounded
because x€Q and XeI, but is multivalued if p is a & function. The velocity must
also remain bounded for at least a finite time as the support of p can only
expand at the velocity U which is initially bounded. The evolution equation
(2:19) only makes sense if p and U are differentiable. Thus consider instead
the integral form

d/dtp (A = [,apU'n, 4-1)
where A is any closed connected set of finite measure in X and the integral is
taken round its boundary.

This equation can be solved by constructing a displacement mapping as in
section 3, with

A = JUQD dt. 4-2)
Define associated changes to p using (3-5). Equation (4-2) makes sense provided
U can be calculated for all X. This is possible if p is bounded.

p will remain bounded throughout a given time interval if it can be shown
that the displacement rate U is non-divergent, for then p will be bounded by its
initial values. If U is differentiable, a simple calculation based on (2:18) shows
that it is non-divergent. Otherwise, for any set A as in equation (41),
calculate [,aU-n. Substituting for U shows that this is equal to

J»a (OR/Ds-X-ds)ds

round the boundary of A, which vanishes.
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Theorem 6
Given initial data O¢{p(X){® with bounded support I', equation (4:2) can be
integrated forwards uniquely for a finite time interval.
Proof
The standard existence theorem for ordinary differential equations,e.g.
[18,p.31], requires that the right hand side vary continuously with variations of
the data. In this case the variations of the data are a displacement through a
distance bounded by UAt, where U is the maximum value of U and At is the time
interval. The argument above shows that p remains bounded, so that Theorem 5
applies throughout the time interval. This theorem gives the necessary
continuity B
In the more general case where p is unbounded but integrable U cannot be
calculated everywhere. In this case there is a finite subregion & of Q with
constant data values X. Define U using the value of x at the centroid of this
subregion:
U = [2(y-Y X-x,0). 43
This definition agrees with (3'5) where U can be directly calculated. Now solve
the evolution equation (4:2) using the displacement mapping (4:3), calculating p
from (3:5), and calculating R from p.
Theorem 7
Given initial data as in Theorem 6 except that p need not be bounded
above, form an evolution equation for R using the system (4:2), (4:3) and (3'5)
as above. Write this equation as
dR/dt = f(R). “4-4)
Then equation (4+4) can be integrated forwards uniquely for a finite time

interval.
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Proof

Equation (4:3) ensures that the displacement (4:2) tends to zero as At
tends to zero. The required continuity of R was established in Theorem 4. The
rest of the argument is the same as for Theorem €6 B

In the smooth case treated in Theorem 6, individual particle trajectories
can be followed and the equations integrated by a Lagrangian method. The
positions of individual fluid particles within E cannot be uniquely defined by
these equations. Thus a Lagrangian method cannot be used. However, Theorem 7
shows that this does not prevent the determination of the data X as a function
of x. Physically this is because X is unaffected by a rearrangement of fluid
within a region where the data is constant. Because trajectories cannot be
calculated, the physical velocity u is undefined in Z. In reality, the velocity
field in such regions may be quite chaotic, and cannot be approximated
accurately using a simplified set of equations such as those used in this paper.
It is a strength of the model that it still gives a well defined evolution of
X(x) under these circumstances.

One of the desirable properties of the original form of the evolution
equations is energy conservation. It is now shown that this is preserved when
equation (4:3) is used. For simplicity, it is illustrated for the case when p is
a set of delta functions p,, corresponding to a polyhedral approximation to R.
The general case can be recovered in the limit.

The total energy divided by f2? is given as in (2:21) by

J{#x2+X2+y2+Y2) - (xX+yY+22)} p dX, 45)
where the integral is taken over data space. The terms x? and y? integrate to
constants independent of the evolution. For polyhedral R with curvatures p; at
the vertices, the remaining terms reduce to

T{®X,24Y,2) - (x Xty Yi+z,Z0} pa. 46)
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The rate of change of the energy associated with each vertex is then

{-XdR/dt-Yd§/dt-ZdZ/dt-% (F-Y X F-Y)-§ X-x)+Y X-%) }p, 4-7)

m

where the subscript i has been omitted and X is the centroid of the image E of
X in Q. All terms except the first three cancel, and these take the form @‘V¢ as
iR (2229,

To see that this sum vanishes, it is best to consider the evolution in
physical space. The region Q will be subdivided into polyhedral regions Z; with
volumes p; and data values X;. Then the terms dX;/dt appearing in (4:7) are the
mean velocity of points in Q. A velocity field dx;/dt can be defined over the
whole of Q; by calculating the motion of its vertices and interpolating. This
velocity field will be non-divergent because p; is conserved and have mean value
X;. Since X is constant over Q,, the first three terms of (4:'7) can be written

- [aipX-dx/dt. 4-8)
Since X=VP and dx/dt is non-divergent, (4:8) represents the net flux of P into
Q,. When summed over all i, and the zero flux condition on 2Q is imposed, the
conservation of total energy is obtained.

The above analysis shows that the time dependent problem is well-posed
and conserves total energy. It is then natural to ask if solutions exist
indefinitely. The characteristic time scale in the model is the Earth's rotation
period. Indefinite existence of solutions would make the model suitable for
representing the evolution of the atmosphere or ocean over periods of several
days or longer.

Theorem 8
Given initial data with bounded support I' in X, equation (44) has a

bounded solution for all finite times.
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Proof
The value of |X| following a particle obeys the equation
dIXl/dt = -2x x-X)-R
= - @2xx)&, 4-9)
where R,2 are unit vectors in the X and Z directions. Since |x| is bounded by
the diameter of Q, (4:9) shows that X, and hence R, remains bounded for all
finite times W
To obtain a stronger result, suppose that for some particles |X| becomes
very large. Conservation of total energy means that the volume in physical space
associated with these values scales as |X|~%. (4:9) shows that |X| continues to
increase if the projection on the (X,Y) plane of x makes a positive angle with
the projection of X. Suppose that a small amount of the fluid can acquire almost
all the total energy, so that it has a large IX|. Conservation of Z means that it
is X or Y which become large. Since Q is convex and X is the gradient of a
convex function on Q, this region must adjoin the boundary of Q near the point
or segment where the direction (Y,-X,0) = 2xX is tangent to it. Project Q onto
the (X,Y) plane and define a polar coordinate system (r,8) in this plane with
origin within Q. The projection of the boundary of Q is a convex closed curve
whose boundary can be written (r(),6). Then the angle between x and X is
positive if r'(6)>0 because then the angle of the tangent in direction X will be
less than 2xX. The evolution equations (2:7-8) for an isolated large X indicates
that it will rotate round the projection of I' in the (X,Y) plane with period
2nf-', and thus it will rotate round the boundary of Q with the same period.
Since the integral of r'(8) round the boundary vanishes,it is likely that [X|
tends to a constant as t+®. It has not yet proved possible to make this

argument completely rigorous.
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5. he generali lutions im tat

The results of the preceding two sections show that the model (2:'1) to
(2'6) has useful mathematical properties which make it a suitable candidate for
describing the evolution of atmospheric flows containing discontinuities over
long time periods, where the time scale is f~'. In (1] and [2] the model is
shown by scale analysis to be a good approximation to the Navier-Stokes
equations if the flow is smooth and evolving on a time-scale greater than f~’.
When the solution becomes discontinuous, however, the assumptions behind the
scale analysis are violated locally and the model cannot be justiofied in this
way. In this section it is shown that the model represents the evolution of the
fluid through a sequence of minimum energy states. Provided that this minimum
energy state changes on a time scale long compared with that needed for the
fluid to adjust to it, shown for instance in [15] to be less than f~', the model
has strong physical plausibility even in the presence of discontinuities.

It is most convenient to work with the equations in physical space. The
advection operator uV is interpreted as carrying out a rearrangement of the
fluid. Equations (2:7) to (2+9) then state that the data X evolves following
fluid particles with tendency (y-YX-x,0), and that the fluid particles are then
rearranged conserving X so that (2:10) is satisfied and P is convex. Under the
conditions of Theorem 5, the trajectories are well defined and the rearrangement
may be interpretable as advection by a velocity field u. In general, however, the
rearrangement can involve discontinuous changes in particle positions.

Define X(x) to be a rearrangement of X, (x) if

measure {x€Q|Xc) = measure {x€Q|X,3c) (5:1)
holds for all ce€R®, where the inequalities are calculated component by
component. Then the energy integral is given as an integral over physical space
by
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f=2E = [ B (x2+X24y24Y2) - (xX+yY+22Z) dx. 5-2)
Since the integral of the first bracket is conserved under rearrangements, the
problem reduces to minimising the integral of -x‘X. Since under the assumptions
of Theorem 2 both the data and the domain are bounded, this integral has a
lower bound over the set H of rearrangements. Then if H is extended to its
convex hull H, there must be an element heéfl which minimises the integral, see
(12] for the argument in the scalar X case, the vector case is a straightforward
extension. It is more difficult to show that heéH. Burton [12] shows that in the
scalar case h must be an extreme point of the convex hull, and thus is actually
a rearrangement. Again this result can be extended to the vector case.

Given a rearrangement h which minimises -xX, consider an
interchange of fluid particles with data values X, and initial positions x,. So
that the new arrangement still fills Q, this interchange must be cyclic,
X,9X579X,. If the fluid is in a minimum energy state, this interchange cannot
decrease E, so that

X, (o-%,) + Xor(Xo-%2) + +o¢ + X, (x,-%.) €O, 53
This is exactly the condition that the mapping x2X is cyclically monotone, and
thus is the subdifferential mapping of a convex function on x, [17,p.238]. The
theorems of section 3 show that there is a unique convex function whose
subdifferential is a rearrangement of any given X(x). This proves
Theorem 9

Given any bounded vector valued function X(x) on a convex domain Q, there
is a unique rearrangement hX of it which minimises the energy integral (5:2).
The rearranged function hX is the subdifferential mapping of a convex function

P(x), and is the only rearrangement which can be so characterised.
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6. Discussion

Generalised solutions of a standard simplified model of motions in the
atmosphere and ocean have been constructed. It has been shown that these
solutions make sense, by using the theory of the Monge-Ampere equation.The
model can be integrated in time for long periods, possibly indefinitely, to
describe the evolution of the atmosphere or ocean. The solutions conserve
energy. They can be interpreted as following a sequence of minimum energy
states of the system, where the energy is minimised under rearrangements of the
fluid which conserve entropy and a form of momentum which allows for the
rotation of the coordinate system. A real flow adjusts to such a minimum energy
state take place on a time-scale less than f~', where f is the Coriolis
parameter. The model 1is therefore physically plausible provided that the
solution changes on a time scale longer than f~'. In practice this requires that
the wind direction and direction of the pressure gradient change slowly
following the motion of a particle. Discontinuities can be formed in the
solution. Near such discontinuities the simplified model will not be an accurate
solutions of the equations of motion, and the scale analysis which relates the
two will not apply.

The model provides a way of deriving a slowly varying subset of motions
in the atmosphere and ocean. This has more usually been attempted by direct
scale analysis, for instance by Kreiss [20]. The latter approach requires
smoothness in the vertical and can only be argued rigorously for a time
interval of the order f~'. The present approach removes both these limitations
at the cost of losing the rigorous link to the full equations of motion.

Knowledge of the existence of such a system is important in designing
weather and climate models. The special properties which allow the theorems to
be proved should be respected by numerical methods as far as possible, to allow
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accurate 1long term integrations.

discussed by Cullen [211],

The application
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to numerical methods is
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