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1. Introduction

The analysis correction code was ported to the Cray Unified Model system
without any significant retuning. Improvements over the Cyber205 version
were noted in respect of resolution, more iterations and improved vertical
analysis of multilevel data (Bell and Robinson,1991), however many features
have remained unexamined since the scheme was first tuned for use within the
Cyber205S 15 level model.

Part of the impetus for this work came from a desire by the forecasters to
see some improvements on the smaller scales, particularly in the vicinity of
Jets and rapidly developing features. The work reported here is one step in
this direction. Other work in progress is also addressing this problen.
Parrett (1992) has reported success in preliminary experiments aimed at
giving higher weight to observations where we perceive the background errors
to be large. A scheme for providing the observed wind increments with
balanced surface pressure and temperature increments has also recently been
developed, (see §7.3 of Bell et al,1992a), which it is hoped will improve
the fit and retention of wind data.

Experiences with the development of the UARS configuration of the UM
assimilation have also pointed to areas, particularly related to
stratospheric analysis, where improvements might be sought.

During the past six months we have added a considerable amount of
flexibility to the system, such that observations or groups of observations
may receive different treatment (Bell et al,1992b). This we also intend to
exploit.

2. Options for tuning

The following summarises the aspects of the assimilation which have been
considered.

2.1 Vertical error correlation

The assimilation scheme has adopted a continuous vertical correlation model
(1) with a structure:

p’ = exp (-b°In°(pi/pj))

for the correlation between pressure levels pi and pj on a scale determined
by the constant b. A fixed value of b"=3 has been used for all levels,
latitudes and variables. This value is a carry over from the OI analysis
used prior to the AC. It has been recognised for some time that the
correlation is too broad and this has been compensated for operationally by
a cut-off on the vertical correlation scale outside a range of one (density)




scale height centred on the observation level, or in the case of surface
data a cut-off at the fifth model level (870hPa), or uppermost boundary
layer level.

A study of the vertical correlation of the (o-b) for radiosonde data has
been carried out wusing data from the Observation Processing Ppatabase
(OPD) during a six month period covering the first half of 1992,
Correlations were calculated separately for 2 latitude bands (90°-30°N and
30°N-30°S) and for both temperature and wind variables. The model level OPD
was used. The table below illustrates the results. It shows the correlations
(scaled by 100 with negative lobes set to zero) for northern hemisphere
radiosonde temperature data which is available at 18 model levels.
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Table 1
Radiosonde temperature (o-b) correlations (on modgl levels)
Data from Jan-May 1992 (sondes north of 30 N)

Although functions with a better fit to this data could be sought, we
decided to keep the current function for simplicity and make the parameter,
b, vary as a function of level, latitude and variable. The values of b which
gave a best fit are given Dbelow. The code wuses values of b
interpolated from the values specified on a fixed set of pressure levels.
These values for tropical and extratropical wind and non-wind variables are
contained in Table 2. In addition, the effect of removing the cut-off, by
increasing its value to 2, was examined.

Plevels 1000 900 800 700 600 500 400 300 200 100

T,q poleward 30° 0 80 7.0 50 4.0 4050 &5 88 35

T,q tropical 80 80 7.0 55 @535 3030 95 25

U,V poleward 30° 605D 8.0 40 835 3.0 2528 9850

u,V tropical 69116510 BB ES (i e R RO R T A0 )
Table 2

Revised values of constant scaling factor b in uv



2.2 Horizontal error correlation and influence region

The current horizontal correlation scales are unchanged from Cyber20S model
values when the model resolution was 50% coarser. Several alternative values
for the correlation scale at observation time, start and end of time window
were examined.

Much reduced correlation scales might also be more appropriate in the
southern hemisphere than previously used, now that more high resolution
satellite data is available. It had previously been argued that the data
coverage was inadequate for the analysis of anything other than the largest
scales. The previous operational values were 1.667 times the northern
hemisphere correlation scale. The UARS configuration uses the same
correlation scale everywhere.

Another option to try is the use of the alternative modified SOAR function
which tapers to zero at the edge of the sphere of influence. This might
avoid some noise. It has been successfully used in the UARS configuration.

The radius of influence (specified as a multiple of the correlation scale)
was also considered. Previously lower values (than the standard 3.5) have
been used in the LAM moisture assimilation and in tests of
scatterometer wind assimilation.

2.3 Divergence

The assimilation diagnostics were not examined in a systematic way when the
level of divergence diffusion was chosen for the UM. It is conventional to
run with the minimum possible levels of diffusion. Several runs have been
done to examine this.

The wind increments are currently non-divergent. A facility exists to relax
this non-divergent constraint. Reduced values of the non-divergent

correction coefficient have been tried.

2.4 Temporal weighting

The temporal weighting is governed by a time factor specified by its shape,
time window, start and end points.The shape 1is currently triangular,
starting from near zero at 5 hours before observation time and rising to 1
at the observation time before falling over the subsequent hour.

Two factors prompt a revision here. Firstly the often expressed concern that
a 6 hour window was too broad in fast moving situations. The observations
might be fitted in advance of the observation time and the analysis ’gets
ahead of reality’. Secondly, a lot of time 1s spent computing extremely
small increments at the extremes of the time window. To address these points
a quadratic time ramp has been tested, as have smaller time windows and
larger initial and final values.

2.5 Geostrophic wind increments

At present the scaling (both horizontally and vertically) of the
geostrophic wind increments differ in the operational and UARS
configurations. The operational version has different scalings in the two
hemispheres and no increments are applied in the stratosphere, where one
might expect the flow to be more geostrophic.



2.6 Iteration strategy

Macpherson (1990), showed some benefits for the wind analysis by changing
the iteration strategy. He removed the asynoptic feature of the AC scheme
for wind data and performed the multiple iterations at analysis time rather
than interleaving them with the model forecast steps. Facilities now exist
to do this quite flexibly (any number of iterations at any interval as a
function of observation group).

It was not thought desirable to abandon the asynoptic feature completely. An
intermediate approach would be to group the wind iterations (say 3 per

timestep) and reduce the time window (say to 2hours).

2.7 Nudging coefficients

The UARS configuration has different nudging coefficients for mass and wind
increments. However a full examination of the nudging coefficients awaits
trials of the synoptic dependent background errors since the
observation/background error ratio is likely to change at that time.

3.Results from the individual tests

3.1 Details of the experiments

Several specifications of each of the above aspects were assessed within the
global model. The majority of tests were based on a 2 day assimilation
period spinning off 3*12hour forecasts for verification. Some of the clearly
inferior versions relative to the operational control were abandoned after a
1 day assimilation with single 12 hour forecast.

The tests were largely done with version 2.5 of the model. We identified all
tuning options which gave improved verification of short period forecast.
Additionally we identified those options which gave improved fit of analysis
to data, particularly jets and small scale features even 1if overall
verification of short period forecast 1is not improved. Although no
overall deterioration in key fields was allowed.

Verification was based on 1 timestep runs using an ACOBs file. This
generates (after meaning over levels) 28 values. These are for 10
observation types (P*, Tsonde, Tairep, Tlass{NH only), Tsatsoo, Tsat120,
Vsonde, Vairep/ctw, Vship, RHsonde) at 3 latitude bands.

3.2 Discussion of the results

Only a summary of the objective verification will be given to illustrate
the impact (in terms of number of statistics bettering the operational
control).

3.2.1 Vertical error correlation

Three runs were done.

a) A revised vertical correlations as described in section 2.1 with a
cut-off at 2 scale heights.

b) As (a) except correlation for surface data was unchanged.

c) As (a) except cut-off remained at 1 scale height.

These runs were clearly beneficial. Only run (a) was continued into the 2nd
day. The scores were:




Run better same worse
a) 1 f7c 18 5 5
b) (B e 18 4 6
c) L EAC 16 6 6
a) S e 17 6 5

The tropical region scored best. The change over land, where most
data is multilevel, (judging from sonde verification) was negligible. The
surface changes (pressure and ship winds) were also not significant.
However the improvement over sea (airep and satellite verification),
presumably resulting from a better assimilation of single level winds was
clear.

3.2.2 Horizontal error correlation and influence region

Twelve runs were done to assess the aspects of the assimilation discussed in
section 2.2:

a) Adjusted SOAR tailing to zero at edge of influence.

b) Change ratio of SH/NH correlation scale to 1.

c) Change ratio of Tropics/NH correlation scale to 1.

d) Change ratio of SH/NH cor.scale to 1.25 and Tropics/NH cor.scale to 1.5
e) As (d) but use NH value of cor.scale for SAT120.

f) Change ratio of both SH/NH and Tropics/NH cor.scale to 1.5.

g) As (f) but use NH value of cor.scale for SAT120 and RH.

h) Reduce base correlation scale (NH) at start of time window to 300km.

i) As (h) plus reduced final base correlation scale to 200km.

j) As (h) plus reduced final base correlation scale to 150km.

k) Reduce RH radius of influence to 2.25 correlation scales.

1) Reduce radius of influence to 3 correlation scales.

m) Reduce final base correlation scale (NH) to 200km.

These results from these runs were mixed. Runs (a), (f), (k) and a new run (m)
[a slight variant of (i)] were continued for 2 days. The scores were:

Run better same worse
a) 1o /e 11 9 8
b) Lob/e 7 15 6
c) 1. f/¢ 7 7 14
d) -/ 10 14 T
e) 3 £/ 10 9 9
f) A e 9 11 8
g) I & o 12 6 10
h) 1. /¢ 9 8 11
1) 1-:=€7c 12 4 12
J) - f/c 11 8, 14
k) 1 f/c 14 S 9
1) 1o f/c 8 8 12
a) 3 /e 457 8 3
f) 3 £/C 12 11 5
k) St/ bl 10 7/
m) 3 Lf/c 9 15 4

With these changes, the differences between control and test are more
marginal. However, we do see a more clear cut positive impact for those
tests which were continued for 2 days to give 3 forecasts for verification.
The modified SOAR (a) seems to have a slight edge.

The runs with reduced correlation scale factors 1in the tropics and
southern hemisphere (b)-(g) show that a single global value as used by UARS
(extra scaling factor 1) is inappropriate, particularly in the tropics. The
time savings from reduced influence areas are substantial, so even a
marginally positive impact is welcomed. A modest reduction of scaling from



1.667 to 1.5 was eventually preferred.

The runs with reduced correlation scale at start of time window, (h)-(j),
did not seem very beneficial. However there did seem to be some gains from
reducing the correlation scale at the end of the time window at least to
200km (see (i) relative to (h)).

A smaller influence radius appeared only beneficial when applied to RH, but
in fact the benefits were not to the RH scores. This clearly demonstrates
the potential damage that the inappropriate spreading of moisture increments
has on the dynamic variables.

3.2.3 Divergence

Five runs were done to assess the points discussed in section 2.3.

a) Non-divergent coefficient set to 0.7.
b) Non-divergent coefficient set to 0.8.
c) Non-divergent coefficient set to 0.9.
d) Reduce divergence damping coefficient by factor 3.
e) Reduce divergence damping coefficient by factor 10.

The runs with reduced non-divergent coefficient were clearly beneficial.
Reduced divergence damping is most clearly not a benefit. Run (b) was
continued for a 2nd day. The scores were:

Run better same worse
a) : KRIEE) o 13 7 8
b) 1€/ 14 6 7
c) Ji e 16 8 4
d) Y. f/e 1 11 16
e) Yoty e 3 7. 18
b) 3 VA 1l 10 T

Relaxing the non-divergent constraint had a particular benefit for wind
scores and gave a better all round performance in the tropics. A value of
0.7 gave a best wind score outside the tropics but resulted in a worse score
for surface pressure and temperature. In the tropics, a value of 0.7 gave
the best score for all variables. A value of 0.8 was a compromise which kept
the wind improvement without degrading other variables.

3.2.4 Temporal weighting

Five runs were done
were with start and

to assess the points discussed in section 2.4. All runs
end points of time ramp set to 0.0S.

a) quadratic time
b) quadratic time
c) quadratic time
d) quadratic time
e) quadratic time
The

runs with a quadratic time
importantly give a substantially closer fit at analysis time.
time window is not appropriate,
ramp the total effective number of

ramp for
ramp for
ramp and
ramp for
ramp and

v only

all variables

4 hour window for v only

all variables and 4 hour time window for v only
4 hour time window for all variables

and more
The 4 hour
presumably because despite the quadratic
iterations is reduced. Run (a) was

ramp are marginally better

continued for a 2nd day. The scores were:

Run better same worse
a) 1=t c 10 11 7
b) lra—f /e 15 2 11
c) (B e i} 12 5
d) it/ 14 5 12
e) 15 f/c 8 6 14
a) i o T 19 8



There is some indication that use of a quadratic time ramp for temperature
as well as winds flips a nul NH impact to negative which implies that a
lower nudging coefficient for temperature relative to winds might be
appropriate.

3.2.5 Geostrophic wind increments

Four runs were done to assess the points discussed in section 2.5.

a) Increase horizontal scaling factor in NH to be same as SH (0.7).
b) Vertical scaling set to UARS values (1 in stratosphere).

c) As (b) but only increasing to scaling to 0.4 in stratosphere.

d) As (b) but scaling remains zero in stratosphere.

The scores were:

Run better same worse
a) i [ 77 e 5 14 7
b) i LR o 15 2 9
c) 1 ete 1 9 8
d) 4 (R 27 o) 14 8 6

The gross scores above suggest a nul impact of changing the horizontal
scaling and a positive impact of changing the vertical scaling . However, a
closer examination of individual levels shows that any increase in northern
hemisphere weighting of geostrophic wind increments (either via horizontal
or vertical scaling factors) degrades the verification against airep or
radiosonde winds. In the tropics and southern hemisphere there 1is an
improvement. It seems that geostrophic wind increments should only be used
in the absence of observed winds.

3.2.6 Iteration strategy

Two runs were done to assess the points discussed in section 2.6.
a) Three wind iterations per timestep with a 2 hour window.
b) Two wind iterations per timestep with a 3 hour window.

The scores were:

Run better same worse
a) T f /e 4 9 15
b) 1< F /e 14 8 9

This did not look very promising, particularly for the northern hemisphere,
and has not been pursued very far.

4 The combined package for parallel testing

The following points summarise the combined package which was put together
for more extensive testing.

a) Narrower vertical error correlation which more accurately reflects that
identified from radiosonde OPD studies, together with the removal of
the cutoff at one scale height. This gives improved fit of upper winds
from single level data. (see 3.2.1(a))

b) Relax the non divergent correction to give a marginal positive impact
on analysed winds more particularly in the tropics. (see 3.2.3(b))



Three changes to the horizontal correlation scale tending to narrow the
function and thus fit the observations more closely:

c) Ad just shape of horizontal correlation scale such that it tends to zero
at edge of influence area. This implies slight narrowing of the
correlation function and less noise induced at the edge of influence
region (see 3.2.2(a))

d) Reduced horizontal correlation scale in southern hemisphere and tropics
(from 1.667 to 1.5 of northern hemisphere value). As well as
a clear improvement in scores, this has a significant time saving. (see
3.32(E))

e) Reduced correlation scale for all observation types at peak and end of
time window. (from 225/250km to 200km; or to 150km for scatterometer
winds and moisture). The lower value for moisture was chosen in
preference to the reduced influence radius specification. As well as a
marginal improvement in scores, this has a significant time saving.
(see 3.2.2(m))

Changes (d) and (e) together imply an 18% saving.

Three changes impacting on the effective number of iterations. Which we
define as the sum through the time window of the relaxation coefficient
scaled by the time ramp factor.

f) Change time window from 6 hours to S5 hours. Thus improving temporal
scale and lessening chance of inappropriate increments in fast moving
situations. A reduction of assimilation costs by 17% was the prime
motive for this change. A reduction to 4 hours (see 3.2.4) was thought
be too much.

g) Change shape of time ramp from triangular to quadratic, together with
larger initial and final values. This gives effectively bigger nudges
away from observation time. (see 3.2.4b).

h) Small increase in the wind nudging coefficient and small reduction in
the non-wind nudging coefficient.

The motive for changes (g) and (h) were primarily to achieve the time
reduction implied by change (f), which on its own implies reduced forcing by
the observations. The change in forecast scores due to the temporal
weighting changes was negligible on the average although there is some
expectation that improvements will occur in the analysis of rapidly moving
or developing systems. The implication of changes (f), (g) and (h) is 10-20%
increase in effective number of wind iterations and 5-10% reduction in
effective number of temperature nudges. A modest improvement in analysis fit
to winds results from this increase in the number of effective iterations.

5. Objective results from the parallel test

The changes discussed above were assessed by running a global
assimilation in parallel with the operational assimilation. The
parallel assimilation ran from the 19th Sept to Sth Oct and included a
three day forecast from each 00z analysis. In this section we present the
verification against observations (using the standard operational package)
and a comparison of trial and operational OPD results.

5.1.Verification against observations

The following table gives a concise summary of the verification comparison.
For four forecast areas (area 2-N Atlantic sector;areas 200,300, 400-northern
latitudes, tropics and southern latitudes respectively) and four forecast




periods (analysis and daily forecast to 3 days), we give the difference in
rms score for 26 fields. This is expressed as a percentage change
(improvements are positive). The observations used for verification are
radiosondes, synops and ships.

period 0 1 2 g 0 1 2 3 0 1 2 3 0 1 2 3
area 2 200 300 400
pmsl 3:810.8 1:2=0,. 4] 2: 75081 4°0:6/ 2.0 2.1.0:9" 0411003 424507
heights
850hFa; =1 1-=0:7 2.2 0.811:9: 0,0, 2,5 1. 41000 4.9 3.4 0.6/ 4.3 3.6 3,007
Z0GhPa =107 050:2. 6 1.8 20.0105672,:9-2.01'~0.8:3:5 2. 8.2, 3| 3, 0=250 30 259
SBOHPa - 0:0°2.3 2. 7 3.1 03,0509 2:5 2.3 11 0:0::1:3 156 1:9]6.0 1056047
SOUREa - GR0r2.2:8:0-2.: 2] 1. 2: 2.1 2,9 Salil- 0.4 3,0 1,905 5§ 429 45 14
ZSOhPa= 0 208 2R PN 1 e QT 1 2 B2 sl 0 9% 3 e 2 8106 e 2 DA L Gl 2 2T
POOhEas - Oadsdy 22 2 lihiig - 0= 103l 20518005 20 2605 5=0 | 20 0355155 0 4019
HOBhPa 00 0601 5 1105200 8 081 2504 -0 011003 2058 329 83002
temperatures
850hEa * A9l - 20000184 700060 115 00T 60 35l b G 203N 054616158
TOORPa - 6.011:9 1.0 2.:51]:5.:6 0.6 105151840, 014340 ;6" §.03aZ 58 24
5UBhEa = 2:3=1.3 2.5 206 |- 42200213 L2 65202 2L 03T | 8088 =0l 0P o2
300hPa 6.3-0.6 0.9-0.8] 7.4 1.7 1.4 1.2| 1.6 1.3 0.0-1.1}14.4 2.8 4.5 7.4
250hPa: - 5:6.1.-1-1,2-0.9}:8:8- 015 1.6 1:3|:2.4 0:0:1:5:0:9'9.0:0:0: 1.0 0.3
PBHPa: A6 2:°2 2.8 4. 21 A5 2 017 15613 6:0:0=0-5-0-9110.1:-4.4 ' 1.2-1-4
106RPa 1.0 /1.5 2 04710 . 71816190 016080805 142711608
winds
SHEPace: 10300, 702 0, 5]1.670.6.0.,9-0.61 21590720381 1] =20 1<0-1:05/[= 305
8SOhPa  3.9=0-1=-0.1 04| 4.6 0.4 11 1.2:5.9-1.6:0.8 1.0]1=-0.9-1.9-2.1 0.7
JO0hPA @B 2 o]0 5 40811 052802, 9u 0 808 AT B Al 20 0 -2 L0 E
SOOWPa: - A 1 1.6 0.9 351 3.8 2.9 3 1A 2010151629 848 A =01 =05 A a9t 9
S0BhPa - 407009 3. 0124154911 /318 331 R 8 255242801 | 4858 Gt
250hPa- 4 1078 1. 7-2.5:5.3:0:83:3:0. 3.1 84 3.4 4.5 3.61-1.9:2:7 454
ZOORPa 5.9 2:9 2 7 3:116.8-3.3 4.1 3.9 7.6:3:9 4.5 3.9 3:8F 1164543
#030hPa 3.3 2.8 2:0-2 81 -83:-8'5.6:.4.1 5.4 2:6 5.4 8:9:1.51=-0.68: 1 7.6:4.1
relative humidity
850RPa. 6.2=-00420 2=0 1| 7-0=0.1.0:4 0, V7.1 1.0:-1.0:0.4}6.2 0.0=-4.7-3:6
ZBOhRa: 8:3-2:0=-0.9=0:4| 9.48-0.70.2.:.0:9:9.7 0.5 0.6 0.3|11.3-5:0:3.2:.2:3
500hPa 8.8-0.6-0.7 O. 9 1=0:3 10:3:.0.0:59:5:0.6: 0:2 087268122059+ Z -
Table 3

VERIFICATION AGAINST OBSERVATIONS
7% IMPROVEMENT of TRIAL RELATIVE TO OPERATIONAL

It should be noted that the wind comparison beyond analysis time 1is of
unscaled winds from the parallel run against scaled winds from the
operational run. [The scaling being a bias correction to model output] It
might be presumed that the scaling used in the operational run represents
and improvement so the comparison above favours the operational run.

In the table, we see 90 % of the figures represent an improvement. The few
negative figures can be easily explained. FIrstly, the humidity forecasts
are no better despite a better fit to observations because the current model
error has a large scale bias component. Secondly, the southern hemisphere
wind scores at analysis time are worse because the Australian sondes are
swamped by Asdars. Thirdly, the improvements in temperature analysis don’t
filter through into height verification until day 1 of the forecast.

Over all the fields and areas, the analysis is improved by 4%. Excluding the
humidity fields, It seems that 75% of this improvement is still evident in

- 9 -




the short to medium range forecast scores. For example, at day 2 the average
improvements (over all levels) are:

height fields :2.5%,2.1%,1.6% and 4.3% for the four areas.

wind fields :1.7%,3.1%,3.6% and 4.3% for the four areas.
There is no indication that the signal is being lost as the forecast period
increases (day 3 improvement is similar to that at day 1).

Figures 1 and 2 show the same results as Table 3 in graphically form, for
two of the key upper air fields: 500hPa height and jet level winds. In these
charts, the rms error (difference from verifying observation) during the
trial period is plotted as a function of forecast period for both the
control operational run (solid 1line) and the trial run (pecked). The
improvement is clear in all four verification areas.

5.2.0PD results

The OPD contains (observation-background) and (observation-analysis). The
latter duplicates the above verification to a large extent. It does however
contain data for observing systems other than radiosonde and surface. The
airep data is of particular interest.

Speed Number Mean speed rms vector
Category| of obs (o-b) (o-b)

Trial Oper Trial Oper
0-3 552 =09 =0 B 3.2
3-20 23897 =023 =03 6.8 629
20-40 24536 0.9 1.0 7.4 7.6
40-60 7583 47 1.9 8.4 BT
60-80 1596 2525 2.6 9.4 S AT
>80 129 3.4 4.1 1055 10.8

Table 4

Trial and operational (Airep-Background) wind differences
North of 30°N: 20Sept-50ct:100-400hPa

For the strongest jets the background bias has reduced from over 4m/s to
less than 3.5m/s. The rms vector wind difference is 0.3m/s lower for the
trial or 3-4% which 1is consistent with the verification results for
radiosondes in the previous section.

Speed Number Mean speed rms vector
Category| of obs (o-b) (o-b)

Trial Oper Trial Oper
0r3 513 i et =iy 3.4 3.4
Sr20) 10569 015 150 sl 5.0
20-40 3703 1.6 1o 6.4 6.7
40-60 92 1.8 1.9 e 7:8
60-80 109 3,9 4.2 8.2 8.6

Table 5

Trial and operational (Airep-Background) wind differences
Tropics: 20Sept-50ct:100-400hPa

- 10 -




Speed Number Mean speed rms vector
Category| of obs (o-b) (o-b)

Trial Oper Trial Oper
3-20 675 (0]5S) 0.6 5.9 6.2
20-40 1102 0.8 14.@ T T
40-60 500 156 1.9 8.2 85/
60-80 93 S 4.0 8.6 9.2

Table 6

Trial and operational (Airep-Background) wind differences
South of 30°S: 20Sept-50ct: 100-400hPa

The improvement in rms vector wind difference of airep-background is even
more marked in the tropics and southern hemisphere (0.4-0.5m/s or 7%).

6 Sub jective assessment of trial

It is extremely difficult to do a subjective assessment of analysis
differences, particularly when such differences are small. The bulk of the
sub jective assessment comprised an examination of those two and three day
forecasts (of surface pressure and upper wind) where the (trial-control)
difference charts showed a noticeable difference (albeit often small). This
subjective forecast assessment serves to illustrate the scale of the
differences, rather than provide a thorough and convincing case for the
trial. The assessment will concentrate on the North Atlantic during the
second week of the trial, aside from one southern hemisphere example and one
tropical example. In all the figures, the pair of forecasts (trial and
control) are in the upper panels with a difference chart and verifying
analysis in the lower panels. The difference contours are 2hPa for surface
pressure and 10knots for wind.

6.1 Southern Hemisphere

Large surface pressure differences were noted on every forecast. These were
not wusually verifiable because there were also differences in the two
analyses and in many cases the forecasts were so different from the
verification that it was difficult to choose which was closer. Figure 3
shows one example of a 3 day forecast valid at 27 Sept. At the scale of
these charts, features tend to be rather confused near the Antarctic. The
low near New Zealand is clearly better forecast by the trial run and there
is not much evidence for the trough southwest of South Africa in the
operational run.

6.2 Tropics

No tropical charts were actually studied. The one low latitude feature which
attracted some attention was in the Pacific to the west of Mexico, where a
low pressure system was objectively analysed at 1000hPa on 2nd Oct. The
trial forecast at T+72 made a much better attempt at the depth but could be
criticised for a slight displacement error. (see Figure 4)

6.3 North Atlantic

The North Atlantic pattern was blocked during the first week of the trial
and only a little more mobile during the second week. Most of the features

_11_



were fairly large scale and thus it was not an ideal time to test changes
which focused on smaller scales. We concentrate on a four day period from
the 29th Sept to 2nd Oct. Emphasis is placed on the 2 day forecasts where
differences were more significant. More differences were noted in the jets
than at the surface. Where surface pressure charts are not discussed, the
differences were negligible. A brief comment follows for each set of
forecast charts:

Figure 5: T+24 wind forecast from 29th

The main difference is in the sharp upper trough near the UK, which is
correctly further back in the trial as judged from the wind contours near
Valencia and the difference contours over Ireland.

Figure 6: T+48 wind forecast from 29th

A day later the same trough was near Shetland and again the trial positioned
it correctly further south. The trial was also better with the forward
position of the 120knot contour of the mid-Atlantic jet.

Figure 7: T+48 pmsl forecast from 29th
Both forecasts were not deep enough with the double low system near 60°N but
the trial was deeper by more than 2hPa

Figure 8: T+48 wind forecast from 30th
The main difference here is to the west of the UK where the trial is
incorrectly slow.

Figure 9: T+48 wind forecast from 1st

Here we see the northwesterly winds are correctly weaker over the UK in the
trial, with the jet core a few degrees further west. Around the upper high,
the trial correctly places the northerly jet, in the west Atlantic, a little
further east. It is also more correct in the position of the northern most
extent of the jet in the Denmark Strait.

Figure 10: T+48 pmsl forecast from 1st

Several features 1n the surface pressure chart are all better in the trial;
the trough at 45 °W, the lows south of Greenland, the ridge in mid-Atlantic
to the south of Iceland and the trough over Brittany.

Figure 11: T+24 wind forecast from 2nd

Here the trial is probably not correct with the positioning of the jet to
the west of Scotland, but is better with the strength of the southwesterly
flow at 30°W and also with the northerly extent of the jet over Greenland.

Figure 12: T+48 wind forecast from 2nd

By day 2 of the same forecast, the strength on the easterly side of the
northerly jet near the UK is better in the trial, however the next jet
coming out of the US is better in the control run.

In summary, of the 17 noticeable differences in the 8 charts over this 4 day
period, 14 were better in the trial.

6.4 Jet speeds

The analyses of the North Atlantic jets were compared through the entire
trial period. This showed that of 32 identifiable maxima (in the 002
250hPa analyses), 23 were stronger in the trial. In the T+24 charts, 20 jet
maxima could be identified and of these 14 were stronger. The table below
contains the histogram of (trial-operational) differences at T+24, which
confirms the tendency for slightly stronger trial jets.
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Table 7
Histogram of T+24 250hPa wind speed differences (knots)
over North Atlantic during trial period

7 Conclusion

The settings of a large number of tunable parameters have been re-examined,
and revisions of some of these parameters have been demonstrated to be
worthwhile in the global model. The main changes are: a narrowing of the
vertical error correlation; a relaxation of the non divergent constraint; a
reduced horizontal correlation scale (especially in southern latitudes); a
reduced time window with associated changes in observation increment
weighting. Full details are given in section 4.

The objective verification (using surface and radiosonde reports) from a
parallel trial has shown a useful reduction in rms scores. On average a 4%
reduction in rms fit at T+0 and 3% reduction in rms fit in the short to
medium range forecast. Similar results were obtained from a comparison of
airep winds with model background. Full details are given in section 5.

The subjective impact in the southern hemisphere was substantial but largely
unverifiable. In the northern hemisphere the impact was small but some
positive benefits were noted. During the 4 day period discussed in section
6, 14 out of 17 features were considered superior in trial forecasts.

Similar changes are planned for the LAM (without a reduction in time window
but with the equivalent reduction in horizontal correlation scale ie. 85% of
current value).

An important by-product of this tuning exercise is the 30% reduction in cost
of the assimilation component of the global version of the unified model.
This translates into a reduction in operational suite usage of 4 minutes
per day.
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