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Abstract

This paper describes the 1D, vertical, version of the proposed semi-implicit inte-
gration scheme for the Unified Model, see Cullen et al [1] for details of the full
3D proposal. The dry formulation of the equations is presented along with the 1D
version of the numerical algorithm. To investigate the numerical stability of the
algorithm two test problems are used. The first uses a density perturbation to force
the model and can be considered as being similar to an ‘organ pipe’. The second
test problem is that of explicit convection in a neutrally stable column. Results for
both problems are presented and it is seen that the proposed scheme performs very

well.



1 1D equations and algorithm.

The full proposal for the semi-implicit integration scheme for the Unified Model can

be found in Cullen et al [1]. Here we summarise the main points;
e Non-hydrostatic Primitive equations
e semi-implicit, semi-Lagrangian integration scheme
e uses the distance from the centre of the earth as the vertical co-ordinate
e uses a Charney-Phillips vertical grid staggering
e uses a C-grid horizontal staggering

In this paper we consider the 1D, vertical, version of the model in the absence of
moisture and physics and in this form we do not see the effects of the horizontal
grid staggering. In the proposed model there are two vertical co-ordinates; the
distance from the centre of the earth, denoted r, which can vary with horizontal
position on a model level and a generalised vertical co-ordinate n which does not
vary with horizontal position on a model level and satisfies n = 0 at the earth’s
surface and 7 = 1 at the upper boundary. In this 1D model there exists a trivial
linear relationship between r and 7 at any level k given by
= :((]’\Cf)) _7;((%))

where level 0 is the earth’s surface and level N the value at the upper boundary.
This relationship in the 3D model can be general and no simple formula may exist.
The semi-Lagrangian scheme is a two-time-level scheme described for the full 3D
model in Mawson [3]. The Charney-Phillips vertical grid staggering is shown in
figure 1 where the levels indicated correspond to the indexing in the computer code
noting that level k£ = .5 is referred to in the code as level 1. For simplicity we refer
to model levels as theta levels if we wish to refer to a quantity at a level where 0 is

held, and to rho levels if we wish to refer to a quantity at a level where p is held.



Upper Boundary r,n,0,w,m k=N

T\0,0,P k=N-0.5
r,n,0,w,n k=1.0
NN k=0.5
r,n,0,w,n k=1.0
T\1,0,P k=0.5
surface T,1,W,7 k=0

Figure 1: Charney-Phillips grid staggering

1.1 1D dry equations

The 1D dry versions of the equations given in Cullen et al[l] are
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where IT = (p/prcs)”* is the Exner pressure with p,.; a reference pressure value, and

dr .
—nN=w

dn

(1.5)

As in Cullen et al [1] the density, p, includes a factor of r? and hence is related to

the true density, p; via p = r?p;. The boundary conditions imposed are that w = 0

at the surface and upper boundary, and using equation (1.5) we obtain 7 = 0 at the

surface and upper boundary also.



1.2 Numerical Algorithm

The numerical algorithm described in this section is known as a predictor/corrector
method. The basic idea of such algorithms is as follows: use the prognostic equations
to predict the values of the variables at the new time level. Then insist that these
predicted variables satisfy some equation(s) at the new time level. For example, in
the algorithm we will describe here we require that the variables satisfy the equation
of state at the new time level. In general they will not satisfy these equation(s) and
we form a correction equation to find the corrections to these variables to make these
equation(s) hold. Having solved the correction equation the resulting corrections are
added onto the predicted variables to obtain the final values at the new time level.
To understand this approach it may help to think of the solution evolving along
some path in solution space. Then to find the solution at some future time we need
to know the path the solution follows. The predictor/corrector approach seeks to
find this path by producing an estimate of it, given by the predictor step, and then
use some measure of the error, the equations to be satisfied at the new time, to
correct this estimate.

In many cases the correction equation is highly complex and very difficult to solve.
To alleviate this problem it is often possible to simplify the correction equation and
use an iterative technique to find the solution to the full correction equation. This
approach will be adopted here, but no iterations will be perfomed. This is because
it 1s expected that the solution obtained from the simplified equation will be close
enough to the solution of the full equation so that no benefit will accrue from iter-

ating the procedure.

The main purpose of the 1D tests presented here is to investigate the computational
stability of the proposed algorithm. The scheme can be made more or less stable by
changed the time-weighting parameters, denoted by «a;. These parameters control
the time-averaging of various terms in the scheme with the time-average of a quantity
¢ being given by

e = (1 — o;)c” + oyt



Linear stability arguments imply that all the «;’s satisfy

05< ;<1

To obtain second order accuracy in time all the «;’s must be set to 0.5, but this
is also the limiting value for stability. In practice most algorithms cannot be run
with values on the stability limit and remain stable, usually because of rounding
error or non-linear instability, and a value greater than the lower bound is required.
Golding [2] found that for the 1D version of the old non-hydrostatic Meteorological
Office Mesoscale model a value of 0.7 was required to suppress computational noise
for the first test problem we attempt here. In the full 3D model there are 7 different
a’s refered to as a; to ag and a,,. In the 1D scheme a4, a3 and ag do not appear. In
the algorithm that follows we use the notation subscript d to denote a value at the
departure point of a trajectory, superscripts n and n + 1 to denote the current and
future time-levels, with At the timestep, and the usual finite-difference notation for

a quantity ¢

6c = (e(r + _A2_r) —¢(r — AYT-))/AT
T = (c(r+ %) + ¢(r — %))/2

with similar definitions for é,c and ".

We also adopt the notation of Cullen et al [1] with the exception that py in their
notation is referred to as p,.; and we use subscript 0 to denote a value at the surface
instead of subscript *. The semi-Lagrangian choices listed in the algorithm are the
ones we used, and are the same as those given in Cullen et al [1]. More accurate
choices can be made, for example higher order interpolation can be used, see Maw-

son [3] for currently available alternatives.

Step 1. Calculate 5

SR
= 1

o (1.6)

Step 2. Calculate an estimate of the advection increments to . The semi-

Lagrangian scheme uses w" to find the departure point and linear interpolation
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to obtain 0 at the departure point. Conservation was not enforced in this step.

Sy =07 — 0" (1.7)

Step 3. Include any potential temperature forcing, denoted by @.

0 =0"+ 5, +0Q (1.8)

Ry=0"—o" (1.9)

Note:
For the first test problem we consider in section 2 @) = 0. For the second test prob-

lem @ is equal to the temperature perturbation multiplied by the timestep.

Step 4. Calculate the residual, Rz, for the time discretized form of the vertical
momentum equation (1.1). The semi-Lagrangian scheme uses w” to find the de-
parture point and linear interpolation to obtain the terms at the departure point.

Conservation was not enforced in this step.

Rz = wj —w" + At ((1 — ay)[g — Cp8"6,11"4 + g — C,0"6,11"]) (1.10)

Notes:

i. This step is not repeated after the Helmholtz equation is solved, and hence a
better estimate of these terms is not obtained, whereas step 2 which calculates the
corresponding residual for the potential temperature is repeated. In the full 3D al-
gorithm the only step not repeated is the one for the vertical velocity and the reason
given is that the terms are small compared to other terms. In the full 3D model this
maybe true but in this 1D model this is debatable. It is likely that a better solution
could be obtained by repeating this step as is done for potential temperature. Also
the forcing term in this equation is only formally first order accurate in time but if
the step is repeated, in principle, it can be made second order accurate if a,, = 0.5.
For energetic consistency we should perform the second advection step since the
kinetic energy evolution equation is in terms of w,. However the forcing function

should not be evaluated at time level n + 1 since it is assumed to be at time level n.



This restriction might be removable but would require the proof of energetic consis-
tency to be re-examined. See Appendix B for the details of the energetic consistency

proofs.

ii. The formulation of the pressure gradient term in the equations used to calculate

R3 implies a particular vertical averaging of p

R r28,p
o e
This definition of p is used to find p on 6 levels and via the equation of state (1.4)

(1.11)

to define p and II on @ levels, with the exception of the top 6 level. The pressure
at the top is derived by assuming the hydrostatic equation above the top p level to
give

pv=p-Z(n-r)
where all the quantities are evaluated at the top p level except those with subscript

N which are evaluated at the top 6 level. A similar assumption of the hydrostatic

equation below the bottom p level allows calculation of the surface pressure
Po =p+i—g(r—ro)

where subscript 0 denotes a value at the surface and the other quantities are evalu-

ated at the bottom p level.

Step 5. Form and solve the Helmholtz equation given by

— kpll&Ls,0 [(g—W) + (Z22R; — AtauC,05, (-“f))] (1.12)
— ROTAL (8, (57 (18y) + 2 (B3 — Aten,C,08, (22)))]
+ k(K — 1)parH%'

— —(np?rﬂ—%é+R4—S4)

where

G = (1 — Atay00,Cy6,06,11)



and

R: = Rs — Ato,CpRub, 11

The derivation of the Helmholtz equation can be found in Appendix A.

After solving this equation we calculate w’ from

w'G = R} — At,C,06, (’“r;p ) (1.13)

Step 6 Calculate 7; to enable p"*! to be calculated.

/
w; = w" + aw

sl
m_é,,r

P = " — 2L 5,5 ) (1.14)

n

Step 7 Use w; to calculate a better estimate of the advective term for . The
advection is performed on an estimated value of ¢ at time level n 4+ 1/2 denoted 6,
and given by

6 =0"+0.5* Ry

where Ry is used as an estimate of #', see equation (A.11).
The semi-Lagrangian scheme uses w; as the advecting velocity and monotone cubic

interpolation. Conservation is enforced on the advective increment.

0”=01d—01+R4—S4 (115)

The first two terms on the right-hand-side represent the updated advective incre-
ment. The other terms hold the forcing increment, in this case Ry — Sy = @, in the

full 3D model it would be equal to the physics increment.

Step 8 Add increments to 0, w and p to update values to time-level n + 1, the

update to p was performed in step 6.

0n+1 L an + 0//




w't! = w" + W'

pn+1 Pl pn + pl

2 Test Problems.

The test problems are performed on a vertical grid of 40 points spaced at 400m
intervals, with the surface being at Om and the upper boundary at 16Km. The

initial conditions are

w=0

0 = 290.7TK
g'l‘
m=1- 1
C,0
e Prefnl/k

o

P = Rom

so that the air is at rest in a neutrally stable atmosphere and the equation of state
is satisfied. These initial conditions also ensure that R3 and Ry are initially zero.
The time-weighting parameters as, a4, a5 and a,, are set equal to each other and

are referred to in the following pages by the collective name a.

2.1 Test Problem 1. The Organ Pipe.

This test problem is similar to that performed by Golding 1994 [2]. Here we used
a timestep of 60 seconds rather than the 30 seconds he used and we replaced his
fractional mass source with a density source, which has a similar effect. This is
included by adding an extra term to the right-hand-side of equation (1.14) of the
form

+0.001 Atr?

the factor r?

coming from the fact that we are not using the true density but r?
times it as our variable. This term must also be added to the right-hand-side of

equations (A.8) to (A.10) and hence included in the Helmholtz equation (A.16) and




(1.12). The density perturbation is applied at level 10 only, as in Golding, and we
begin by running with a perturbation of 0.001*timestep and with the time-weighing
parameters, a, set to 0.7. The results of the vertical velocity profile for the first
four timesteps and then after 50, 100, 150 and 200 timesteps are shown in figures 2
and 3 respectively. Comparing the vertical velocity profiles after 4 timesteps and
200 timesteps it can be seen that the final solution is obtained very quickly as these
two profiles are almost identical. With the time-weighting set to 0.7 we obtain the
underlying steady state solution very quickly and the transient resonant sound waves
are so strongly damped that they do not appear in the solution. This agrees with
the results of Golding for @ = 0.7. Figure 4 shows the vertical velocity profiles for
timesteps 198, 199 and 200 overlaid. It is impossible to see any differences between
them and a similar result can be seen in the middle profile of figure 2 in Golding.
The underlying solution for the pressure should be a linear increase with time at
all levels. To see this in the model we plot the pressure difference from the initial
pressure values. Figure 5 shows the profile for timesteps 1 to 4 and figure 6 shows
the profile for timesteps 50, 100, 150 and 200. As we found with the vertical velocity
profile the pressure solution is very smooth, but unlike the vertical velocity the values
continue to increase with time. This is as expected, since we are adding mass and
not allowing it to be removed and agrees with the underlying solution.

We now run the same experiment but with a = 0.5. The resulting vertical velocity
profile for the first 4 timesteps is shown in figure 7 and after 50, 100, 150 and 200
timesteps in figure 8. Here we can see that the underlying steady state solution is
not achieved very quickly and that there are transient resonant sound waves present.
This is because we are no longer applying the severe damping produced by using
a = 0.7. From figure 8 we can see that it takes some considerable time for the
underlying solution to establish itself. What is important is not that there are
transient waves, which in the real solution there are, but that they do not grow with
time, and hence the numerical procedure is stable. By comparing the solutions after
150 and 200 timesteps it can be seen that there is no evidence of any growth with
time and hence the method is stable. Figure 9 shows the vertical velocity profile for

timesteps 198, 199 and 200 overlaid on each other. This clearly shows the transient



waves but the waves are quite smooth and physically realistic in shape. It is also

easy to see that they are oscillations on top of the underlying solution by comparing
with figure 4. It is interesting to compare this result with that obtained by Golding
and to do this we re-plot figure 9 but using the same scale as that of figure 2 in
Golding, this is shown in figure 10. Our algorithm shows smaller magnitude and
smoother, more physically realistic, transient waves whilst the solution in Golding
looks more noisy and less stable. The pressure change profiles for the first four
timesteps are shown in figure 11 and those for timesteps 50, 100, 150 and 200 in
figure 12. Not surprisingly we again see considerable variation in the solution for
the first few timesteps. However comparing the result for timestep 50 with that for
a = 0.7 in figure 6 we see that they are very similar. In fact the pressure solutions
are almost identical and become more so as the number of timesteps increase. It is
interesting to note that the pressure solution is not sensitive to the transient wave
activity.

The final experiment is carried out with the same timestep and with a = 0.5 but
using a density increment ten times greater i.e. 0.01*timestep. This is an extreme
value and would not occur in the real atmosphere it is equivalent to a temperature
increment of 400k being introduced in to the system every timestep. In fact it
represents almost a doubling of the density value at level 10 on each timestep since
the initial value is 0.82. The pressure change graphs are not presented as they
are similar in shape to those for the smaller perturbation but ten times greater in
magnitude. The results for the vertical velocity for the first 4 timesteps is shown
in figure 13, and after 50,100,150 and 200 timesteps in figure 14, with figure 15
showing the profiles for timesteps 198, 199 and 200 overlaid. The results resemble
the profiles obtained using a density increment ten times smaller. The transient
waves are present but showing no signs of growing with time. This shows that even

with an unrealistic perturbation the model retains a stable solution.

2.2 Explicit Convection.

In the test problem we again use 40 vertical levels with a spacing of 400m but force

the problem with a potential temperature increment of 0.01 times the timestep at
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level 10. If the forcing was only applied on the first timestep then it is possible to
describe the physical solution. The solution should be an initial expansion wave
centred on the perturbation followed by convection. The convection should initially
be only above the perturbation but extending down towards the ground as time
increases. This stage with convection throughout the whole depth is the underlying
solution for the case used here where the temperature perturbation is added every
timestep. This is easily shown by running this case with a long timestep, for example
5 minutes. We show the vertical velocity profile obtained for the first 4 timesteps
with a 6 second timestep in figure 16. The first timestep clearly shows the expansion
wave. In the second timestep convection is taking place almost throughout the entire
depth, there is a small negative value at level 2. In the third timestep there is con-
vection throughout the entire depth. Beyond timestep 3 we have a more complicated
picture with the transient waves superimposed on the underlying solution. The only
conclusion we can draw from the later timesteps is that the solution remains stable.
A similar picture is gained with a shorter timestep, 3 seconds, as shown in figure 17,
but it is easier to see the change from expansion wave to convection throughout the

depth of the atmosphere.

3 Conclusions and Recommendations.

3.1 Conclusions.

The results of the scheme when perturbed by a density increment shows no sign of
growth with time of transient resonant sound waves, even when extreme conditions
are used in the test. When a realistic density perturbation is used a stable physically
possible solution is reached and increasing this perturbation linearly produces only
a linear increase in the transient waves. The underlying steady state solution is
reached more quickly as the time-weighting parameters, «, are increased from the
desired value of 0.5 to 1.0. This is because the greater the value of a the more
the transient waves are damped and for @ = 0.7 it is almost impossible to see
any transient waves. The solution with a = 0.5 has the transient waves and looks

physically plausible. The transient waves for @ = 0.5 are smoother, smaller and
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less noisy than those obtained by Golding [2] in a similar test problem for the old
non-hydrostatic mesoscale model. This is important as « must be set to 0.5 in
the scheme in order to satisfy certain conservation laws and to obtain second order
accuracy in time.

The behaviour of the model using a temperature increment again showed no signs of
growing wave amplitudes and produces a physically realistic simulation of explicit

convection.

3.2 Recommendations.

1. The time-weighting parameters a4, as and «,, be replaced by one parameter

as a4 and aj are really «,,. See Appendix A.

2. The time-weighting parameters are all set to 0.5 as an initial estimate of
the values to be used in two- and three-dimensional simulations. They may
need revising for stability requirements when running in more than the one-

dimension used here.

3. In Appendix A it is noted that some of the terms neglected in forming the
Helmholtz equation could be included easily. It may be worth investigating

the impact of including those terms.
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Appendix A: Derivation of Helmholtz equation

We would like the model to satisfy the equation of state (1.4) at time level n + 1

and when discretized it takes the following form

2
Py PrefT L
kI1"0 p — Bwei=10) (A.1)
kCyp

where all variables are at time level n 4+ 1. We now define

with similar definitions for the other variables. Re-writing equation (A.1) with these
definitions we get
2

S (ZEL) @FT) o+ ) - 4 ) =0 (A2)

where all non primed variables are taken at time level n. For the rest of this deriva-
tion all variables are at time level n except where stated to the contrary. We now

linearize equation (A.2) with respect to the primed variables. To do this we need to

=
Pref

This is done by writing this term as

K I\ K
() (1+5)
Pres Y

and then expanding the second part of this expression to obtain

(p,i,)n (1 +x?p—l+ i’t—l) (%)2 +)

We now neglect terms in the expansion of order greater than 1 to obtain

p\" P .
(]Mf) (1+/~cp) (A.3)

Using this definition and linearizing equation (A.2) we obtain

define the linearized form of

— p7'2 ——p =T Vil Pl
K pl H—F-i-/ch’ I+ kp'0 T+ k(K —1)pf TI— =0 (A.4)
P p
We now need to write all the primed variables in terms of just one of them to obtain

one equation in one unknown, rather than equation (A.4) which is one equation in
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three unknowns. To do this we use the evolution equations for p, # and w to obtain

p'y 0 and w' in terms of p'.

The discretized Eulerian form of the evolution equation for w is given by

w't! —w" = —At [(w+ ')z (w + aw’) + g (A.5)

+(1 — ) Cpb6, I + 0, Cp 0™+ 6,11+
Assuming that the semi-Lagrangian advection and the Eulerian advection of w differ
little since we can then replace the Eulerian advection term at time level n with its

semi-Lagrangian equivalent, and linearizing with respect to the primed variables we

get

w' + Atagw'§y,w + Atwés,(azw’) (A.6)

+ At C,0'6,11 + Ata,C,08, ("'I;p ) — 5

where we have used equation (A.3) to linearize the Exner pressure term at time level
n+1, and R3 is as defined in section 1.2, step 4. We note that in Cullen et al [1] e,
has been replaced by two different a’s called ay and «. For consistency we should
set a,, = a4 = a5 and have only parameter. The current proposal also omits the two
vertical advection terms in equation (A.6). The first term could be included easily
but including the second would result in a significantly more complicated Helmholtz
step. Following Cullen et al we neglect both. The #' term is replaced using the

approximation given by equation (A.13) to obtain

/
WG = R} — Aton,C,H6, (’*2” ) (A7)
where we have defined
G = (1 — At2anan,Cy,06,11)

and

R; = Rz — Ata,,CpR46,11

The evolution equation for p is the continuity equation and the discrete form is

= LE T sy
prtt = p" — 5 [6n(P" (i 6qr))] (A.8)
n
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where
¢ (5]
fh
Opr
and

/
w; = wW" + aw

Using these definitions we obtain

= — 2L 16,7 (i8yr) + ) (A9)

and it just remains to substitute for w’ in terms of p’ in this equation to obtain

3 At a

chis & kIlp' :
p= i [5,7 (p (nb,r) + e (RS — Ato,,Cp06, ( - )))} (A.10)

The discretized Eulerian form of the evolution equation for 6 is given by
0" = 0" — At(w + aw’)é,(0 + 0.50') + Q (A.11)

where () is the 6 increment discussed in section 1.2, step 3. Assuming that the semi-
Lagrangian advection and the Eulerian advection of @ differ little and linearizing

with respect to the primed variables we get
0, = —Atagwlts%-e T Atw62T(050') + R4 (A12)

where R, is as defined in section 1.2, step 3. The second term on the right-hand-
side of equation (A.12) is currently omitted from the scheme described by Cullen et
al [1]. It could be included as it stands but only at the cost of making the resulting
Helmholtz significantly more complicated and expensive to solve. One alternative
is to approximate this term by setting ' = R;. This would be consistent with
the update performed in section 1.2, step 7, where 0’ is approximated by Ry. This
alternative has not been investigated here and following Cullen et al we neglect this
term to obtain,

0, = R4 ey Atazwlézre (A13)

This is not the form we require to substitute into equation (A.4) since it is & that
is required. For the conversion terms between potential and kinetic energy to cancel
a particular form must be used for this quantity, see Appendix B for details, this

form is

7T

P07 = —ALFR 6,0 (A.14)
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it just remains to substitute for w’ in terms of p’ in this equation to obtain

prw\ ) kllp’ :
(6,,7‘) +(6 CRB Ata,, Cp0, ( ” ))] (A.15)

The first term on the right-hand-side of equation (A.15) is the approximation to the

0" = ——6,0

first advection step for #. Elsewhere in the derivation of the Helmholtz equation this
is replaced by the semi-Lagrangian term, and hence would become S;. However we
cannot do this here and retain energy consistency. We thus note that if this term
is not close to Sy we have introduced a possibly significant inconsistency into the

derivation. We still need to add the averaged forcing term to this equation and thus

R4—S4

is added to the right-hand-side of equation (A.15). Substituting equations (A.10)

and (A.15) into equation (A.4) we obtain the Helmholtz equation

- fcpHAt59[( ) 4 (E22Ry — Ata,Cyf6, (—f;&))] (A.16)
— KOTAL 5, (7 (6,7) + 2 (B3 — Ata,, 06, (£12)))]

U

+ k(k —1)p0 1f&

= —(npyﬂ—%E+R4—54)
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Appendix B: Energy consistency
Energetic consistency requires that the balance terms between kinetic and potential
energy balance. We begin by showing analytically that this consistency exists. In

the 1D model the energies are defined by

PE = /C Tp dn (B.1)
/c 911,)6 dn (B.2)
Kl = /;pw g—cdn (B.3)

The evolution equation for w is

ow ow r? dp
6t+n8 +9 +70—E_0 (B.4)

ap 1 0 Sor\l
% | or iy [% (’"’%)] = o)

so that the kinetic energy evolution equation is given by

3 13r2 9] 13r2 0 g0r.0p =

and for p is

where the last term on the left hand side is the conversion term. The rate of change

of internal energy is given by

3} ar r?C, Or op
ot (C e ) R onot s
where we have used the equation of state
r’p = pRIIA (B.8)
The evolution equation for the equation of state is
dp a0 I1 Bp
Hﬁa + pll— o + pl(k —1)— T =0 (B.9)
and for ¢
00 00
Fn o nan 0 (B.10)

and substituting the evolution equation for 6, (B.10), and for p, (B.5) into equa-

tion (B.9) gives
plt —1)00rdp 0 ( . or
e e (B
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Therefore the rate of change of internal energy is given by

rGhp; 0 o ar
_— | pnf— B2
c s

which is
0 or ,
— Coll— | pr0— B:13
Using the equation of state to write this in terms of pressure gives
19 [riwp
- —— B.14
K O ( 11 ) e
noting that
e (B.15)
n

Equation (B.14) is equal to

r’pow r*w(k—1)dp wpdr
e o u R e

Adding this to the conversion term for KE gives

10

e (r*pw) (B.17)

which when integrated from the surface to the top of the model gives zero since
w = 0 at the surface and top of the model.

The proof for the discrete case goes as follows;

Note that the primed variables represent the difference between time levels n + 1
and n.

The discrete evolution equation for p is given by

o = =22 5,7 (inbyr)] (B.18)

n
with

wy = w" + aw’

and the discrete equation of state is
r’p = pRIIO : (B.19)
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The evolution equation for the equation of state is given by

=P & o I p/ :
L S e ) B.20
Y~ + pIl—= + o0 (x )pAt (B.20)

Substituting for p’ in equation (B.20) gives

119 o it Iy
— —8,(p" — 0(k—1)——=0 B.21
o5+l + 7 ( ~ ) (B.2)

The approximation to the conversion term in the kinetic energy evolution equation
18
wyr28,76,p (B.22)
noting that it is #; and hence w; that appears in the p evolution equation (B.18)
and also that the advecting velocity in the w evolution equations should also be w;.
Equation (B.22) becomes
wyp’ Cp06,16,11 (B.23)

when the vertical pressure gradient term is evaluated in the model. The approxi-

mation to the internal energy change is

Gyt i)
- (@11p) 8,1 (B.24)
or equivalently
1_ K iy
TR p'é,r (B.25)

In order to prove consistency of the energy conversion it is necessary to set

0" P
Ly :
- s, (B.26)

Note that this provides via equation (B.20) a definite relationship between p’ and p/,
and also that equation (B.26) is not used to update . Substituting equation (B.26)
into equation (B.21) gives

17 o) prwy vild II p' S
e Sp(prwy) — 11 = 6,0 + pb (k — U;E =1 (B.27)

and substituting this into equation (B.25) and using the equation of state gives
— CIL(76,(5"wy) + Frwn 6,0) (B.28)

The conversion terms in the evolution equations for KE and PE should be equal and

opposite when integrated. This means that equations (B.23) and (B.28) should be

20



equal. Noting that these quantities are at different levels in the vertical, the first

term in equation (B.28) is subtracted from equation (B.23). Multiplying by é7 and

summing gives, after significant algebra,
> ILCH(8,0)i(p"wr ) (B.29)

which cancels the second term in equation (B.28) as required, when it is multiplied

by én and summed.
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