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Abstract

This thesis uses statistical modelling to better understand the relationship between

insured losses and hazard footprint characteristics for European windstorms (extra-

tropical cyclones). The footprint of a windstorm is defined as the maximum wind

gust speed to occur at a set of spatial locations over the duration of the storm.

A better understanding of this relationship is required because the most damaging

historical windstorms have had footprints with di↵ering characteristics. Some have

a large area of relatively low wind gust speeds, while others have a smaller area of

higher wind gust speeds. In addition, this insight will help to explain the surpris-

ing, sharp decline in European wind related losses in the mid 1990’s. This novel

exploration is based on 5730 high resolution model generated historical footprints

(1979-2012) representing the whole European domain.

Functions of extreme footprint wind gust speeds, known as storm severity measures,

are developed to represent footprint characteristics. Exploratory data analysis is

used to compare which storm severity measures are most successful at classifying

23 extreme windstorms, known to have caused large insured losses. Summarising

the footprint using these scalar severity measures, however, fails to capture di↵erent

combinations of spatial scale and local intensity characteristics. To overcome this, a

novel statistical model for windstorm footprints is developed, initially for pairs of lo-

cations using a bivariate Gaussian copula model; subsequently extended to represent

the whole European domain using a geostatistical spatial model. Throughout, the

distribution of wind gust speeds at each location is modelled using a left-truncated

Generalised Extreme Value (GEV) distribution. Synthetic footprints, simulated

from the geostatistical model, are then used in a sensitivity study to explore whether

the local intensity or spatial dependence structure of a footprint has the most influ-

ence on insured loss. This contributes a novel example of sensitivity analysis applied

to a stochastic natural hazards model.

The area of the footprint exceeding 25ms�1 over land is the most successful storm

severity measure at classifying extreme loss windstorms, ranking all 23 within the

top 18% of events. Marginally transformed wind gust speeds are identified as be-

ing asymptotically independent and second-order stationary, allowing for the spatial

dependence to be represented by a geostatistical covariance function. The geostatis-
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tical windstorm footprint model is able to quickly (⇠3 seconds) simulate synthetic

footprints which realistically represent joint losses throughout Europe. The sensitiv-

ity study identifies that the left-truncated GEV parameters have a greater influence

on insured loss than the geostatistical spatial dependence parameters. The observed

decline in wind related losses in the 1990’s can therefore be attributed to a change

in the local intensity rather than the spatial structure of footprint wind gust speeds.

4



5



Thank you to my supervisors, David Stephenson, Ken Mylne

and Chris Ferro, for their guidance and support. Thank you

for keeping me on track while allowing me to make this

project my own.

Thanks also to Ben Youngman and Theo Economou for their

help and support throughout. Their enthusiasm and

encouragement has been invaluable, next round is on me!

Thank you to all of my collaborators on the NERC

CREDIBLE project, particularly Francesca Pianosi and

Thorsten Wagener for their guidance in the final chapter of

this thesis, and Jonty Rougier and Jon Tawn for the

extremely useful statistical discussions at group meetings.

Thanks also to my collaborators on the XWS catalogue

project, especially Julia Roberts for her help and guidance

when working with the Met O�ce data.

A huge thank you to my family; Mum, Dad, Emma and

Megan, for being so supportive through the ups and downs of

the last 3 years. Their never-ending encouragement and

praise has got me through! Thank you Mum, for the many

discussions we had about my work, both over the phone and

on the sofa with a cup of tea, they always helped me to

organise my thoughts.

Thank you to the “Genei Table”, for exuding such infinite

power and wisdom, allowing me to concentrate and resist the

6



temptation of procrastination for at least twice as long as

normal while writing up. Many thanks to my constant

“Genei Table” companion, Tiggie the cat. I still find cat hairs

in my laptop keyboard from time to time!

Thank you to all of my amazing friends who have kept me

sane, mostly by distracting me with co↵ee breaks, phone calls

from Philadelphia, Cheesy Tuesdays, and an endless stream

of funny YouTube videos and gifs. Thank you to my

housemates Caroline, Jenny and Anna and everyone I have

shared an o�ce with, particularly Nathan, James and Rachel,

who have always been so supportive and ready to listen.

Thanks also to Nina for continually being there when I

needed to vent (and just every afternoon) with a pack of

biscuits and words of encouragement. We both got our code

working in the end!

Finally I’d like to thank the great brown liquid wonderment

that is co↵ee! None of this would have been possible without

you.

7





Contents

List of tables 12

List of figures 13

Publications 23

1. Introduction 25

1.1. Aims and Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.2. Structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2. Background 31

2.1. What is a Windstorm Footprint? . . . . . . . . . . . . . . . . . . . . 31

2.1.1. Meteorological variable . . . . . . . . . . . . . . . . . . . . . . 32

2.1.2. Spatial domain and resolution . . . . . . . . . . . . . . . . . . 34

2.1.3. Event duration . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2. Relating windstorm footprints to insured loss . . . . . . . . . . . . . . 37

2.2.1. Catastrophe modelling . . . . . . . . . . . . . . . . . . . . . . 37

2.2.2. Storm severity measures . . . . . . . . . . . . . . . . . . . . . 38

Storm severity measure composition . . . . . . . . . . . . . . . 39

Validation of storm severity measures . . . . . . . . . . . . . . 43

2.2.3. Statistical models of extreme wind speeds . . . . . . . . . . . 48

Univariate modelling of extreme wind speeds . . . . . . . . . . 48

Multivariate modelling of extreme wind speeds . . . . . . . . . 49

2.3. Data used in this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3.1. Windstorm footprint data . . . . . . . . . . . . . . . . . . . . 53

Evaluation of windstorm footprint data . . . . . . . . . . . . . 56

2.3.2. Population density data . . . . . . . . . . . . . . . . . . . . . 58

2.3.3. Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3. Exploring the relationship between storm severity measures and

insured loss 60

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2. Extreme insurance loss windstorms . . . . . . . . . . . . . . . . . . . 61

3.3. Defining storm severity measures . . . . . . . . . . . . . . . . . . . . 64

9



Contents

3.4. Relating storm severity measures to one another . . . . . . . . . . . . 68

3.5. Relating storm severity measures to insured loss . . . . . . . . . . . . 73

3.6. Application: selecting extreme windstorms for the XWS catalogue . . 77

3.6.1. Why are category C storms not considered to have caused

extreme insured loss? . . . . . . . . . . . . . . . . . . . . . . . 79

3.7. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4. Bivariate modelling of windstorm footprints 83

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2. General approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3. Modelling the marginal distributions . . . . . . . . . . . . . . . . . . 86

4.3.1. Marginal distribution specification . . . . . . . . . . . . . . . . 86

4.3.2. Marginal distribution fitting . . . . . . . . . . . . . . . . . . . 89

4.3.3. Marginal distribution validation . . . . . . . . . . . . . . . . . 91

4.4. Modelling bivariate dependency . . . . . . . . . . . . . . . . . . . . . 94

4.4.1. Bivariate dependence model specification . . . . . . . . . . . . 94

4.4.2. Bivariate dependence model fitting . . . . . . . . . . . . . . . 106

4.4.3. Bivariate dependence model validation . . . . . . . . . . . . . 109

4.5. Bivariate model validation . . . . . . . . . . . . . . . . . . . . . . . . 113

4.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5. Geostatistical modelling of windstorm footprints 119

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2. General approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3. Marginal distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.4. Modelling spatial dependence . . . . . . . . . . . . . . . . . . . . . . 124

5.4.1. Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.4.2. Dependence model specification . . . . . . . . . . . . . . . . . 126

5.4.3. Dependence model fitting . . . . . . . . . . . . . . . . . . . . 131

Footprint simulation . . . . . . . . . . . . . . . . . . . . . . . 143

5.4.4. Dependence model validation . . . . . . . . . . . . . . . . . . 144

5.5. Geostatistical windstorm footprint model validation . . . . . . . . . . 147

5.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6. Sensitivity analysis of windstorm footprint characteristics and in-

sured losses 154

6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.2. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.2.1. PAWN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.2.2. Sampling the input parameter space . . . . . . . . . . . . . . 162

6.3. Exploring the e↵ect of stochasticity . . . . . . . . . . . . . . . . . . . 165

10



Contents

6.4. Exploring the relative influence of footprint parameters on Average

Annual Loss (AAL) and Maximum Annual Loss (MAL) . . . . . . . 167

6.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7. Conclusions 174

7.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.2. Directions for further development . . . . . . . . . . . . . . . . . . . 175

Appendices 179

A. Extremal dependence measure calculations and properties 180

A.1. Calculating the extremal dependence measures using the GEV-Gaussian

and GPD-Gumbel bivariate copula models . . . . . . . . . . . . . . . 180

A.2. Showing that the extremal dependence measures are independent of

the marginal distributions . . . . . . . . . . . . . . . . . . . . . . . . 181

A.3. Showing how the bivariate expected loss does not depend on the re-

lationship between locations . . . . . . . . . . . . . . . . . . . . . . . 182

B. Covariance model properties 183

B.1. Mean-square Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Bibliography 184

11



List of Tables

2.1. Definitions of previously published storm severity measures, sum-

marised based on the general form introduced in Eqn. (2.1), where

H(n) is a Heaviside/indicator function such that H(n) = 1 if n > 0

and H(n) = 0 otherwise. . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1. Name, date of occurrence, maximum 925hPa windspeed over land

(taken from the storm track), footprint area exceeding 25ms�1 over

land and insured loss incurred (where available) for the 23 extreme

insurance loss windstorms. Losses have been indexed to 2012. Missing

values of insured loss represent where this information could not be

attained. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2. Definition of the nine storm severity measures used in this investiga-

tion in the form of Equation 3.1, for windstorm footprint i. . . . . . . 66

4.1. Median and standard deviation (in brackets) of the bias in the esti-

mated correlation parameter ⇢̂, for the bivariate Gaussian dependence

structure with correlation ⇢ and then Gumbel dependence structure

with r = 1/↵. The first rows of the two dependence structure studies

relate to the method of estimating ⇢ from ⌘ in the Ledford and Tawn

(1996) model and the second row relates to the truncated likelihood

method for estimating ⇢. . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.1. Input parameter ranges used to explore the sensitivity of input pa-

rameter ranking to this specification. . . . . . . . . . . . . . . . . . . 163

12



List of Figures

1.1. Footprints for (a) windstorm Kyrill and (b) the Great Storm of Octo-

ber ‘87. Here defined as the maximum wind gust speed (in ms�1) over

a 72 hour period centred on the time at which the maximum 925hPa

wind speed occurs over land, estimated by downscaling ERA-Interim

reanalysis using the Met O�ce unified model (see Section 2.3.1 for

more information about the data). . . . . . . . . . . . . . . . . . . . . 26

1.2. The annual (January-December) mean of (a) the storm severity mea-

sure introduced by Klawa and Ulbrich (2003), and (b) the area of

the footprint exceeding 25ms�1, a component of the storm severity

measure developed by Lamb and Frydendahl (1991). The red curve

is a locally weighted scatterplot smoothing curve, fitted to the annual

means. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1. Insured annual accumulated losses in Germany. Comparison between

de-trended loss data (basic year = 1990) reported by the German In-

surance Association (GDV), and loss estimations by the storm sever-

ity measure. Source: Klawa and Ulbrich (2003) Figure 4. . . . . . . . 46

2.2. Modelling domain used to generate the footprints (a) on the rotated

pole (inner rectangle) provided by J. Roberts, (b) on the non-rotated

pole (shaded region) . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.3. Population density (people km�2) within the European domain, re-

gridded to the same resolution as the windstorm footprints, based

on the 2005 Gridded Population of the World, Version 3 data set.

Locations with less than 50 people km�2 are shown in white. . . . . . 59

3.1. Windstorm Footprints showing the maximum 3 second wind gust

speed (ms�1) over the 72 hour life time of the storm, for the 23 ex-

treme insurance loss windstorms, in the same order as in Table 3.1. . 63

3.2. Histograms of the footprint wind gust speeds (ms�1) for the 23 ex-

treme insurance loss windstorms. . . . . . . . . . . . . . . . . . . . . 63

3.3. The 98th percentile of climatology wind gust speed (ms�1) October

1979 to March 2012, for all land locations in the domain, c(sj) for

j = 1, ..., J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

13



List of Figures

3.4. Diagrams of V for x in the range 0-50ms�1 for severity measures (a)

A, (b) La and (c) Lr with absolute threshold 25ms�1 and relative

threshold c = 16ms�1 (selected arbitrarily). . . . . . . . . . . . . . . . 67

3.5. Scatter plots of (a) the logarithm of A and Umax (b) the rank of A

and Umax with dashed red lines showing how the plot can be divided

into four categories to calculate the extremal dependence measure. . . 68

3.6. Paired scatter plots (lower panel) and the Spearman rank correlation

coe�cient (upper panel) for all pairs of severity measures (on natural

logarithm scale). The panels on the diagonal show the histogram of

the natural logarithm of each measure. The 23 extreme insurance loss

storms (Table 3.1) are shown in purple. . . . . . . . . . . . . . . . . . 69

3.7. Anatol example: Exceedance footprints for windstorm Anatol (2nd-

4th December 1999) using a threshold of (a) 25ms�1 and (b) c(sj) (c)

Population density over the exceedance region (people km�2) and (d)

the relationship between the excess cubed wind gust speed and the

population density in grid cells that exceed 25ms�1 (blue) and c(sj)

(red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.8. Paired scatter plots of the rank of severity measures for rank2(5630,5730),
with the 23 extreme insurance loss storms (Table 3.1) shown in pur-

ple, equivalent to section A of Figure 3.5 (lower panel) and extremal

dependence measure �t for extremal threshold t=5630 (upper panel). 72

3.9. Conceptual diagram of storms ranked according to a severity measure

and according to insured loss. The red dashed lines represent the

division of the plot into the four categories A, B, C and D where the

counts of storms in each category are denoted a, b, c and d respectively. 73

3.10. The number of storms that are extreme in both insured loss and the

severity measure, a, for the (a+c) most extreme values of the severity

measure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.11. The number of storms that are extreme in both insured loss and the

severity measure, a, for the (a+c) most extreme values of the severity

measure when using (a) 20, (b) 15 and (c) 10 extreme insurance loss

storms, selected at random from the list of 23. This is repeated 1000

times for each measure. The median of these 1000 samples is plotted

with shaded regions showing the 2.5% and 97.5% quantiles. . . . . . . 75

3.12. Annual means of (a) LF , (b) A and (c) U3

max, based on all 5730

windstorm footprints in the data set. The red curve is the locally

weighted scatterplot smoothing curve, fitted to the annual means. . . 76

14



List of Figures

3.13. The number of storms that are extreme in both insured loss and

the severity measure, a, for the (a + c) most extreme values of the

severity measure, for severity measures A, La, Lr, Umax and LF , using

disaggregated footprints. The line a = (a + c) � 27 identifies which

severity measure maximises a
a+c

such that 50 storms are selected for

the catalogue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.14. (a) The location of the centre of the 850 hPa relative vorticity when

the maximum wind speed over land (Umax) occurs for the 50 wind-

storms selected for the XWS catalogue using LF . The size of the

points is proportional to the magnitude of LF , and (b) the distri-

bution of years in which the 50 windstorms selected for the XWS

catalogue occurred. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.15. The relationship between the population a↵ected by damaging winds

and loss functions using (a) the relative 98th percentile threshold c(sj)

and (b) the absolute threshold of 25ms�1, and (c) the relationship

between the date of occurrence of Umax and LF . Category A, B and

C storms are identified. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1. The sensitivity of the left-truncated GEV location, (a), scale, (b),

and shape, (c), parameters to a change in left-truncation threshold.

The vertical lines show the 95% confidence intervals based on the

assumption of asymptotic normality of ML estimates. . . . . . . . . . 90

4.2. The sensitivity of GPD (a) modified scale and (b) shape parameters

to a change in GPD threshold. The vertical lines show the 95%

confidence intervals based on the assumption of asymptotic normality

of ML estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3. Histogram for footprint wind gusts at (a) London, (b) Amsterdam, (c)

Berlin and (d) Paris with the best fit GEV, G(x), left-truncated GEV,

F (x) for x > v and GPD, H(x) for x > � distributions. Vertical lines

show the thresholds v and �, above which the left-truncated GEV

and GPD are fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4. Q-Q plots for the GEV, G(x), left-truncated GEV, F (x), and GPD,

H(x), marginal distributions fitted to 4 cities in Europe. Dashed lines

represent bootstrap 95% confidence intervals. . . . . . . . . . . . . . . 93

4.5. Return level plots for the GEV, G(x), left-truncated GEV, F (x),

and GPD, H(x), marginal distributions fitted to 4 cities in Europe.

Dashed lines represent bootstrap 95% confidence intervals of the em-

pirical return levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

15



List of Figures

4.6. left-truncated GEV (a) location, (b) scale, (c) shape, (d) truncation

threshold and (e) upper limit, for each location in the domain over

land. Locations with a positive shape parameter will have no finite

upper limit and are therefore left white in (e). . . . . . . . . . . . . . 95

4.7. (a) Scatter plots of (U, V ) simulated from bivariate copula functions

1-4 (defined above) where ⇢ = 0.6 and r = 5, and (b) Contour plots

of the associated copula functions. . . . . . . . . . . . . . . . . . . . . 97

4.8. Extremal dependence measures (a) �(u), (b) �̄(u) for u 2 [0, 1] asso-

ciated with copula functions 1-4. . . . . . . . . . . . . . . . . . . . . . 99

4.9. Empirical copula and empirical dependence measures �(u) and �̄(u)

for u 2 [0, 1], for London paired with 3 other European cities. . . . . . 100

4.10. Maximum likelihood estimates (solid) and 95% profile likelihood con-

fidence intervals (dashed) of ⌘ for structure variable threshold w in

the range of the 0.5�1 quantile of T for London paired with (a) Am-

sterdam, (b) Berlin and (c) Paris, and neighbouring locations paired

with (d) London, (e) Amsterdam and (f) Paris (separation distance

⇠ 25km). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.11. The best fit (a) Gaussian and (b) Gumbel bivariate copula functions

for London paired with Amsterdam and (c) shows the di↵erence be-

tween these functions. The functions are displayed for u and v greater

than 0.7 because of the truncated nature of the models. . . . . . . . . 109

4.12. Extremal dependence measures evaluated empirically and using the

Gaussian, Gumbel and power law copulas for London paired with

(a)/(d) Amsterdam, (b)/(e) Berlin and (c)/(f) Paris. The measure

�(u) is shown in the top row and �̄(u) in the bottom row. The 95%

confidence intervals are based on parametric bootstrapping for the

Gaussian copula (see Appendix A.1) and percentile bootstrapping

for the Gumbel copula and the profile likelihood for the power law

copula. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.13. Extremal dependence measures evaluated empirically and using the

Gaussian and Gumbel copulas for London paired with Amsterdam,

Berlin and Paris. The measure �(uLondon, uOther) is shown in the top

row (a)-(b) and �̄(uLondon, uOther) in the bottom row (c)-(d), where

uAmsterdam = uLondon + 0.1, uBerlin = uLondon � 0.05 and uParis =

uLondon � 0.1. The 95% confidence intervals are based on parametric

bootstrap for the Gaussian copula (see Appendix A.1) and percentile

bootstrapping for the Gumbel copula. . . . . . . . . . . . . . . . . . . 112

16



List of Figures

4.14. The Empirical bivariate distribution of wind gusts at London and

Amsterdam with regions A, B, C and D indicating where the bivariate

conceptual loss functions (a) L
98

and (b) L
25

take values 2, 1, 1 and

0 respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.15. Empirical, GEV-Gaussian model and GPD-Gumbel model loss distri-

butions for (a)-(c) conceptual loss function L
98

and (d)-(f) conceptual

loss function L
25

, for London paired with (a)/(d) Amsterdam, (b)/(e)

Berlin and (c)/(f) Paris. . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.16. The di↵erence between empirical and modelled �
98

for (a) the GEV-

Gaussian model and (b) the GPD-Gumbel model and the di↵erence

between empirical and modelled �̄
98

for (c) the GEV-Gaussian model

and (d) the GPD-Gumbel model, for London paired with all other

locations over land. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.17. As in Figure 4.16 but for �
25

and �̄
25

. . . . . . . . . . . . . . . . . . 117

5.1. Empirical correlation between (a) London, (b) Amsterdam and (c)

Berlin and all other land locations over land, plotted against distance

in (d), (e) and (f) respectively and for distance binned average corre-

lation in (g), (h), (i) respectively. . . . . . . . . . . . . . . . . . . . . 123

5.2. The empirical (a) mean and (b) the variance of Gaussian transformed

footprint wind gusts yj at each location sj over land within the model

domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.3. Exponential, Matérn (⌫ = 1.5) and Gaussian covariance functions

with scale parameter � adjusted to give the same practical range. . . 128

5.4. (a)-(c) two-dimensional simulations from Gaussian processes with Ex-

ponential, Matérn (⌫ = 1.5) and Gaussian covariance functions re-

spectively. (d)-(f) one-dimensional representations of the same Gaus-

sian processes respectively, a cross-section of the two-dimensional sim-

ulation at sy = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.5. A simulation from an anisotropic Gaussian spatial process with a

Matérn (⌫ = 1.5) covariance structure with anisotropy parameters

�
1

= 0.277,�
2

= �
1

/4 = 0.069 and ✓ = �⇡/3. . . . . . . . . . . . . . . 130

5.6. The best fit isotropic Matérn model (red line) compared with (a) the

empirical binned covariograms for London, Amsterdam and Berlin

paired with all other locations and (b) the empirical binned covari-

ogram for all pairs of locations together. . . . . . . . . . . . . . . . . 134

5.7. (a) The best fit isotropic Matérn model using the profile likelihood

approach of fixing the shape parameters ⌫ with the empirical binned

covariogram and (b) the maximum log-likelihood for a range of fixed

values of ⌫, with the maximum at ⌫ = 0.8 indicated by a solid point. 135

17



List of Figures

5.8. The log-likelihood surface based on the data for isotropic Matérn co-

variance parameters ⌫ and � in (a) 2 dimensions and (b) 3 dimensions.

The colour scale is partitioned into quantiles of the log-likelihood at

0.1 intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.9. (a) The distance matrix for a set of 100 locations on a 10⇥ 10 grid in

the domain (0, 1)2, (b) the associated Matérn covariance matrix where

⌧ 2 = 0, ⌫ = 0.8 and � = 0.2 (chosen arbitrarily), (c) the associated

inverse covariance matrix or precision matrix, and (d) the precision

matrix plotted against the distance matrix representing the weight

given to locations separated by a given distance within the likelihood

function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.10. (a) As in Figure 5.7 (a) but for separation distance d 2 (0, 100)km and

(b) the precision matrix (inverse of the covariance matrix) weights for

binned separation distances d 2 (0, 100)km with histogram showing

the frequency of each separation distance bin within the data. . . . . 138

5.11. The precision matrix (inverse covariance matrix) weights for di↵erent

separation distances based on the Matérn covariance function with

⌧ 2 = 0, ⌫ = 0.8 and � = 0.2 for di↵erent numbers of locations in the

domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.12. The relationship between separation distance and the natural loga-

rithm of the empirical covariance. The line x = 1500 indicates where

the relationship becomes non-linear. . . . . . . . . . . . . . . . . . . . 141

5.13. The empirical binned covariogram for spatial coordinates transformed

using the ML estimated anisotropic covariance parameters (black

dots), with the unit scale exponential covariance model added to as-

sess the fit of the anisotropic exponential dependence model (blue

line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.14. Best fit (a) isotropic and (b) anisotropic exponential covariance func-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.15. A comparison of the empirical covariance (first column) and best fit

anisotropic exponential covariance function (second column) centred

on (a)/(b) London, (c)/(d) Berlin and (e)/(f) Bratislava, included

rather than Amsterdam to demonstrate the variation in the ability of

the covariance function to represent the empirical dependence. . . . . 145

5.16. Extremal dependence measures evaluated empirically, using the Gaus-

sian bivariate copula model and the anisotropic exponential covari-

ance model. The measure �(u) is shown in the top row (a)-(c) and

�̄(u) in the bottom row (d)-(f), with 95% parametric bootstrap con-

fidence intervals (see Appendix A.1). . . . . . . . . . . . . . . . . . . 146

18



List of Figures

5.17. (a) The position of the validation locations, (b) scatter plot of the

predicted and true Gaussian transformed wind gust speeds at the

validation locations for 500 randomly selected footprints, (c) scatter

plot of (Empirical-Predicted) against longitude and (d) against latitude.147

5.18. Nine randomly selected historical footprints from the data set of 5730. 148

5.19. Nine synthetic footprints simulated using the statistical spatial model

with an anisotropic exponential covariance structure throughout the

domain and left truncated GEV margins at each location. . . . . . . . 148

5.20. Historical footprints (top row) and synthetic footprints with the same

area over land exceeding 25ms�1 (middle row) and the 98th percentile

of the climatology wind gust speed (bottom row) for windstorms (a)

Daria, (b) Lothar, (c) Kyrill, (d) the Great Storm of ‘87 and (e)

Jeanette. Colour legend as in Figure 5.18. . . . . . . . . . . . . . . . 149

5.21. Scatter plot of the logarithm of the area of the footprint exceeding

25ms�1 and the logarithm of the 90th percentile of the footprint wind

gusts speeds for simulated footprints (purple) and historical footprints

(black). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.22. The distribution of log base 10 losses according to multivariate con-

ceptual loss functions L
25

and L
98

. . . . . . . . . . . . . . . . . . . . 151

5.23. The distribution of log base 10 losses according to multivariate con-

ceptual loss functions L
25

and L
98

for (a)/(d) the UK, (b)/(e) France

and (c)/(f) Germany. . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.1. Scatter plot of the change in µ and ⇠ and the resulting value of AAL,

represented by the diameter of the circle symbols. A change of 0.5,

for example, means the parameter is reduced by 50%. . . . . . . . . . 157

6.2. (a) The unconditional empirical CDF (red) and conditional empirical

CDFs for n = 10 conditioning intervals, based on the input parameter

xi=� and output AAL for input parameter range 0.2 � 2.2 relative

change (see Section 6.2.2), (b) the Kolmogorov-Smirno↵ (KS) dis-

tance between the unconditional empirical CDF and each conditional

empirical CDF (the grey scale corresponds to the conditional em-

pirical CDFs in (a)). The blue line shows the median of these 10

KS distances, representing the sensitivity index, Ti, for that input

parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.3. The steps in the numerical implementation of the PAWN analysis. . . 161

6.4. An example of a Latin Hypercube (LHC) sample for a two-dimensional

input parameter space where Nu = 3000. . . . . . . . . . . . . . . . . 162

19



List of Figures

6.5. Variation in footprint model parameters when input factors (a) pµ,

(b) p�, (c) p⇠ and (d) p✓, p�1 and p�2 apply a decrease of 80% (top

row), apply no change (middle row) and apply an increase of 120%

(bottom row). The colour scale in (d) represents the correlation be-

tween locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.6. Variation in footprint model parameters when input parameters (a)

p⇠ applies a change of �120% (top row), applies no change (middle

row) and applies an increase of 90% (bottom row), (b) p�1 and p�2

apply a decrease of 120% (top row), apply no change (middle row)

and apply an increase of 120% (bottom row), and (c) p✓ applies a

decrease of 1000% (top row), applies no change (middle row) and

applies an increase of 1000% (bottom row). . . . . . . . . . . . . . . . 164

6.7. PAWN indices for each of the model parameters pµ, p�, p⇠, p✓, p�1 and

p�2 (input parameters 1-6) and the random seed (input parameter 7)

for output (a) AAL and (b) MAL. The horizontal dashed line rep-

resents the Kolmogorov-Smirnov critical value for a 95% confidence

level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.8. (a)-(f) for input parameters pµ, p�, p⇠, p✓, p�1 , p�2 respectively, top row:

scatter plot of input parameter against output AAL, with dashed

lines showing the partitions between the n = 10 conditioning inter-

vals, middle row: the unconditional empirical CDF (red) and condi-

tional empirical CDFs for the n conditioning intervals, bottom row:

the Kolmogorov-Smirnov (KS) distance between the unconditional

empirical CDF and each conditional empirical CDF for the n con-

ditioning intervals. The blue line represents the median of KS over

the n intervals and the dashed line represents the KS critical value

at a 95% confidence level. The grey scale in the conditioning cluster

partitions corresponds to the equivalent conditional empirical CDF

and KS distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.9. As Figure 6.8 but for output MAL. . . . . . . . . . . . . . . . . . . . 168

6.10. PAWN sensitivity indices for AAL (top row) and MAL (bottom row)

for input parameter ranges 1, 2, 3 and 4 in each column (a)/(e),

(b)/(f), (c)/(g) and (d)/(h) respectively. Parameter ranges are de-

fined in Table 6.1. Input parameters pµ, p�, p⇠, p✓, p�1 , p�2 are labelled

1-6 respectively. Boxes represent bootstrap 95% confidence intervals

and black lines represent the bootstrap mean. The dashed line is the

KS critical value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

20



List of Figures

6.11. PAWN indices associated with each of the 6 input parameters when

considering AAL (top row) and MAL (bottom row) greater than

(a)/(d) 200, (b)/(e) 670 and (c)/(f) 1533. Boxes represent bootstrap

95% confidence intervals and black lines represent the bootstrap mean.170

6.12. The di↵erence between the left-truncated GEV parameters µ, � and

⇠ in columns (a)/(d), (b)/(e) and (c)/(f) respectively, when fit to

all land locations in the European domain using all 5730 historical

footprints and those in 1979-1996 (top row), and 1997-2012 (bottom

row). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.13. A comparison of the empirical binned covariogram when the spatial

domain is transformed using the spatial dependence parameters, �
1

,

�
2

and ✓, fit to all of the 5730 historical footprints (black circles),

those in 1979-1996 (turquoise squares), and those in 1997-2012 (pink

triangles). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

21





Publications

Material from Chapter 3 has been published in

J. F. Roberts, A. J. Champion, L. C. Dawkins, K. I. Hodges, L. C. Sha↵rey, D.

B. Stephenson, M. A. Stringer, H. E. Thornton, and B. D. Youngman, 2014: The

XWS open access catalogue of extreme windstorms in Europe from 1979 to 2012.

Natural Hazards and Earth System Science, 14, 2487-2501.

23





1. Introduction

Weather related natural disasters cause a great deal of damage and economic loss

globally, currently estimated to cost $221 billion annually (Mildenhall et al., 2014).

Extratropical cyclones, also known as windstorms, are the 2nd largest cause of global

insured loss (Mart́ınez-Alvarado et al., 2014), and are a major contributor to losses

in Europe. For example windstorm Kyrill (17th� 19th January 2007) and the Great

Storm of October ‘87 (15th � 17th October 1987) caused insured losses of $6.7 bil-

lion and $6.3 billion respectively (indexed to 2012). In addition, windstorms often

arrive in quick succession, increasing the risk of large aggregate losses. For example

the cluster of European windstorms in December 1990, Anatol (2nd � 4th), Lothar

(25th � 27th) and Martin (26th � 28th) caused an aggregate insured loss of $13.9

billion (see Table 3.1).

The severity of a windstorm hazard event is often summarised in terms of its foot-

print, defined as the maximum wind gust speed to occur at a set of spatial locations

over the duration of the storm. Figure 1.1 shows the footprints for windstorm Kyrill

and the Great Storm of October ‘87, over the European domain. These two wind-

storms incurred a similar insured loss, however their associated footprints have very

di↵erent characteristics. Windstorm Kyrill has a large area of high wind gust speeds

and a low peak intensity while the Great Storm of October ‘87 has a smaller area

of high wind gust speeds but a higher peak intensity. So what is the relative impor-

tance of these characteristics in determining the insured loss that will be incurred?

One method for relating windstorm footprints to insured loss is to use a storm

severity measure, a function of extreme footprint wind gust speeds. Storm sever-

ity measures represent multiple characteristics of the footprint, and can therefore

be used to explore which characteristics are most damaging, e.g. the area or peak

intensity. Klawa and Ulbrich (2003) developed a storm severity measure based on

the assumption that losses occur locally for wind gust speeds exceeding the local

98th percentile of daily maximum wind gust speeds and grow according to a cubic

function between wind and loss. Klawa and Ulbrich (2003) showed that this storm

severity measure, multiplied by population density at each location, is a reasonable

indicator of insured loss in Germany and has subsequently been applied in numerous

studies which explore windstorm losses in Germany (Leckebusch et al., 2007; Pinto
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Figure 1.1. Footprints for (a) windstorm Kyrill and (b) the Great Storm of October
‘87. Here defined as the maximum wind gust speed (in ms�1) over a 72 hour period
centred on the time at which the maximum 925hPa wind speed occurs over land,
estimated by downscaling ERA-Interim reanalysis using the Met O�ce unified model
(see Section 2.3.1 for more information about the data).

et al., 2007, 2010; Donat et al., 2010, 2011a,b). A number of other storm sever-

ity measures have also been developed, such as Della-Marta et al. (2009), Haylock

(2011) and Lamb and Frydendahl (1991). In all cases, the relationship between

the storm severity measures and insured loss is only explored based on either small

regions of Europe, annual aggregate loss data or using low spatial resolution wind

gust speed data. No storm severity measure, and hence combination of footprint

characteristics, has therefore been identified as being the best representation of in-

sured loss for the whole of Europe based on high resolution wind gust data.

During an extreme windstorm event insured losses occur at multiple locations, there-

fore exploring the spatial structure of individual storms is also relevant to under-

standing how windstorm footprints relate to total insured loss. Condensing infor-

mation into a scalar storm severity measure, which incorporates multiple features

of the footprint into one value, inevitably fails to capture the full spatial details

of storm intensity and cannot represent di↵erent combinations of spatial scale and

local intensity. This motivated Bonazzi et al. (2012) to propose a model for the

bivariate distribution of footprint wind gust speeds at pairs of locations, in terms of

the local intensity and spatial dependence, to explore which of these characteristics

has the most influence on insured loss, approximated by a storm severity measure.

There are a number of limitations to the investigation carried out by Bonazzi et al.

(2012). The model is only able to represent two locations at once and is developed
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based on a small set of 135 extreme historical windstorm footprints, using wind

gust speeds separated by up to 100km, not covering the whole European domain.

In developing this model Bonazzi et al. (2012) assumed that wind gust speeds at

pairs of locations are extremally dependent, but did not test this assumption. In

addition, the sensitivity of the storm severity measure to changes in local intensity

and spatial dependence was only investigated using combinations of the model fitted

to windstorm footprints in positive and negative North Atlantic Oscillation phases,

therefore not encompassing a wide range of variation in the model parameters. A

better understanding of the relationship between the footprint characteristics, local

intensity and spatial dependence, and insured loss is therefore required, using better

model development based on a more complete data set and a more complete sensi-

tivity study.

This improved understanding will also help to explain the recent surprising de-

cline in windstorm related insured losses. As explained by catastrophe modelling

company RMS, windstorms Christian and Xaver in the winter of 2013-2014 are two

outliers during a general lull of European windstorm activity that has lasted about

20 years (Mark, 2013). This lead RMS to release an updated European windstorm

model that o↵ered adjustments for the recent decline in windstorm severity. These

adjustments ensured recent and historic wind history were represented by including

the most up-to-date long-term historical wind record, going back 50 years. This
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Figure 1.2. The annual (January-December) mean of (a) the storm severity measure
introduced by Klawa and Ulbrich (2003), and (b) the area of the footprint exceeding
25ms�1, a component of the storm severity measure developed by Lamb and Fry-
dendahl (1991). The red curve is a locally weighted scatterplot smoothing curve,
fitted to the annual means.

decrease in insured losses is also reflected in the annual averages of a range of storm

severity measures. Two such storm severity measures are presented in Figure 1.2,

calculated from 5730 windstorm footprints over extended winters (October-March)

1979-2012 (see Section 2.3.1). Figure 1.2 shows how both the storm severity mea-
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sure developed by Klawa and Ulbrich (2003) and the area of the footprint exceeding

25ms�1 declined in the mid 1990’s. This decrease in windstorm severity in the past

two decades was also identified by Cusack (2013) when applying the Klawa and

Ulbrich (2003) storm severity measure to wind gust speeds observed at stations in

the Netherlands (1910-2011).

1.1. Aims and Questions

The main objective of this thesis is to develop and critically apply a statistical

methodology to explore the relationship between windstorm footprint characteris-

tics and insured loss. The modelling takes advantage of a recently developed, very

large data set of 5730 reanalysis model generated historical windstorm footprints at

a downscaled grid cell horizontal resolution of 25km (kindly modelled by J. Standen

and provided by J. Roberts of the Met O�ce; see Section 2.3.1). Donat et al. (2010)

identify a significant advantage in using higher resolution wind gust speed data for

the predictability of insured loss.

This investigation is carried out in two stages. Firstly, by developing a number

of storm severity measures, based on existing measures in the literature, and ex-

ploring which is best at representing European wide insured loss. Secondly, by

developing a spatial geostatistical model for windstorm footprints over the whole

European domain, which will be used in a sensitivity study to explore whether the

footprint local intensity or spatial dependence has most influence on insured loss,

approximated by the most successful storm severity measure.

The following questions are addressed:

• How can windstorm footprints best be summarised using storm severity mea-

sures?

• How well do storm severity measures represent insured loss?

• How should the local intensity of damaging wind gust speeds be modelled?

• How should the spatial dependence in damaging wind gust speeds be modelled?

• Can a windstorm footprint model realistically represent historical storm sever-

ity across the European domain?

• Which windstorm footprint characteristic, spatial dependence or local inten-

sity, is most influential in causing the recent decline in storm severity?
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1.2. Structure of this thesis

Chapter 2 presents a review of previously published research on windstorm foot-

prints. Firstly the definition for the footprint is explored. Existing methods for relat-

ing the windstorm footprint to insured loss will then be reviewed, including catastro-

phe modelling and existing storm severity measure based explorations. Windstorm

footprints can also be related to insured loss using a statistical model, hence, pre-

viously published statistical models of extreme wind speeds will also be considered.

Lastly, the large data set of high resolution historical windstorm footprints used

throughout the thesis will be introduced and evaluated.

In Chapter 3, the relationship between windstorm footprints and insured loss is

explored using storm severity measures. The way in which the windstorm footprint

can be summarised by di↵erent storm severity measures is first explored. The storm

severity measures are then applied to historical windstorm footprint data to estab-

lish which are most successful at representing insured loss by exploring how well

they classify notable windstorms which caused large insured losses. Some of this

work has already been published in Roberts et al. (2014).

Chapter 4 presents the development and validation of a bivariate model for foot-

print wind gust speeds at pairs of locations. The emphasis of this chapter is the

investigation of extremal dependence between locations throughout the European

domain to ensure the correct class of dependence model is used. The exploration of

this property is novel, therefore improving upon our current understanding of the

statistical characteristics of windstorm footprints. Extreme value theory is used to

model the distribution of wind gust speeds at each location.

In Chapter 5, the bivariate model is extended to a geostatistical model to repre-

sent the whole European domain. The spatial dependence is modelled using an

anisotropic covariance function of separation distance. This involves resolving chal-

lenges that arise in model fitting to the large footprint data set. The resulting

statistical windstorm footprint model will allow for the quick and computationally

inexpensive simulation of realistic synthetic footprints.

In Chapter 6, the relationship between windstorm footprints and insured loss is

explored in a sensitivity study, identifying which footprint statistical characteristic,

local intensity or spatial dependence, has greatest influence on the storm severity

measure that best represents insured loss. This is done by stochastically simulating

synthetic footprints with variations on the model parameters, which specify the foot-

print statistical characteristics, and calculating the resulting storm severity. This
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is the first known application of of formal sensitivity analysis methodology to a

stochastic windstorm model.
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2. Background

This chapter reviews previous research relevant to the methods used within this

thesis. Firstly, the definition of a windstorm footprint will be discussed. Existing

methods for relating the windstorm footprint to insured loss will then be reviewed,

including catastrophe modelling and storm severity measures. Windstorm footprints

can also be related to insured loss using a statistical model, as in Bonazzi et al.

(2012). Therefore, previously published statistical models of extreme wind speeds

will also be discussed. Finally, the windstorm footprint data used throughout the

rest of this thesis will be described.

2.1. What is a Windstorm Footprint?

European windstorm footprints have commonly been used to represent the extrem-

ity of a windstorm event, either in the current climate, (e.g., Klawa and Ulbrich

2003, Heneka et al. 2006, Donat et al. 2010, Della-Marta et al. 2010, Donat et al.

2011b, Haylock 2011, Bonazzi et al. 2012, Cusack 2013, Roberts et al. 2014), or

under future climate change conditions, (e.g., Dorland et al. 1999, Leckebusch et al.

2006, Leckebusch et al. 2007, Pinto et al. 2007, Leckebusch et al. 2008a, Leckebusch

et al. 2008b, Schwierz et al. 2010, Donat et al. 2011a, Pinto et al. 2012).

There is no unique definition of a windstorm footprint. Unlike tropical cyclones,

windstorms do not have a simple spatial-temporal structure; they can vary hugely

in size, strength and duration. Small intense storms can be very damaging, as can

large less intense storms. So how should a footprint be defined in order to appro-

priately summarise the intensity of a windstorm?

In the introduction, the windstorm footprint is defined as the maximum wind gust

speed to occur at a set of spatial locations over the duration of the storm. The exact

definition of the windstorm footprint in terms of the meteorological variable used to

represent the maximum wind intensity, the event duration and the spatial domain

size and resolution varies a great deal in previous studies, depending on the aim of

the study and the available data. These variations will now be explored.
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2. Background

2.1.1. Meteorological variable

The maximum wind gust speed has been shown to have a robust relationship with

storm damage (Klawa and Ulbrich, 2003) and is therefore most commonly used

as the footprint meteorological variable. Seregina et al. (2014) defined wind gust

speeds as the short-term exceedances of mean wind speeds for a certain time range.

Wind gust speeds are therefore determined for a given averaging period. This period

length is an important consideration and is often related to the intended applica-

tion. Some applications require information about extreme values of the shortest

wind gusts and therefore use a one second averaging period, while in other cases,

the damaging wind gusts are those that a↵ect an entire structure and a longer five-

ten second averaging period is used. For windstorm footprints, Klawa and Ulbrich

(2003) used a two second wind gust averaging period, while other studies such as

Bonazzi et al. (2012) and Roberts et al. (2014) used a three second averaging period.

The maximum wind gust speed can be provided by observational weather stations

or estimated from numerical atmospheric models. Observational station data is

generally used when the region of interest is relatively small. For example Dorland

et al. (1999) investigated storm damage under climate change in only one country,

the Netherlands, and used station data from the Royal Dutch Meteorological O�ce

(KNMI) for 30 locations. Similarly Bonazzi et al. (2012) focused on a small region

of North West Europe. They used a large number of weather station data sources

to obtain a fairly homogenous spread across Europe with typical distance between

stations of around 50 to 100 km in the domain, with higher station densities in more

urbanised areas such as in Germany, the UK, and France. Della-Marta et al. (2009),

however, argued that wind gust speed observations generally have limited spatial

resolution and/or spatial representativeness and contain temporal inhomogeneities.

For example Klawa and Ulbrich (2003) developed a windstorm loss model for Ger-

many and were only able to use 24 of the 90 German stations due to inhomogeneities

found in the data at the other 66 stations. The resulting locations of the station

data therefore under represented the North East of Germany.

To overcome potential inhomogeneities in station data, a number of studies have

used simulated output from numerical atmospheric models, e.g. Regional Climate

Models (RCMs) or Global Climate Models (GCMs). Using atmospheric model data

also allows for projection under future climate scenarios. Della-Marta et al. (2009)

discussed how atmospheric models are required for the temporal and spatial homo-

geneity needed for a continental-scale overview of the European storm climate. A

drawback of using these atmospheric models is that the physical processes related

to wind gust speeds are generally not explicitly resolved and must therefore be cal-

culated as a model diagnostic using gust parameterisation schemes (Donat et al.,
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2011a). There are several physical mechanisms that may lead to strong near-surface

wind gusts, reflected in di↵erent parameterisations of numerical models. Most ap-

proaches have in common that the gust parameterisation is influenced by the large-

scale wind, the surface roughness length, and the atmospheric stability (Seregina

et al., 2014).

Gust parameterisation can lead to uncertainties in modelled wind gust speeds. As

explained by Haas et al. (2014), model simulated wind gust speeds usually di↵er

from observations because regional climate models have biases and cannot capture

all local e↵ects. Leckebusch et al. (2006) used an ensemble of four GCMs to explore

the frequency and intensity of European windstorms under climate change condi-

tions. They found that the model that contained a gust parameterisation tended

to over estimate the number of extreme events in the historical period compared to

the other three models which only provided maximum wind speeds. Della-Marta

et al. (2009) used the ERA-40 reanalysis dataset to explore return periods of wind-

storms over Europe. They illustrated that even in reanalysis data, which is thought

to provide physical consistency with in situ wind speed observations through data

assimilation, wind gust speeds, calculated using parameterisation schemes, still ex-

hibited unrealistic behaviour near coasts and steep topography.

Born et al. (2012) showed that di↵erent parameterisation schemes can sometimes

lead to di↵erences of up to 10-20 ms�1 in the estimated wind gust speeds at particu-

lar sites. Roberts et al. (2014) explained that a commonly used alternative method

for predicting wind gust speeds is to use the maximum wind speed at the vertical lev-

els from which momentum may be transported to the surface (e.g. Brasseur 2001).

Roberts et al. (2014) argued that this method is more physically based than using a

gust paramerisation, although it is unclear whether this method adds a significant

improvement to the wind gust speed estimates (Sheridan, 2011).

Haas et al. (2014) developed a dynamical and statistical downscaling method to

adjust RCM simulations of wind gust speeds toward observations to help correct

for the bias in the wind gust parameterisation. Statistical downscaling is a method

which relates large-scale variables to local variables via statistical transfer func-

tions, while dynamical downscaling combines large-scale reanalyses or GCM data

with RCMs resulting in high-resolution simulations over a region of interest (Haas

et al., 2014). The statistical-dynamical downscaling method used by Haas et al.

(2014) was a combination of these two techniques. They showed an improvement

for 88 of 100 events considered, at about 64% of test sites when the downscaling

method was applied, indicating some potential in this method for improving the

wind gust speed fields used to create windstorm footprints.
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Alternatively, another wind-related variable can be used in place of wind gust speed.

Della-Marta et al. (2010) used geostrophic wind speed at the 850hPa pressure level.

They, however, acknowledged that 850hPa geostrophic wind speed is not fully repre-

sentative of the wind gust speeds and hence wind-related loss, and in using 850hPa

geostrophic wind speed they lost information about real surface winds a↵ected by,

for example, surface roughness. However their justification for this choice of meteo-

rological variable was that they gained a wind climatology that was independent of

gust parameterisations, which could be used in model inter-comparison.

Some GCMs do not include a gust parameterisation. As a result Pinto et al. (2007),

Donat et al. (2010), Donat et al. (2011a) and Donat et al. (2011b) used the maximum

instantaneous 10 metre wind speed as an alternative footprint meteorological vari-

able. Similarly, due to the 100 year long historical record required, Cusack (2013)

analysed daily maximum wind speeds, rather than wind gust speeds since wind gust

speeds have only recently been recorded. Della-Marta et al. (2009), however, argued

that instantaneous wind fields do not necessarily sample maximum storm intensity.

To overcome this problem, Seregina et al. (2014) presented a statistical methodol-

ogy for predicting wind gust speeds from wind speed data using a transfer function

between the distribution parameters of wind and wind gust velocities. They found

that, despite uncertainties caused by the short length of the observational records,

the method lead to consistent results, enabling a wide range of possible applications.

2.1.2. Spatial domain and resolution

The choice of spatial domain and resolution largely depends on the application and

aims of the given windstorm footprint investigation. Applications that require the

use of GCMs for climate change studies are restricted by their relatively low resolu-

tion. For example Leckebusch et al. (2008b) used a GCM with a low horizontal grid

point spacing of 2.5� and Leckebusch et al. (2008a) used a 1.87� horizontal resolution

model. Similarly the four GCMs used by Leckebusch et al. (2006) had resolutions

ranging between 2� to 3.75�.

Donat et al. (2010) explored the benefits and limitations of dynamical downscal-

ing for windstorm loss calculations and identified a significant advantage in using

higher resolution wind gust speed data for the predictability of insured loss. In addi-

tion, Della-Marta et al. (2010) commented on how estimates of European windstorm

climate and their associated losses are often compromised by either relatively short

records, coarse resolution or inhomogeneous datasets. They used a dynamically

downscaled GCM with 0.5� horizontal resolution to improve estimates of European
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windstorm climate and the risk of insured loss. Similarly, Schwierz et al. (2010) dy-

namically downscaled GCM wind gust speed data to a 30km horizontal resolution

and Haylock (2011) to a 0.22� resolution.

The spatial domain of the footprint, again varies depending on the application.

A number of studies are based solely on Germany, for example Klawa and Ulbrich

(2003), Leckebusch et al. (2007) and Donat et al. (2010), while some extend to

west and central Europe, for example Pinto et al. (2007), Leckebusch et al. (2008a),

Leckebusch et al. (2008b), Haylock (2011) and Bonazzi et al. (2012), and others

to the whole of Europe, for example Schwierz et al. (2010) and Della-Marta et al.

(2010).

2.1.3. Event duration

Studies use di↵erent definitions of the windstorm event duration and methods for

identifying the maximum wind intensity at each location over the duration period.

Leckebusch et al. (2008b) noted that the typical timescale of a synoptic situation

is from 2.5 up to 6 days and therefore concluded that 3 days is a reasonable time

duration for footprints. The 3 day window is the most commonly used in previous

studies and is consistent with the reinsurance industry definition of a windstorm

event (Haylock, 2011). Haylock (2011) argued that 72 hours is enough time for

a storm to completely pass over western Europe, however also acknowledged that

there is a possibility that a single 72 hour footprint may result from more than one

windstorm crossing the domain. They explained how choosing a shorter period,

however, increased the risk of one windstorm generating more than one footprint,

violating the independence between events required to carry out statistical analysis.

Since Haylock (2011) used daily maximum wind gust speed data, the maximum

of these daily maxima over 4 calendar days was used to ensure that any 72 hour

period centred around a particular day was captured. Della-Marta et al. (2009)

also used a 72 hour windstorm event duration, and centred the 3 day period on the

documented date of the event in the windstorm catalogue developed by Lamb and

Frydendahl (1991). Lamb and Frydendahl (1991) did not explain how the date of

each event was chosen, however Della-Marta et al. (2009) suggested they are based

on the time during which the greatest impacts were experienced. Haas and Pinto

(2012) followed the same approach, defining the 72 hour period as one day before

and after the event date, where the event dates were calculated as the top 100 days

in a storm severity measure in the time period of interest. They noted that this

approach resulted in some storms being counted twice, for example two of the top

100 days was associated with windstorm Kyrill.
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Bonazzi et al. (2012) also identified event days by selecting the top N days in a

storm severity measure. However, they chose the top N days for each country sep-

arately, e.g. the top 25 for major countries such as Germany and the top 10 for

smaller countries such as Slovakia, to ensure that their sample of footprints repre-

sented storms that a↵ected all countries in their European domain. Rather than

taking a day either side of the event day, they used a range of sources to identify

the peak wind gust speed for each event: (i) daily peak wind gust speed time-series

at stations, (ii) Reanalysis data of surface pressure, (iii) German Weather Service

(DWD) operational analyses of surface pressure and (iv) reports of damage in the

public domain such as media and the internet. This meant that the event duration

was not fixed and varied between windstorm events. Cusack (2013) also used a

flexible event duration, taking all consecutive days with a non-zero value of a storm

severity measure to be one event. They did this to reduce the possibility of double

counting events, but based on the above discussion, this method seems likely to

result in consecutive or overlapping events being represented in one footprint.

Donat et al. (2011b) used a longer, 5 day event duration. They argued that this

is a more reasonable time interval to allow for typical travelling velocities and for

sequences of storms that hit Germany within a few days. They however, noted that

the most significant losses related to a windstorm usually occur within 1 or 2 days

and suggested that there is greater consistency between windstorm footprints if a

3 day event duration is used rather than 5 days. They found that a 5 day event

duration resulted in some consecutive storms being considered as one event, but

that a 3 day event duration resulted in some windstorms being excluded because

they defined individual storm events as being separated by at least one day. Pinto

et al. (2012) acknowledged that, while it may take 3 days for a windstorm to cross

the whole of Europe, a 2 day event duration was appropriate for their study which

was based on a smaller region in North-West Europe which would therefore take

less time for the storm to pass through.

In contrast, Leckebusch et al. (2007), Pinto et al. (2007) and Donat et al. (2010)

studied the e↵ect of climate change on annual aggregate wind related losses in Ger-

many. They therefore considered maximum wind gust speed footprints for each

single day, and summed the resulting storm severity over the year.

The way in which windstorm footprints are defined and constructed within this

thesis, in terms of the meteorological variable, region and event duration used, is

described in Section 2.3.1.
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2.2. Relating windstorm footprints to insured loss

This thesis aims to explore how windstorm footprints relate to insured loss. Previ-

ous approaches for exploring this relationship will be reviewed here. Firstly in the

context of catastrophe modelling, which is carried out by insurers to estimate wind-

storm losses and price insurance by combining windstorm footprints with insured

exposure and vulnerability data. Storm severity measures will then be discussed,

these are commonly used to explore historical and future trends in windstorm losses

when exposure is unavailable and loss is estimated as a function of extreme foot-

print wind gust speeds. Finally, previously published univariate and multivariate

statistical models of extreme wind speeds will be reviewed.

2.2.1. Catastrophe modelling

Catastrophe models combine mathematical representations of the natural occur-

rence patterns and characteristics of natural hazards, such as windstorms, with

information on property values, construction types and occupancy classes to pro-

vide information about the potential for large losses before they occur. The purpose

of catastrophe modelling is therefore to estimate the chance of potential future

catastrophic events so companies can prepare for the financial impact. Catastrophe

modelling is used in the insurance and reinsurance industries for insurance pricing,

risk selection, loss mitigation, reinsurance decision making and overall risk portfolio

management for natural hazards (Clark, 2002).

The hazard module of the catastrophe model should represent where the natural

hazard events are likely to occur, how severe they are likely to be and their relative

frequency. In the case of European windstorms, the hazard module is represented by

the windstorm footprint (Schwierz et al., 2010). Using windstorm footprints from

historical events alone does not give a representative or comprehensive selection

of all possible events that could occur. Therefore, catastrophe modellers generate

synthetic events to represent all types of possible, yet realistic, scenarios. Large cat-

alogues of synthetic footprints are used to determine the frequency, magnitude and

any other characteristics of potential catastrophe events needed within the hazard

module (Clark, 2002).

These synthetic event sets are traditionally created based on low-order parametric

stochastic models (Beven et al., 2016). More recently, however, numerical weather

and climate models are used to simulate large sets of artificial hazard events. The bi-

ases in the model output are adjusted using statistical models, and stochastic models

are used for simulating losses from the artificial windstorm events, e.g. compound-
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Poisson event-loss table models (Beven et al., 2016).

A number of assumptions are made when developing these models which leads to

a great deal of uncertainty in the resulting estimated potential losses. Stochastic

hazard and loss models often use highly idealised non-physical descriptions of com-

plex storm processes (Beven et al., 2016). There is also the risk that the models

are over-fit to data sets that cover a relatively short historical period. For example,

the RMS European windstorm catastrophe model overestimated recent losses due

to the data period used to develop the model (Mark, 2013). In addition, numerical

weather and climate models show biases in storm properties, such as underestima-

tion of extreme winds (Roberts et al., 2014), incorrect locations of storm tracks over

Western Europe (Zappa et al., 2013) and missing processes such as sting jets (Catto

et al., 2010). When relating windstorm footprints to insured loss, re/insurers, how-

ever, benefit from the availability of insured exposure and vulnerability data at a

high spatial resolution. Contrary to this, most commonly scientists in academia

only have access to very limited records of annual aggregate or event based insured

losses. In these studies, insured loss must be approximated using a storm severity

measure, or loss function (Klawa and Ulbrich, 2003), calculated from the footprint

wind gust speeds, and in some cases population density, presenting a further source

of uncertainty when relating footprints to insured loss.

2.2.2. Storm severity measures

Storm severity measures are descriptive statistical summaries of the severity of a

windstorm event, making idealised assumptions about the hazard, vulnerability and

exposure in order to estimate insured loss. It is therefore important to validate

the skill of a storm severity measure before using it as an approximation for loss.

This skill depends on many factors such as the footprint data used, the availability

of insured loss data for validation and the time period and region studied. As a

consequence previously published storm severity measures vary in composition, for

example in terms of the characteristics used to summarise the footprint, e.g. damage

area and duration. Exploring how well these di↵erent measures represent insured loss

therefore gives insight into which characteristics of the footprint are most damaging

and how the windstorm footprint is best related to insured loss. The composition

of previously published storm severity measures will be reviewed, followed by their

skill in representing insured loss. This review will inform the development of storm

severity measures in Chapter 3 of this thesis.
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Storm severity measure composition

Although storm severity measures vary in the detail of their composition, it is pos-

sible to express most in a general form. For a given windstorm event, a severity

measure m can be expressed as:

m = g

✓ J
X

j=1

V (x(sj), t)e(sj, t)

◆

(2.1)

where x(sj) is the footprint wind gust speed at location sj, j = 1, ..., J . The func-

tions V and e represent the hazard and exposure respectively, which both depend

on the wind gust exceeding a damage threshold t. These two functions together,

summed over all locations, represent the severity of a given windstorm event. In

some cases an additional function g is applied to the severity measure to reduce

skewness. All previously published storm severity measures are special cases of this

general form. These severity measures will first be introduced and discussed, and

finally summarised based on this general form in Table 2.1.

The first storm severity measure was derived by Lamb and Frydendahl (1991) while

compiling a catalogue of extreme storms over the North Sea, British Isles and north-

west Europe. Lamb and Frydendahl (1991) included storms which had “acquired

historical note” and used the severity measure to rank these storms within the cat-

alogue. For a given storm event, their severity measure took the form

loss ⇡ V 3

maxAD (2.2)

where V 3

max is the cubed maximum surface wind speed throughout the domain of

interest, A is the greatest area a↵ected by damaging winds and D is the overall

duration of the damaging winds.

From a theoretical point of view, the cube of the wind speed is proportional to the

damaging power (Klawa and Ulbrich, 2003), i.e. the rate of kinetic energy delivered

by advection. Lamb and Frydendahl (1991) explained how the dynamic pressure of

the wind is proportional to the square of the wind speed, while the wind power is a

matter of work done and therefore involves the dynamic pressure and the run of the

wind, hence the cube of the wind speed. Empirically this relationship was supported

by MunichRe (1993), who found that the loss extent of windstorms increased with

almost the cube of the maximum wind gust speeds (x2.7 ⇠ loss). Later explorations

carried out by Munich Re, following the windstorm series of December 1999, gen-

erally confirmed this relationship, however it was suggested that higher exponents

such as x4 and x5 were needed to represent the losses in areas of very extreme wind
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gust speeds (MunichRe, 2002).

The area and duration parameters, A and D, used within this severity measure

require the definition of a damage threshold. A threshold of 50 knots (25.7ms�1)

was chosen, since, as explained by Lamb and Frydendahl (1991), wind speeds of

38-44 knots (19.5-22.6ms�1) were known, in the UK, to damage chimney pots and

branches of trees and wind speeds of 45-52 knots (23.1- 26.8ms�1) to uproot trees

and cause severe damage to buildings.

Following this, Klawa and Ulbrich (2003) developed a storm severity measure, or

loss function, for the estimation of windstorm losses and the identification of severe

winter windstorms in Germany:

loss ⇡
J
X

j=1

p(sj)

✓

x(sj)

c(sj)
� 1

◆

3

for x(sj) > c(sj) (2.3)

where x(sj) is the footprint wind gust speed at location sj, c(sj) is the damage

threshold for location sj, the 98th percentile of the wind climatology (daily maxi-

mum wind gust speed during the analysis period), and p(sj) is the population density

at location sj.

Similarly to Lamb and Frydendahl (1991), Klawa and Ulbrich (2003) used the cubic

relationship between wind gust speed and loss. However, rather than the cube of

the maximum wind intensity over the whole domain, Klawa and Ulbrich (2003) used

the cube of the excess wind gust speed, above a damage threshold, summed over all

locations. They noted that the use of the cube of the excess implied that a small

increase in wind speed above the relative threshold would have a large e↵ect on

the severity measure, making their approach di↵erent from Lamb and Frydendahl

(1991). The excess wind has most commonly been used in subsequent studies due

to the success of the Klawa and Ulbrich (2003) measure at representing insured loss

values in Germany (discussed further in Section 2.2.2).

Klawa and Ulbrich (2003) used a relative rather than absolute damage threshold,

di↵erent for each location. They argued that both buildings, due to enforced build-

ing regulations, and nature (e.g. forests) adapt to the local wind conditions and,

as a result, the damage threshold should vary throughout the domain. Klawa and

Ulbrich (2003) noted that insurance companies in Germany pay for storms when

maximum gusts are above 20ms�1 and consequently found that this value coincided

with the 98th percentile of daily maximum gust wind speed in German flat land

stations. They therefore used this relative 98th percentile of the climatology in their

storm severity measure, meaning that damages occurred in each location in the top
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2% of all days. They explained how this is in line with the argument used by Palu-

tikof and Skellern (1991) for their definition of storm vulnerability areas, based on

return periods of wind extremes at British weather stations, that at any location

(irrespective of the environmental characteristics) storm damages are assumed to

occur at 2% of days (Klawa and Ulbrich, 2003). In addition, Klawa and Ulbrich

(2003) noted that the same excess wind gust speed will lead to less/more damage

when the damage threshold value is high/low. They therefore used winds scaled

with the relative damage threshold value to ensure all locations had the same im-

portance within the severity measure.

In addition, Klawa and Ulbrich (2003) included a parameter for population den-

sity as a proxy for exposure in areas a↵ected by damaging winds. In a later study

Donat et al. (2011a) explained how population density is required as a proxy for

insured values because information about the spatial distribution of total insured

values is usually seen as confidential by insurance companies. Donat et al. (2011a)

argued that insured values are proportional to population density for developed

countries in Central and Western Europe because most people are insured in these

regions.

The area of damaging winds is indirectly represented in the Klawa and Ulbrich

(2003) measure since the severity is a sum over all damaging locations. Klawa and

Ulbrich (2003) discussed the inclusion of a duration parameter, as used by Lamb and

Frydendahl (1991), which has been shown to have a positive correlation with loss by

Swiss Re (Klawa and Ulbrich, 2003). Klawa and Ulbrich (2003), however, concluded

that, while it is possible to define storm duration it is not easy to estimate the e↵ect

of the duration on the loss sum. In most studies the footprint wind gust speed used

within the storm severity measure is defined as the maximum wind intensity over a

fixed duration (e.g. 72 hours). Therefore, much like area, the duration is indirectly

included in this storm severity measure.

Klawa and Ulbrich (2003) also discussed the inclusion of precipitation as a parame-

ter, noting that this variable might increase losses in single cases. They concluded,

however, much like storm duration, it is hard to define the e↵ect of precipitation

on loss in an objective way. Klawa and Ulbrich (2003) noted that the number of

parameters used within a storm severity measure should be minimised since the use

of too many parameters may lead to overfitting due to the limited datasets used,

resulting in a meaningless severity measure.

In a majority of subsequent studies, storm severity measures follow the same com-

position as Klawa and Ulbrich (2003), namely Leckebusch et al. (2007), Pinto et al.
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(2007), Leckebusch et al. (2008b) and Pinto et al. (2012), who used storm severity

measures to explore how windstorm related losses will change under climate change

conditions for Germany and regions of Europe. In addition, Donat et al. (2010) used

the same storm severity measure to explore the benefits and limitations of regional

multi-model ensembles for storm loss estimations, Donat et al. (2011a) to inves-

tigate future changes in windstorm losses and extreme wind speeds inferred from

GCM and RCM multi-model simulations and Donat et al. (2011b) to explore the

high-resolution refinement of a storm loss model and estimation of return periods of

loss-intensive storms over Germany.

Cusack (2013) developed a 101 year historical record of windstorms for the Nether-

lands using a variation on the Klawa and Ulbrich (2003) storm severity measure,

which took the cube root of the original measure, divided by the number of locations

used

loss ⇡
3

v

u

u

t

PJ
j=1

⇣

x(sj)

c(sj)
� 1
⌘

3

J
for x(sj) > c(sj)

where c(sj) is the 99th percentile of the climatology wind gust speed at location sj.

Cusack (2013) did not include the population density as a measure of exposure

since assuming uniform exposure allowed for better identification of the variabil-

ity in storminess due to meteorological factors. Cusack (2013) used the relative

99th percentile of the climatology wind gust speed, arguing that the 98th percentile

threshold resulted in too many weak storms with uncertain damage characteristics

being included in their analysis. The 99th percentile was therefore used to increase

confidence in the identification of damaging storms. Cusack (2013) found, however,

that the conclusions of their study were insensitive to this change in threshold.

Contrary to Klawa and Ulbrich (2003), Haylock (2011) argued that there was little

evidence of variation in country wide wind climatology and, since their storm sever-

ity measure was used to find the largest storms, decided that this variation was not

critical within a storm severity measure. Consequently Haylock (2011), and simi-

larly Bonazzi et al. (2012), used absolute damage thresholds, constant throughout

the domain. Haylock (2011) used a threshold of 11ms�1, equivalent to the mean

90th percentile wind speed for all windstorm footprints in their data set. Bonazzi

et al. (2012) used a threshold of 20ms�1, previously identified by Klawa and Ulbrich

(2003) as a suitable threshold for German insurance property losses and used in

the measure that constituted the basis of the first European windstorm parametric

index Catastrophe Bond undertaken by RMS in 2000 (Bonazzi et al., 2012).
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The storm severity measures developed by Haylock (2011) and Bonazzi et al. (2012)

respectively are defined as

loss ⇡
J
X

j=1

cos(✓(sj))(x(sj)� 11)3 for x(sj) > 11

and

loss ⇡ 3

v

u

u

t

PJ
j=1

(x(sj)� 20)3 · A(sj)
PJ

j=1

A(sj)
for x(sj) > 20 (2.4)

Rather than applying the storm severity measure to spatially uniform data, Bonazzi

et al. (2012) used regions of di↵erent sizes and hence multiplied the severity within

each region by the area of that region, A(sj). Haylock (2011) applied their severity

measure to gridded atmospheric model data. Therefore, in a similar way, they mul-

tiplied the severity at each location by its latitude, ✓(sj), since the grid cell size will

depend on its proximity to the poles.

Della-Marta et al. (2009) presented a number of footprint storm severity measures

to explore the return periods of extreme windstorms. These measures ranged in

complexity, with the most simple being the mean and 95% quantile footprint wind

gust speed over all locations for a given event. The simple severity measures provide

an interesting comparison with the more complex measures defined above.

These previously published storm severity measures can be summarised based on

the general form introduced in Eqn. (2.1), shown in Table 2.1. The Della-Marta

et al. (2009) 95% quantile measure is not included because it is not easily expressed

in this general form.

Validation of storm severity measures

The storm severity measures in previously published studies characterise di↵erent

properties of the footprint. Therefore exploring how well these measures represent

insured loss identifies which characteristics are most damaging and therefore the

best way to summarise the footprint to approximate insured loss.

Some studies such as Haylock (2011) and Lamb and Frydendahl (1991), did not

validate how well their severity measure represents insured loss because the mea-

sure was used to rank extreme historical storms and not to represent loss. Bonazzi

et al. (2012) showed no validation results, only stating that their storm severity

measure, applied to station data covering North-West Europe, correlated closely
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with aggregated storm damages. Similarly, Della-Marta et al. (2009) commented on

how their spatial 95% quantile wind gust speed severity measure, applied to ERA-

40 reanalysis data, was more representative of loss figures published in MunichRe

(2001) compared to the other measures they introduce, without explicitly showing

the results. Other studies, such as Cusack (2013), used their storm severity measure

without validation due to the lack of available loss data, justifying the use of the

measure by its similarity to other successful measures previously published.

The most rigorous validation exists for the storm severity measure proposed by

Klawa and Ulbrich (2003) (Equation 2.3) since it is used in a number of other stud-

ies and has therefore been applied and validated multiple times.

The initial validation was carried out by Klawa and Ulbrich (2003) by both compar-

ing annual aggregate insured loss values with the storm severity measure summed

over each corresponding year, and insured loss values for a small selection of 11

extreme windstorm events with the storm severity measure for the corresponding

event days. This validation was based solely on Germany due to the lack of available

insured loss data for other countries. The storm severity measures were calculated

using wind gust speed data from 24 stations. The event based insured losses were

taken from MunichRe (1993) and MunichRe (1999) and the annual aggregate in-

sured loss values were provided by the German Insurance Association (GDV) for

the years 1980-1997. Klawa and Ulbrich (2003) commented that the event losses

are based on the market insight of Munich Re and therefore may not have been rep-

resentative of the whole insurance market. They also noted that the GDV annual

aggregate loss data may have included indirect storm losses associated with hail and

rain.

Klawa and Ulbrich (2003) found that the time series of modelled and true annual

aggregate insured losses had a correlation of 0.96, demonstrating the general suit-

ability of the model for annual aggregate losses in Germany in the period considered.

They identified a small long term trend in the modelled annual insured losses based

on the storm severity measure, which implied that the measure underestimated in-

sured loss at the beginning of the period but overestimated it at the end. Klawa

and Ulbrich (2003) suggested that this could have been due to the uncertainty in

de-trending the insurance loss data, done to remove the e↵ect of inflation. They

found, however, that removing this bias in the trend resulted in an underestimation

of some well-documented extreme windstorm events.

Klawa and Ulbrich (2003) also found a general agreement between individual event

losses and those estimated using the storm severity measure for Germany. They con-
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cluded that their storm severity measure is generally capable of giving a reasonable

estimation of losses produced by individual storms, in spite of the simplifying as-

sumptions made. Again, however, this analysis was solely based on Germany. The

storm severity measure also greatly overestimated the loss associated with wind-

storm Verena (13th January 1993). Klawa and Ulbrich (2003) speculated that, since

the severity measure was able to estimate the 1993 annual aggregate loss reason-

ably well, this was because the losses published by Munich Re were too small. A

comparison of the true and modelled annual aggregate losses, taken from Klawa

and Ulbrich (2003), is presented in Figure 2.1, showing how, in general, the severity

measure estimates the annual aggregate losses well.

Figure 2.1. Insured annual accumulated losses in Germany. Comparison between de-
trended loss data (basic year = 1990) reported by the German Insurance Association
(GDV), and loss estimations by the storm severity measure. Source: Klawa and
Ulbrich (2003) Figure 4.

Insured losses associated with extreme storms such as Lothar (26th Decemeber 1999)

and Anatol (3rd Decemeber 1999) were found to be reasonably well approximated

by the storm severity measure with Lothar being overestimated by 15% and Anatol

underestimated by 30%. Klawa and Ulbrich (2003) explained how this level of agree-

ment is based on the cubic relationship between wind and loss and may have been

improved further if a higher exponent was used, as was suggested by MunichRe

(2002). They also identified that the loss estimation for Lothar could have been

improved by including additional wind gust speed station measurements to better

represent it’s relatively narrow footprint.

Pinto et al. (2007) applied this storm severity measure to reanalysis and GCM data
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with horizontal resolutions of 1.875� (⇠ 200 km). Similarly to Klawa and Ulbrich

(2003), Pinto et al. (2007) validated the estimated losses from the storm severity

measure by comparing annual aggregate losses from GDV for Germany. However,

rather than using the raw losses, annual aggregate insured loss values were given as

the ratio between insured claims and total insured values (unit: Euros per 1000 Eu-

ros, i.e., in ‰). An advantage of this measure is that inflation, a factor that Klawa

and Ulbrich (2003) found to be a potential issue, can be neglected as it is included

both in insured values and in the loss (Donat et al., 2011a). Before comparing the

estimated annual losses with the GDV loss ratios, Pinto et al. (2007) applied a linear

regression calibration of the storm severity measure to adjust the estimates toward

the German loss values. Pinto et al. (2007) identified a strong correlation between

the aggregate annual loss time series of 0.87, suggesting that, after calibration, this

model for insured loss is relatively successful even for low resolution GCM wind gust

speed data. Donat et al. (2010) applied the Klawa and Ulbrich (2003) storm severity

measure to RCM data of di↵erent horizontal resolutions ranging from 120km down

to 25km to explore the benefits of regional multi-model ensembles for storm loss es-

timations. In the same way as Pinto et al. (2007), Donat et al. (2010) calibrated the

estimated annual aggregate losses calculated by the storm severity measure using

a linear regression calibration method based on German GDV annual loss ratios.

They found large deviations in modelled losses, in comparison to observations, for

the years 1972 and 1993, due to over or under estimations of specific storms such as

Verena. Donat et al. (2010) found that for all RCM resolutions the mean annual loss

ratio for Germany is around 0.15‰, as in the GDV data. However, as explained by

Donat et al. (2010), this agreement was to be expected since raw severity measures

were calibrated towards observed loss ratios for each individual RCM. Donat et al.

(2010) identified that the inter-annual variability in terms of the standard deviation

of annual loss ratios was lower compared to observed loss variability in almost all

models. They found that the agreement between observed and estimated loss ratios

was slightly higher for the 25km resolution RCM compared to the coarser resolution

models, again based on Germany only.

Donat et al. (2011b) explored how well the Klawa and Ulbrich (2003) measure

represented 34 individual windstorm events in Germany. The loss ratios of the 34

events were provided by German Verbundene Wohngebäude Versicherung (VGV).

Donat et al. (2011b) applied the severity measure to two reanalysis data sets with

horizontal resolutions of 79km ⇥ 79km and 180km ⇥ 275km over Germany. They

applied a linear regression calibration to estimate the loss of an event based on the

other 33 events in the data set. They found that, in general, the losses calculated

from the di↵erent reanalysis models reproduced the insurance loss data well. How-

ever, for windstorm Kyrill, the losses were underestimated by both wind datasets by
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about 15 to 20% in comparison to the observed loss records. Donat et al. (2011b)

explained how this underestimation may have been due to the regulation practises

of insurance companies for which loss adjustments may be applied. Donat et al.

(2011b) acknowledged how these company-specific and socio-economic e↵ects were

not accounted for by the storm severity measure approach. Donat et al. (2011b),

however, found that the spatial distribution of losses in the di↵erent administrative

districts were reproduced well by the storm severity measure. They concluded that,

in general, the results confirmed the ability of the measure for realistically calculat-

ing both country-wide accumulated losses and the spatial distribution of losses for

severe storm events in Germany, particularly when higher resolution reanalysis data

was used.

The ability for the presented storm severity measures to represent insured loss has

therefore either been validated in a non-transparent way, validated against a very

small number of windstorm events or, in the case of the Klawa and Ulbrich (2003)

measure, validated rigorously, but based on only German insurance loss data. No

storm severity measure has therefore been identified as being the best representa-

tion of insured loss for the whole of Europe based on high resolution wind gust data.

In the same way, the best footprint characteristics for representing European wide

insured loss are not known, although maximum wind gust speed cubed, population

density, damage area and duration seem to be the most popular parameters for rep-

resenting insured loss in practise. This insight will be used to develop storm severity

measures to explore the relationship between windstorm footprints and insured loss

in Chapter 3 of this thesis.

2.2.3. Statistical models of extreme wind speeds

Within this thesis a novel spatial geostatistical model for windstorm footprints will

be developed. This model will allow for the simulation of synthetic footprints over

the whole European domain. The parameters of the statistical model will represent

the footprint characteristics of interest and will be varied within a rigorous sensi-

tivity study to explore their relationship with insured loss. Existing approaches for

modelling extreme wind speeds will now be explored to inform the model develop-

ment within this thesis.

Univariate modelling of extreme wind speeds

Justus et al. (1977) explored methods for estimating wind speed distributions and

proposed the use of the Weibull distribution. Following this, several other studies

suggested adopting the Weibull distribution for this purpose (Haas et al., 2014).
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For example, Haas et al. (2014) used the Weibull distribution to model both daily

maximum wind speed and wind gust speeds associated with selected 3-day wind-

storm events, when developing a probabilistic approach for downscaling windstorm

footprints. Similarly Seregina et al. (2014) used the Weibull distribution to model

hourly mean and maximum wind speeds at 123 measurement stations.

Friederichs et al. (2009), however, pointed out that, by classical Extreme Value

Theory (EVT) (Coles, 2001), the distribution of maximum wind speeds should fol-

low the Generalised Extreme Value (GEV) distribution and exceedances of a large

threshold should follow a Generalised Pareto Distribution (GPD). Friederichs et al.

(2009) compared several probabilistic approaches for modelling wind gust speeds

in Germany. They modelled wind gust speed data at 139 stations and concluded

that the GEV is the most appropriate and theoretically consistent statistical model.

Supporting this, Perrin et al. (2006) found that using the Weibull distribution leads

to incorrect estimates of the tails of the distributions of extreme wind speeds and

that using the GEV distribution overcomes this issue. The GEV model was also

used by Payer and Küchenho↵ (2004) to successfully model annual maximum wind

speeds at stations in Germany, and Bonazzi et al. (2012) used the GPD to model the

marginal distribution of extreme excesses in wind gust speeds at pairs of locations

within their bivariate windstorm footprint model.

In addition, EVT has also been applied to model the extremes of other windstorm

related variables. For example Lionello et al. (2008) fitted a GEV distribution to

monthly pressure minima derived from three di↵erent climate models over the North

Atlantic domain; Della-Marta and Pinto (2009) fitted a GPD to extreme central

pressure and maximum vorticity, in three non-overlapping regions of Europe; and

Sienz et al. (2010) used a GPD to fit a tail model to extreme values of geopotential

height, mean horizontal gradient, cyclone depth and relative vorticity, for storms

within a large Atlantic region.

Multivariate modelling of extreme wind speeds

Literature on modelling wind speeds beyond the univariate setting is extremely lim-

ited, with most applications of multivariate extreme value modelling based in other

areas of environmental research, for example hydrology (Renard and Lang, 2007;

Coles and Tawn, 1996), oceanography (Bortot et al., 2000) and surface-level ozone

(Eastoe, 2009; He↵ernan and Tawn, 2004).

Extremal dependence is a specific mathematical feature of all multivariate prob-

ability distributions. For pairs of random variables, it describes the joint behaviour
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of two variables as they become large (Coles et al., 1999). When modelling multi-

variate extremes, correctly modelling the extremal dependence is very important to

ensure the relationship between variables in the upper tail of the joint distribution

is represented correctly. Extremal dependence can take one of two forms, asymp-

totic dependence, where large values of the variables tend to occur simultaneously,

or asymptotic independence, where the largest values rarely occur together (Coles

et al., 1999). Eastoe et al. (2013) explained how making an incorrect assumption on

the form of the asymptotic dependence can lead to invalid inferences. Wadsworth

et al. (2015) went on to explain how most available statistical models for multi-

variate extremes are suitable for either one case or the other, but not both. This

highlights the importance of correctly identifying this property.

Bonazzi et al. (2012) proposed a modelling approach that assumed asymptotic de-

pendence between windstorm footprint wind gust speeds at pairs of locations, with-

out showing any validation of this modelling choice. An important part of developing

the windstorm footprint model within this thesis will therefore be to explore the ex-

tremal dependence between locations.

Davison et al. (2012) explained how a variety of statistical tools have been used

to model multivariate and spatial extremes, including Bayesian Hierarchical Models

(BHMs), also known as latent variable models, max-stable random fields, copula

models and geostatistics.

Within BHMs, or latent variable models, dependence is introduced by integration

over latent variables or processes (Davison et al., 2012). Most commonly this is

done by introducing spatial variation in the parameters of the model. Due to the

complexity of the integrations involved in this approach, it is most naturally per-

formed in a Bayesian setting (Davison et al., 2012). Economou et al. (2014) used the

BHM approach to spatially and temporally model extreme mean sea level pressure

associated with windstorms. Economou et al. (2014) used this approach because it

allows for spatial random e↵ects and time-dependent covariates to be included in the

model parameters, allowing for a great deal of flexibility and the natural inclusion

of physical mechanisms. Economou et al. (2014) however noted that a major issue

with this method, also pointed out by Davison et al. (2012), is the assumption of

independence of the extremes, conditional on the latent process, which may yield

unrealistic estimates from the model because the spatial clustering of rare events is

not properly accounted for.

A common approach for modelling spatial extremes is to use max-stable processes.

For example, Coles and Walshaw (1994) used a max-stable model for the dependence
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in maximum wind speeds in di↵erent directions. Max-stable processes (de Hann,

1984) are an infinite dimensional generalisation of multivariate extreme value dis-

tributions. A stochastic process {Z(x)}x2X observed within the spatial or temporal

domain X , is max-stable if there exists continuous functions an(x) > 0 and bn(x) 2 R
such that

max
i=1,...,n

Zi(·)� bn(·)
an(·)

D
= Z(·) for n � 1 (2.5)

where Z
1

, ..., Zn are independent replications of Z, which is assumed to be non degen-

erate, and “
D
=” represents being equal in distribution. Blanchet and Davison (2011)

used the max-stable approach to spatially model extreme snow depth and argued

that this method should be used because it accounts for the spatial dependence of

extremes in a way that is consistent with classical extreme value theory. However,

Economou et al. (2014) preferred not to use the max-stable models because they

had issues relating to complexity of implementation and lack of flexibility. In addi-

tion, Segers (2012) highlighted how max-stable models are too coarse to accurately

describe tails of multivariate distributions with asymptotic independence and can

therefore only be used to model asymptotic dependence or complete independence.

The refinement of max-stable models, to overcome this issue, is a topic of ongo-

ing research, originating from Ledford and Tawn (1996). Ledford and Tawn (1996,

1997) presented a refinement of the max-stable approach, in the form of a bivari-

ate tail model which also includes the case of asymptotic independence. Within

this model the joint survivor function of an arbitrary random pair (X, Y ) with unit

Fréchet marginal distributions satisfies:

Pr(X > t, Y > t) ⇠ L(t)p1/⌘ for larget.

where L(t) is slowly varying as t ! 1, p = Pr(X > t) = Pr(Y > t) and ⌘ is the

coe�cient of tail dependence, in the range (0,1]. The parameter ⌘ describes the type

of asymptotic dependence between X and Y (dependence or independence) and L(t)
the relative strength given a particular value of ⌘ (Ledford and Tawn, 1996). This

model is discussed further in Section 4.4.1.

This model has been explored and developed in a number of other studies (Bor-

tot and Tawn 1998, Coles et al. 1999, Bortot et al. (2000), He↵ernan 2000, Ferro

2007). Bortot et al. (2000) explained how the di�culty in working with the Ledford

and Tawn (1996, 1997) model lies in its generality since the class of L(t) is infinite
dimensional and restrictions must therefore be made by representing it in a para-

metric form. In particular, Bortot et al. (2000) showed how, in using a common

formulation for L(t), the bivariate Gaussian distribution is excluded from the range
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of distributions this model can represent. The Ledford and Tawn (1996, 1997) model

is also restricted to the bivariate setting and is only applicable when both variables

are large.

To overcome this, He↵ernan and Tawn (2004) suggested a conditional represen-

tation, in which, given that one variable is large, the distribution of the remaining

variables is modelled. This approach extends easily to higher dimensions, and in-

corporates both classes of extremal dependence. Keef et al. (2013) argued that

the He↵ernan and Tawn (2004) model provides the most flexible current approach

for modelling this conditional distribution. They explained how the He↵ernan and

Tawn (2004) model encapsulates a broad range of asymptotic independence and

asymptotic dependence forms of extremal dependence structure allowing for dif-

ferent types of dependence between di↵erent pairs of variables. Keef et al. (2013),

however, identified a number of problems with this approach including complications

that arise with modelling variables when some components are positively associated

and others negatively associated.

Wadsworth and Tawn (2012), however, explained how, although these new mod-

els improve the flexibility of modelling extremal dependence classes, they are all

based on modelling a finite dimensional variable and current theory and method-

ology for infinite-dimensional spatial extremes are still restricted to the max-stable

class.

Wadsworth et al. (2015) presented an alternative limit representation for bivari-

ate extremes, to that of Ledford and Tawn (1996, 1997), that encompasses a wide

variety of dependence scenarios, and, like He↵ernan and Tawn (2004), is applicable

when at least one variable is large. They explained how their model permits in-

ference across both extremal dependence classes, with a smooth transition between

them. Wadsworth et al. (2015) also commented on how this new bivariate model

could be extended to a multivariate setting.

An alternative, again when modelling in finitely many dimensions, is the use of

extreme value copulas. Bonazzi et al. (2012) used an extreme value copula ap-

proach in their bivariate model for windstorm footprint wind gust speeds at pairs of

locations. This copula approach represents the joint distribution of wind gust speeds

in terms of the marginal distribution of wind gust speeds at each location and their

mutual dependence, represented by the copula function. This approach is easily

extendable to higher dimensions. Extreme value copulas satisfy the max-stability

property, but, like max-stable processes, only allow for asymptotic dependence or

complete independence between variables.
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To overcome this, asymptotically independent multivariate spatial processes can be

modelled using a Gaussian dependence structure, or Gaussian copula, which assumes

independence in the extremes. The spatial process can be marginally transformed

to Gaussian at each location, a method known as Gaussian anamorphosis (Davison

et al., 2012), and the dependence between locations is then determined by the cor-

relation matrix of the associated multivariate normal distribution. The Gaussian

copula is not an extreme value copula and does not satisfy max-stability, however

examples exist of its application to model the dependence between asymptotically

independent extremes. For example Renard and Lang (2007) used the Gaussian

copula for multivariate extreme value analysis in a number of hydrology case stud-

ies, demonstrating the usefulness and the relative simplicity of this approach. They

emphasised the need to check the adequacy of the asymptotic independence as-

sumption before using the model for computation beyond the observed range of the

data. Similarly, Bortot et al. (2000) developed a multivariate Gaussian tail model for

the dependence between oceanographic surge height, wave period and wave height.

They showed that, when modelling data that are asymptotically independent, the

multivariate Gaussian model is robust, has simple diagnostics, easily interpretable

parameters and extends straightforwardly to higher dimensions.

In addition, if asymptotic independence is identified, the Gaussian dependence struc-

ture can be simplified by using a geostatistical approach, in which the dependence in

the spatial field is modelled as a Gaussian process with a specified covariance func-

tion which represents the dependence between locations as a function of separation

distance and direction. Luo et al. (2008) use a geostatistical approach to estimate

wind speed surfaces using irregularly distributed data from England and Wales and

Shoji (2006) carry out a geostatistical analysis of wind velocities in Japan. No ex-

amples of the application of geostatistics for modelling extreme wind gust speeds

were found.

2.3. Data used in this thesis

2.3.1. Windstorm footprint data

The windstorm footprint data used in this thesis will now be introduced, specifying

the chosen definition of the footprint in terms of the meteorological variable, region

and event duration used.

Following Donat et al. (2011b), Haas and Pinto (2012) and Haas et al. (2014),
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windstorm footprints are created based on a reanalysis dataset known as ERA In-

terim (Dee et al., 2011). Reanalysis is a scientific method for developing a consistent

estimate of past weather by combining observations with a forecast model output

using a data assimilation scheme. The ERA Interim reanalysis is produced with

a sequential data assimilation scheme, advancing forward in time using 12-hourly

analysis cycles. In each cycle, available observations are combined with prior infor-

mation from a forecast model to estimate the evolving state of the global atmosphere

(Dee et al., 2011).

ERA Interim reanalysis has a relatively low horizontal resolution of 0.75� (⇠ 80km).

A much higher resolution dataset was created by scientists at the Met O�ce by dy-

namically downscaling the ERA Interim reanalysis data to a horizontal resolution

of 0.22 �, equivalent to ⇠ 25km at the model’s equator. The high resolution dataset

was created in 2012 and therefore covers the ERA Interim period, up to the date at

which it was created (1979-2012).

Downscaling was performed using the Met O�ce Unified Model (MetUM) version

7.4 (Davies et al., 2005). The MetUM has 70 irregularly spaced vertical levels (top

at 80km) and uses a rotated pole with a longitude of 177.5 � and latitude 37.5 �, and

in the rotated coordinate frame it extends from -9.36 � to 29.58 � in longitude, and

-17.65 � to 16.89 � in latitude, so the grid spacing does not vary substantially over

the domain (⇠ 0.22 � or ⇠ 25km). The non-hydrostatic dynamical equations are

solved using semi-Langrangian advection and semi-implicit time stepping (Davies

et al., 2005). The downscaled region covers most of Europe and the eastern North

Atlantic as shown in Figure 2.2, roughly representing the region 15 �W to 25 �E in

longitude and 35 �N to 70 �N in latitude. This domain is therefore appropriate for a

European wide investigation, as is proposed for this thesis.

Figure 2.2. Modelling domain used to generate the footprints (a) on the rotated
pole (inner rectangle) provided by J. Roberts, (b) on the non-rotated pole (shaded
region)
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The MetUM was initialised every day at 18Z (i.e. 6pm) using initial conditions

from reconfigured ERA Interim analysis at that time. The 0.22 � MetUM runs for

30 model hours, using lateral boundary conditions and initial conditions for the

domain generated from the ERA Interim 6 hourly analyses. The first six hours of

model output are disregarded due to spin up, allowing the model to adjust from the

ECMWF Integrated Forecast System (ECMWF, 2006) initial conditions, leaving

data for 00Z (midnight) to 00Z on each day. This results in daily 24 hour forecasts

which are combined to create a new, higher resolution dataset for the ERA Interim

period. Reinitialising the 0.22 � MetUM runs every 24 hours ensures deviations from

ERA Interim in the centre of the model domain are minimised.

The footprints represent the maximum 3 second wind gust speed at a height of

10 metres produced by the 0.22 � MetUM. The wind gust speeds are derived from

wind speeds, based on a gust parameterisation. The MetUM estimates gusts using

the relationship Ugust = U
10m + C�, where U

10m is the wind speed at 10 metre al-

titude and � is the standard deviation of the horizontal wind, estimated from the

friction velocity using the similarity relation of Panofsky et al. (1977). The rough-

ness constant C is determined from universal turbulence spectra and is larger over

rough terrain.

Within the 34 year period covered by the data set (1979-2012), 5730 windstorm

events are identified as occurring within the specified domain during 33 extended

winters (October - March 1979/80 - 2011/12). This also corresponds to the period of

the year in which most windstorms occur over central Europe (Klawa and Ulbrich,

2003). Windstorm events are identified using the approach in Hoskins and Hodges

(2002), based on the Hodges (1995) storm tracking algorithm. This storm tracking

algorithm is applied to the ERA Interim reanalysis dataset and is an objective ap-

proach based on identifying maxima in 850 hPa relative vorticity, a measure of the

local average circulation of a fluid (Hoskins and Hodges, 2002). Identification entails

determining the vorticity maxima by steepest ascent maximisation (Hodges, 1995).

These maxima are linked together, initially using a nearest neighbour search, and

then refined by minimising a cost function for track smoothness, subject to adap-

tive constraints on the displacement distance and track smoothness (Hodges, 1995).

Storm tracks that pass through the specified domain and last longer than 2 days

are retained. Historically 6 hourly reanalysis data are used in storm tracking. Here,

a new data set is used, created for the development of the eXtreme Wind Storms

(XWS) catalogue presented in (Roberts et al., 2014). In this new dataset, 3 hourly

data is created by combining the 03Z and 09Z outputs from the 00Z forecast and

the 15Z and 21Z outputs from the 12Z forecast with the 6 hourly analyses. Roberts

et al. (2014) explain how this 3 hourly data produces more reliable storm tracks
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since some extreme European windstorms have very fast propagation speeds.

A windstorm footprint is created for each of the 5730 events that are identified

by this method. The event duration is specified as being a 72 hour period, centred

on the time at which the maximum 925hPa wind speed over land occurs within a

3� radius of the storm track, which is output every 3 hours as part of the tracking

dataset introduced above. This definition gives good flexibility in the event start

and end time because the wind speed data is available every 3 hours. This flexibil-

ity is much greater than some other studies such as Della-Marta et al. (2009) and

Haas and Pinto (2012) who use daily data and therefore must use a 72 hour period

beginning and ending at 00Z.

Evaluation of windstorm footprint data

Most previous studies, for example Schwierz et al. (2010), Haylock (2011) and

Bonazzi et al. (2012) are based on a relatively small subset of very extreme events

which may not be representative of the general characteristics of windstorm foot-

prints, while here a large set of 5730 events will be used. The footprints used here

are also at a high horizontal resolution (25km) compared to the data used in other

studies, with only Haylock (2011) using an equivalent resolution. The higher the

resolution of the model used to produce the windstorm footprints, the more sub

grid scale processes can be resolved resulting in more realistic wind gust speeds.

The footprints also span the whole of Europe for a reasonably long period of time

(1979-2012) meaning that conclusions made here about the relationship between

windstorm footprint characteristics and insured loss are representative of the whole

continent and not just specific countries as is the case for studies such as Klawa and

Ulbrich (2003) who focus on Germany.

The windstorm footprint data used in this thesis is evaluated in Roberts et al.

(2014), in the development of the XWS catalogue. They compared the windstorm

footprint wind gust speeds with observational wind gust data extracted for the MI-

DAS database (Roberts et al., 2014), a mixture of 1-, 3- and 6-hourly maximum

wind gust speeds at sites covering most of North-West and central Europe. Roberts

et al. (2014) found that modelled and observed wind gust speeds were generally in

close agreement. They noted how this result was particularly impressive because

the modelled wind gust speeds were simply interpolated from a 25km grid cell to a

specific location without applying any corrections. However, they found that there

is less agreement when considering stations with altitude greater than ⇠ 500m. This
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is a common issue in atmospheric models (Donat et al., 2010), caused by the use

of an e↵ective roughness parameterisation, needed to estimate the e↵ect of sub-grid

scale orography on the synoptic scale flow, causing unrealistically slow wind speeds

at 10m (Roberts et al., 2014). Roberts et al. (2014) applied a correction proposed

by Howard and Clark (2007), to windstorm Kyrill, which involved using wind speed

at a height which is una↵ected by the surface and assuming a log-profile to interpo-

late back down to 10m. They found that this correction gave a clear improvement

at high-altitudes, however, they concluded that since this correction required the

extraction of a great deal of archived data on all model levels, it was too time con-

suming to apply in practice.

Roberts et al. (2014) also found that the model slightly underestimates extreme

wind gust speeds greater than ⇠ 25ms�1. Roberts et al. (2014) explored this is-

sue in great detail and concluded that this problem is due to several mechanisms,

such as the underestimation of convective e↵ects and strong pressure gradients. In

particular they suggested that this happens when a storm develops outside of the

MetUM domain and is therefore only being driven at the boundaries, meaning that

the windstorm does not develop to become as extreme as in the observations. When

the MetUM is reinitialised, which happens every 24 hours, the storm is corrected

and the extremity can be reached, therefore this is seen to be more of an issue

in windstorms that move through the domain quickly and therefore travel further

before being reinitialised (Roberts et al., 2014). Roberts et al. (2014) concluded

that no universal correction can be applied to all storms. This is reflected in the

statistical recalibration method, which was adapted for each individual windstorm

footprint (Roberts et al., 2014). The proposed recalibration method was based on

polynomial regression between transformed wind gust speeds (Roberts et al., 2014),

and its application was shown to successfully increase the under predicted wind

gusts > 25ms�1. Only 50 windstorms are selected for the XWS catalogue, making

this individual recalibration a feasible proposition for Roberts et al. (2014), however

recalibrating all 5730 windstorm footprints would be very time consuming and will

therefore not be attempted.

Roberts et al. (2014) explained how over the 33 extended winters in the data set,

2.5 windstorms pass through the domain on average in any given 72 hour period.

This means that windstorm events that pass through the domain within the same

72 hour period will be represented in both of the associated footprints, based on the

definition of the footprint used in this thesis. This results in some extreme storms

being represented twice because they overlap with weaker events. This could create

problems when trying to attribute damage to a particular event when exploring the

relationship between storm severity measures and insured loss.
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To overcome this, Roberts et al. (2014) developed a footprint decontamination

method which can be quickly and easily applied with the aim of removing all wind

gust speeds associated with any other overlapping windstorm. They assume that

all gusts within a 1000km radius of the track position at each 6 hour time step

are associated with that particular windstorm and all other data in the domain is

rejected. The “decontaminated” footprint is then derived by taking the maximum

wind gust speed in all grid cells where there are data remaining, within the 72 hour

period of the storm (Roberts et al., 2014). Various other radius sizes were explored

and Roberts et al. (2014) concluded that 1000km is generally large enough to cap-

ture the high wind gust speeds associated with each windstorm, but small enough

to avoid contamination. Figures 2 and 3 in Roberts et al. (2014) show how this

decontamination method is able to isolate 4 individual windstorm events that occur

in the same 72 hour period as windstorm Kyrill. This decontaminated dataset will

be used in the final part of Chapter 3 which presents the methodology developed

for selecting extreme storms for the XWS catalogue.

2.3.2. Population density data

Following Klawa and Ulbrich (2003), population density data will be used to approx-

imate the exposure in some storm severity measures in this thesis. The population

density data is based on the derived portfolio in Haylock (2011). This portfolio was

created based on the 2005 Gridded Population of the World, Version 3 (GPWv3)

estimates of human population by 2.5 arc-minute (2.5/60 of a degree) grid cells.

A proportional allocation gridding algorithm, utilising more than 300,000 national

and sub-national administrative units, is used to assign population values to grid

cells. The population density grids are derived by dividing the population count

grids by the land area grid, so representing persons per square kilometre. GPWv3 is

produced by the Columbia University Center for International Earth Science Infor-

mation Network (CIESIN) in collaboration with Centro Internacional de Agricultura

Tropical (CIAT). This gridded data set was mapped onto the locations supported

by the PartnerRe European windstorm model to create the geographic distribution

of values presented in Haylock (2011). For use within this thesis, population density

is required to be on the same grid as the footprint data and is therefore regridded

once more. The latitude-longitude coordinates for the centres of the grid cells for

the footprint are calculated. The population density data is then bi-linearly inter-

polated to these latitude-longitude coordinates. The interpolated values are then

used as the population density values for the footprint grid cells (see Figure 2.3).
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Figure 2.3. Population density (people km�2) within the European domain, regrid-
ded to the same resolution as the windstorm footprints, based on the 2005 Gridded
Population of the World, Version 3 data set. Locations with less than 50 people
km�2 are shown in white.

2.3.3. Notation

The notation used to represent the windstorm footprint wind gust speeds through-

out this thesis will now be defined.

Let {X(s) : s 2 S} be a continuous spatial random process that represents the

maximum 3 second wind gust speed in a 72 hour period at locations s in the region

of interest S. A windstorm footprint is considered to be a discrete realisation of this

random process, i.e. footprints i = 1, 2, ..., I are independent realisations xi(s) of

the X(s) process, observed at spatial locations {sj; j = 1, ..., J} within the region,

at grid point locations. The high resolution Met O�ce data contains I = 5730 foot-

prints over the period 1979-2012, recorded at J = 14872 land grid point locations

over Europe (see Figure 2.2).
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3. Exploring the relationship

between storm severity

measures and insured loss

3.1. Introduction

The footprint of a windstorm is a representation of a complex multidimensional spa-

tial and temporal process and therefore varies from storm to storm depending on

many factors. Such factors may include the state of large scale modes of variability

(e.g. the North Atlantic Oscillation), cyclone location and the cyclone deepening

rate (Gulev et al., 2001). These varying factors will have an impact on the resulting

windstorm footprint and, in turn, on the insured loss incurred. Figure 1.1 showed

how the Great storm of October ‘87 and windstorm Kyrill, which incurred a similar

insured loss of $6.7 billion and $6.3 billion respectively, have visually very di↵erent

footprints. So how does this variation in windstorm footprints relate to insured loss,

and do these two storms in fact have a common damaging characteristic?

Within this chapter windstorm footprints will be related to insured loss using storm

severity measures, functions that incorporate multiple parameters relating to foot-

print characteristics such as area and peak intensity, to scalar values of footprint

extremity. A review of existing storm severity measures is presented in Section 2.2.2.

The storm severity measures developed within this chapter will be based on those in

these previous studies, ranging in complexity and which footprint characteristics are

represented. Exploratory data analysis is used to explore the relationship between

the storm severity measures and insured loss, based on the historical data set of

windstorm footprints introduced in Section 2.3.1.

Due to the unavailable and therefore incomplete record of European wide insured

losses associated with windstorm events, the relationship between storm severity

measures and insured loss will be quantified in terms of their ability to classify a set

of 23 extreme insurance loss windstorms, identified through expert elicitation with

reinsurers. These 23 windstorms will first be presented for comparison to explore
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3. Exploring the relationship between storm severity measures and insured loss

any common characteristics that may be visually present before applying the storm

severity measures.

This investigation will be applied to a large data set of high resolution historical

windstorm footprints over the European domain, therefore providing insight into

which footprint characteristics are most damaging for the whole of Europe, identi-

fied as a gap in existing knowledge in Section 2.2.2.

The final part of this chapter will present an application of this investigation; a

methodology that has been developed for selecting extreme windstorms for the eX-

treme Wind Storms (XWS) catalogue, also published in Roberts et al. (2014). The

XWS catalogue is a freely available database of storm tracks and footprints for 50

of the most extreme windstorms to occur in Europe in recent years (1979-2012),

available at www.EuropeanWindstorms.org.

This chapter will address four questions:

• How can the extremity of windstorm footprints be summarised into storm

severity measures?

• How do storm severity measures relate to one another?

• How do storm severity measures relate to insured loss?

• How can storm severity measures be used to select extreme windstorms for

the XWS catalogue?

3.2. Extreme insurance loss windstorms

Of the 5730 historical windstorms (introduced in Section 2.3.1), 23 have been identi-

fied as causing large insured losses by colleagues at Willis Research Network. These

particular 23 windstorms were selected based on their notable socio-economic im-

pacts and presence in literature and documentation associated with windstorm dam-

age, for example the IMILAST project (Neu et al., 2013) and the PERILS event

loss database (perils.org).

These 23 extreme insurance loss windstorm events are first compared to investi-

gate whether they share any common characteristics. Table 3.1 contains informa-

tion about each of these 23 windstorms including the insured loss incurred (where

available) from Sigma (2004, 2006, 2007, 2009, 2011, 2012, 2013). The footprints for

these 23 windstorm and histograms of the associated wind gust speeds are presented
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3. Exploring the relationship between storm severity measures and insured loss

Table 3.1.. Name, date of occurrence, maximum 925hPa windspeed over land (taken
from the storm track), footprint area exceeding 25ms�1 over land and insured loss
incurred (where available) for the 23 extreme insurance loss windstorms. Losses
have been indexed to 2012. Missing values of insured loss represent where this
information could not be attained.
Name Date of maximum Maximum 925hPa Footprint area Insured loss

925hPa windspeed windspeed over over land (Billion USD)
over land land (ms�1) (25km grid boxes)

Daria 25 Jan 1990 39.53 882 8.2
Lothar 26 Dec 1999 36.72 822 8.0
Kyrill 18 Jan 2007 36.38 1257 6.7
Great Storm of ’87 16 Oct 1987 39.53 681 6.3
Vivian 26 Feb 1990 35.16 1059 5.6
Klaus 24 Jan 2009 37.23 565 3.5
Martin 27 Dec 1999 37.18 689 3.3
Xynthia 27 Feb 2010 32.62 669 2.9
Anatol 3 Dec 1999 39.86 742 2.6
Erwin 8 Jan 2005 39.22 643 2.2
Herta 3 Feb 1990 33.16 726 1.5
Emma 29 Feb 2008 25.12 779 1.4
Wiebke 28 Feb 1990 32.24 1294 1.4
Gero 11 Jan 2005 39.13 309 0.6
Ulli 3 Jan 2012 36.32 400 0.2
Dagmar-Patrick 26 Dec 2011 30.08 116 0.04
Fanny 4 Jan 1998 34.60 366 -
Jeanette 27 Oct 2002 36.92 1499 -
Lore 28 Jan 1994 31.60 629 -
Oratio 30 Oct 2000 38.45 713 -
Stephen 26 Dec 1998 39.53 345 -
Xylia 28 Oct 1998 26.72 408 -
Yuma 24 Dec 1997 39.92 205 -

in Figures 3.1 and 3.2 respectively.

Table 3.1 indicates that both the maximum 925hPa windspeed over land and foot-

print area exceeding 25ms�1 over land vary for di↵erent storms, with neither mea-

sure decreasing with insured loss, which itself varies greatly ($0.04 billion - $8.2

billion). In addition, Figure 3.1 shows a great deal of visual variation within these

23 footprints. The position of the extreme wind gusts vary, with some located more

northerly, e.g. Emma, and some more southerly, e.g. Klaus. In addition, the area

over which wind gusts exceed 15ms�1 varies between storms, with some having a

relatively small exceedance area, e.g. Xynthia, and some much larger, e.g. Daria.

The range of gust intensities also varies, with windstorm Wiebke reaching 31.5ms�1

while windstorm Stephen’s peak gust is 49.6ms�1. The histograms in Figure 3.2

show that the distribution of footprint wind gust speeds vary with some peaking in

the interval 5-10ms�1, e.g. Yuma, some in the interval 10-15ms�1, e.g. Lothar and

some the interval 15-20ms�1, e.g. Xylia. Variation also exists in the upper tail of
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3. Exploring the relationship between storm severity measures and insured loss

Figure 3.1. Windstorm Footprints showing the maximum 3 second wind gust speed
(ms�1) over the 72 hour life time of the storm, for the 23 extreme insurance loss
windstorms, in the same order as in Table 3.1.

Figure 3.2. Histograms of the footprint wind gust speeds (ms�1) for the 23 extreme
insurance loss windstorms.

the distribution, with some storms having a heavy upper tail, e.g. the Great Storm

‘87 and Gero, while others have a short upper tail, e.g. Oratio and Kyrill.
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3. Exploring the relationship between storm severity measures and insured loss

No common characteristic is identified from exploring these extreme insurance loss

windstorm footprints in isolation. They should therefore be explored within the

context of all historical windstorms in order to identify common characteristics.

3.3. Defining storm severity measures

There are many ways in which a windstorm footprint can be summarised using a

storm severity measure. Several such measures have been developed in previous

studies (reviewed in Section 2.2.2) with their uses ranging from the estimation of

the return period of windstorms over Europe (e.g. Della-Marta et al. 2009), to un-

derstanding how windstorms will change under anthropogenic climate change (e.g.

Leckebusch et al. 2008a), to the ranking of storms according to severity in catalogues

of extreme historical storms (e.g. Lamb and Frydendahl 1991). These indices also

range in complexity from simple summary statistics such as the event mean and 95th

percentile wind gust speed (e.g. Della-Marta et al. 2009), to loss functions which

quantify severity in terms of the cube of damaging wind gust speeds and population

density (e.g. Klawa and Ulbrich 2003). Here, nine such severity measures will be

defined. These measures will range in complexity, allowing for the comparison of

simple and more complex measures; measures using wind gust speeds in exceedance

of relative or absolute thresholds; and measures that do and do not include popula-

tion density as an approximation of exposure.

As discussed in Section 2.2.2, most such severity measures can be represented in

a general form. For windstorm footprint i a severity measure mi can be expressed

as:

mi = g

✓ J
X

j=1

V (xi(sj), t)e(sj, t)

◆

(3.1)

where xi(sj) is the wind gust for footprint i at location sj, j = 1, ..., J . As previously

explained, the functions V and e represent the hazard and exposure respectively,

which both depend on the wind gust exceeding a damage threshold t. These two

functions together, summed over all locations, represent the severity of a given

windstorm event. In some previously published measures an additional function g

is applied to the severity measure, e.g. the cube root (Cusack, 2013). Three types

of storm severity measures will be used in this study: simple footprint summary

statistics, loss functions and composite measures which are a combination of other

measures. These measures are intended to represent the severity of a windstorm

defined by its socio-economic impact and are therefore only applied to wind gust

speeds over land. The land grid-cells over Iceland are excluded since the relatively
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3. Exploring the relationship between storm severity measures and insured loss

high wind gust speeds in this region give too much weight to storms that pass over

Iceland but do not have a large e↵ect on the rest of Europe.

This form of storm severity measure is common in previous studies as explained

in Section 2.2.2 and is shown to summarise the footprint characteristics that are

important for representing insured loss, such as the area of damaging winds, the

cubed excess wind gust speed and exposure. In contrast, some of the simple and

composite measures do not take this common form. Comparing the relationship

between these types of severity measures will therefore identify whether this general

form in Eqn. (3.1) is indeed the most appropriate for representing insured loss.

Table 3.2 defines the nine storm severity measures used in this investigation, where

measures (1 - 3) are the simple footprint summary statistics, measures (4 - 7) are

the loss functions, measure (8) is an intensity measure taken from the windstorm

track rather than the footprint, used in composite measure (9). In Table 3.2, define

c(sj) as the 98th percentile of climatology wind gust speed at location sj, i.e. the

98th percentile of daily maximum wind gust speed, calculated for the full reference

period (October 1979 to March 2012), shown in Figure 3.3, and p(sj) as the 2005

population density (people km�2) at location sj (introduced in Section 2.3.2). De-

fine H(n) as a Heaviside or indicator function H(n) = 1 if n > 0 and H(n) = 0

otherwise.
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Figure 3.3. The 98th percentile of climatology wind gust speed (ms�1) October 1979
to March 2012, for all land locations in the domain, c(sj) for j = 1, ..., J .

This particular range of indices is used to give a diverse representation of the char-

acteristics of windstorm footprints. Simple footprint summary statistics x̄ and x
90

,
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3. Exploring the relationship between storm severity measures and insured loss

Table 3.2.. Definition of the nine storm severity measures used in this investigation
in the form of Equation 3.1, for windstorm footprint i.
Measure Label V (xi(sj), t) e(sj , t) t

1. Area (number of grid cells) exceeding 25ms�1 Ai H(xi(sj)� t) 1 25
2. Mean wind gust speed x̄i xi(sj) J�1 -
3. Ninetieth percentile wind gust speed x

90i - -
4. Absolute threshold loss function Lai H(xi(sj)� t)(xi(sj)� t)3 1 25

5. Relative threshold loss function Lri H(xi(sj)� t)
⇣

xi(sj)
t � 1

⌘

3

1 c(sj)

6. Population weighted, L0
ai H(xi(sj)� t)(xi(sj)� t)3 p(sj) 25

absolute threshold loss function

7. Population weighted, L0
ri H(xi(sj)� t)

⇣

xi(sj)
t � 1

⌘

3

p(sj) c(sj)

relative threshold loss function
8. Maximum 925hPa wind speed over land Umaxi - -

within a 3� radius of the storm track
9. Composite severity measure LFi - -

similar to those measures introduce by Della-Marta et al. (2009), are included for

comparison with the more complex indices. This gives insight into whether complex

measures, most common in the literature, are indeed better at representing insured

loss. Severity measure A characterises the area, or number of 25km grid cells, in

which damaging wind gust speeds (>25ms�1) occur. This measure is included to

identify whether the area of damaging winds, used in the severity measure developed

by Lamb and Frydendahl (1991), is an important characteristic for representing in-

sured loss. The damage threshold of 25ms�1 has been recognised in previous studies

as being the wind speed at which damage starts to occur, for example Lamb and

Frydendahl (1991) used a loss threshold of 50 knots (25.7ms�1) and Bonazzi et al.

(2012) and Klawa and Ulbrich (2003) noted that the German reinsurance industry

use a damage threshold of 20ms�1.

The more complex, loss function severity measures (4 - 6), Lr, La and L0
a, are

variations of the loss function introduced by Klawa and Ulbrich (2003) which is

equivalent to measure (7), L0
r. This loss function has been used in a number of

other studies to approximate windstorm loss (e.g Leckebusch et al. 2007, Lecke-

busch et al. 2008a, Pinto et al. 2007) and is explained in detail in Section 2.2.2. As

discussed in Section 2.2.2, the Klawa and Ulbrich (2003) loss function is found to

well represent annual aggregate and event based losses in Germany. This investiga-

tion will explore how successful this loss function is at representing insured loss for

the whole of Europe. For comparison severity measure Lr, is included to investigate

the importance of including population density in the exposure component of the

measure when representing insured loss.

The loss function developed by Klawa and Ulbrich (2003) assumed that storm dam-
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ages occur when a certain, locally adapted, relative threshold is exceeded. Other

studies, such as Lamb and Frydendahl (1991), Haylock (2011) and Della-Marta et al.

(2009), use absolute exceedance threshold, constant throughout the domain. Sever-

ity measures L0
a and La, which use an absolute exceedance threshold of 25ms�1, are

therefore included as a comparison, to explore which type of exceedance threshold

is most appropriate for representing insured loss.

Lastly, a composite severity measure is included, defined as LF = AU3

max, where

A is the area of damaging wind gust speeds (severity measure 1 in Table 3.2), and

Umax is the maximum 925hPa windspeed over land within a 3� radius of the storm

track. The measure Umax is taken from the windstorm track rather than the foot-

print but is included in order to create LF , which is equivalent to the storm severity

measure used by Lamb and Frydendahl (1991), defined in Section 2.2.2, Eqn 2.2.

Here, however, the duration is assumed to be 72 hours for all storms, rather than

being included as an additional parameter. The measure Umax is also included in

the investigation as a comparison with x
90

, the severity measure related to the peak

intensity from the footprint.
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Figure 3.4. Diagrams of V for x in the range 0-50ms�1 for severity measures (a) A,
(b) La and (c) Lr with absolute threshold 25ms�1 and relative threshold c = 16ms�1

(selected arbitrarily).

Figure 3.4 demonstrates the forms that the hazard function V takes in the di↵erent

severity measure types. For severity measure A the hazard function is a simple step

function. This form of hazard function is simplistic and may not be physically real-

istic since no damage occurs below the damage threshold of 25ms�1 and maximum

damage occurs above this threshold. The hazard functions for measures La and Lr

increase as a function of wind gust, x. This is more physically plausible, however

there is no upper limit for the hazard function and therefore neither for the loss,

which is not physically realistic. The hazard function for Lr is less steep because

the excess wind gust speed is normalised.
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3.4. Relating storm severity measures to one

another

These storm severity measures are calculated for each of the 5730 historical wind-

storm footprints (see Section 2.3.1). The relationship between the storm severity

measures will be quantified using two approaches. Firstly, paired scatter plots of

the logarithm of each measure will be examined and the association between mea-

sures will be quantified in terms of the Spearman rank correlation coe�cient. This

measure of correlation is preferred because it represents monotonic rather than just

linear association. Secondly, paired scatter plots of the rank of windstorms in each

severity measure will be presented focusing on the most extreme events.
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Figure 3.5. Scatter plots of (a) the logarithm of A and Umax (b) the rank of A and
Umax with dashed red lines showing how the plot can be divided into four categories
to calculate the extremal dependence measure.

Relationships between extreme values of the severity measures are of particular

interest because of the relevance to damage and insured loss. These extremal re-

lationships will be investigated using the extremal dependence measure �t, based

on the Extremal Dependence Coe�cient introduced by Coles et al. (1999). This

measure quantifies the conditional probability of the rank of a windstorm being ex-

treme, or above some threshold t, in one severity measure (m
(2)

), given it is extreme

in another severity measure (m
(1)

). The extremal dependence measure is defined as:

�t = Pr(rank(m
(2)

) > t|rank(m
(1)

) > t) (3.2)

=
Pr(rank(m

(1)

) > t, rank(m
(2)

) > t)

Pr(rank(m
(1)

) > t)

=
a

a+ c

68



3. Exploring the relationship between storm severity measures and insured loss

where n is the total number of windstorms, a is the number of windstorms that are

extreme in both measures, m
(1)

and m
(2)

, (section A in Figure 3.5 (b)) and c is the

number of windstorms that are only extreme in m
(1)

(section C in Figure 3.5 (b)),

therefore t = n � (a + c). The extremal dependence measure �t is a conditional

probability and is therefore in the range [0,1]. The larger the value of �t, the greater

the extremal dependence between the severity measures.

Figure 3.6. Paired scatter plots (lower panel) and the Spearman rank correlation
coe�cient (upper panel) for all pairs of severity measures (on natural logarithm
scale). The panels on the diagonal show the histogram of the natural logarithm
of each measure. The 23 extreme insurance loss storms (Table 3.1) are shown in
purple.

Figure 3.6 shows the overall relationship between the storm severity measures de-

fined in section 3.3. The logarithm of the indices is used to reveal relationships more

clearly and the Spearman rank correlation coe�cient is invariant under monotonic

transformations such as the logarithm so it will take the same value for measures

on the logarithmic scale as on the original scale.

The strongest relationships (⇢ = 0.93) exist between A and La, La and L0
a, and
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Lr and L0
r. A relationship between A and La might be expected since La is a mea-

sure of the intensity of the footprint wind gust speeds within the area A. However,

the very strong relationship between these two measures suggests that including

magnitude of the exceedance of the damage threshold within the severity measure

gives little extra information about the severity of a windstorm. In addition, the

strong positive relationships between La and L0
a and Lr and L0

r imply that little

information is gained from including the population density as a measure of expo-

sure within the loss functions. This is a very interesting result since population

density has commonly been used as an approximation to exposure in loss functions

in previous studies, e.g. Klawa and Ulbrich (2003), without any quantification of

how informative it is in representing loss.

Figure 3.7. Anatol example: Exceedance footprints for windstorm Anatol (2nd-4th

December 1999) using a threshold of (a) 25ms�1 and (b) c(sj) (c) Population density
over the exceedance region (people km�2) and (d) the relationship between the excess
cubed wind gust speed and the population density in grid cells that exceed 25ms�1

(blue) and c(sj) (red).

This strong positive relationship between loss functions with and without popu-

lation density included is found to be because of the di↵erence in spatial scale of the

wind gust speed excesses and the population density. To illustrate this, Figure 3.7

shows the exceedance footprints for windstorm Anatol (2nd-4th December 1999) for

exceedance thresholds of 25ms�1 and c(sj). The spatial distribution of population

density is more varied than the smoother exceedance footprint, meaning that for

any magnitude of cubed excess wind gust speed a variety of population densities,
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encompassing the whole range of populations, is sampled. This can be seen in Fig-

ure 3.7 (d), where for each magnitude of cubed excess wind gust speed, using the

absolute threshold (blue) and the relative threshold (red), a similar range of popu-

lation densities is sampled, resulting in an approximately proportional relationship

between La and L0
a, and Lr and L0

r, as seen in Figure 3.6. A local regression curve

is added to demonstrate the lack of relationship between population density and

cubed excess wind gust speed. This can be further demonstrated by supposing that

the population density at location sj, denoted p(sj), can be thought of in terms of

a mean population density plus some variation, p(sj) ⇡ d̄+ ✏(sj)d, then,

X

j

V (sj)p(sj) =
X

j

V (sj)(d̄+ ✏(sj)d)

⇡
X

j

V (sj)d̄

since
X

j

V (sj)✏(sj)d ⇡ 0 if there is no correlation between V (sj) and ✏(sj)

/
X

j

V (sj)

where V (sj) is the hazard at location sj (see equation 3.1).

Other relationships of note include the strong positive correlation between x
90

and

the relative threshold loss function measures Lr and L0
r, indicating that this simple

measure could be used to represent the more complex loss function measures.

The composite severity measure LF , defined as AU3

max, has a stronger dependence

on A than Umax and Umax has a weak dependency with all other severity measures.

In addition, the relatively weak dependency between absolute and relative thresh-

old loss functions (e.g. La and Lr) shows that these measures characterise di↵erent

features of the footprints and both types may therefore be useful in determining the

severity of a windstorm.

Figure 3.8 shows the relationship between the extremes of storm severity measures

where the extremal dependence measure �t is calculated for t = 5630, meaning a

footprint is classed as being extreme if it is ranked within the top 100 for a given

severity measure.

The same strong dependencies exist between the loss functions with and without

population density, meaning that the di↵erence in spatial scale of the wind gust

speed excesses and the population density holds even for the most extreme foot-

prints. The strong dependency between x
90

and relative threshold loss functions, Lr

and L0
r, is also still present in the extremes of the measures. The strong dependence
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3. Exploring the relationship between storm severity measures and insured loss

Figure 3.8. Paired scatter plots of the rank of severity measures for
rank2(5630,5730), with the 23 extreme insurance loss storms (Table 3.1) shown in
purple, equivalent to section A of Figure 3.5 (lower panel) and extremal dependence
measure �t for extremal threshold t=5630 (upper panel).

between composite measure LF and A holds for extreme windstorms. The same

strong dependence now also exists between LF and Umax for extreme windstorms

meaning that both the peak wind intensity and damage area are equally important

within the composite measure for extreme windstorms.
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3.5. Relating storm severity measures to insured

loss

The relationship between the severity measures and insured loss will be quantified

in terms of their ability to classify the set of 23 extreme insurance loss windstorms,

introduced in Table 3.1. In other words, storm severity measures in which the 23

extreme insurance loss windstorms rank highly, are identified as being able to rep-

resent insured loss well. This is due to the unavailability of windstorm loss data,

meaning that all observed storms cannot be ranked according to loss amount. The

23 extreme insurance loss storms, shown in purple in Figures 3.6 and 3.8, have gen-

erally high values in most of the 9 severity measures. They are in the top 18%,

87%, 47%, 18%, 53%, 11%, 45%, 18% and 8% of windstorms for measures A, x̄, x
90

,

La, Lr, L0
a, L

0
r, Umax and LF , respectively. This indicates that measures using the

25ms�1 absolute excedance threshold: A, La, L0
a, and also Umax are relatively good

at representing insured loss, with LF being the best. The other measures, includ-

ing the loss functions using the relative exceedance threshold are less successful at

representing insured loss.
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Figure 3.9. Conceptual diagram of storms ranked according to a severity measure
and according to insured loss. The red dashed lines represent the division of the plot
into the four categories A, B, C and D where the counts of storms in each category
are denoted a, b, c and d respectively.

Alternatively, this can be thought of in terms of the extremal dependence between

storm severity measures and insured loss. A conceptual scatter plot of the rank

of each storm according to a storm severity measure and insured loss is shown in
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3. Exploring the relationship between storm severity measures and insured loss

Figure 3.9. The storms cannot be ranked according to the insured loss they incurred

because these values are not available. Rather, the 23 extreme insurance loss storms

are said to be in categories A and B and the remaining 5707 in categories C and

D. The storm severity measure that has the strongest relationship with insured loss

will maximise the extremal dependence measure �t (Eqn 3.2) for a given threshold t,

equivalent to maximising a
a+c

in Figure 3.9. This will be explored by comparing the

number of storms that are extreme in both insured loss and the severity measure, a,

for the (a + c) most extreme events of the severity measure, over a range of values

of a + c. The greater the value of a for a given a + c, the stronger the extremal

dependence between the severity measure and insured loss.
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Figure 3.10. The number of storms that are extreme in both insured loss and the
severity measure, a, for the (a+ c) most extreme values of the severity measure.

Figure 3.10 shows the relationship between a and (a + c) for the 9 storm sever-

ity measures. It can be seen that measures Umax and particularly LF have the

strongest relationships with insured loss. The measure x̄ has the weakest relation-

ship and the other five measures have similar relationships, with A being better

related to insured loss for (a+ c) 2 (50, 150).

This shows that the loss function measures (shown in blue), which have been used in

previous studies and were found to be a good approximation of losses in Germany,

are not the most successful at representing insured loss here. This approximately

equal performance of the loss functions also shows that including population density
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within the measure does not improve the relationship with insured loss. In addi-

tion, using a relative or absolute threshold makes very little di↵erence. Interestingly,

measures of peak intensity such as x
90

and particularly Umax are more related to

insured loss than these loss functions which are measures of excess wind gust inten-

sity summed over a damage region, and may therefore be expected to be a better

representation of overall loss. The measure A is the best footprint based classifier

of insured loss, out performing the loss functions and x
90

and, when combined with

Umax to form the composite measure LF , gives the best measure for representing

insured loss. This means that the historical windstorms that caused large insured

losses have either a large footprint damage area, A, or a high maximum 925hPa

wind intensity, Umax, or both.

Referring back to Table 3.1, now comparing the extreme insurance loss storms in the

context of all other storms, it is seen that the two presented measures are extreme

and a large area of the footprint exceeding 25ms�1 is a common characteristic in the

footprints in Figure 3.1.
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Figure 3.11. The number of storms that are extreme in both insured loss and the
severity measure, a, for the (a+c) most extreme values of the severity measure when
using (a) 20, (b) 15 and (c) 10 extreme insurance loss storms, selected at random
from the list of 23. This is repeated 1000 times for each measure. The median
of these 1000 samples is plotted with shaded regions showing the 2.5% and 97.5%
quantiles.

This classification method will depend on the list of 23 extreme insurance loss wind-

storms used. The sensitivity of the results to this list is tested by selecting 20, 15

and 10 of the 23 extreme insurance loss storms at random, 1000 times, and repeating

the analysis. This bootstrap method is used to ensure the results are consistent irre-

spective of which particular storms are selected from the original 23. The resulting

plots can be seen in Figure 3.11, showing that the relationships between the severity

measures and insured loss are insensitive to the list of extreme insurance loss storms

used, and LF is consistently outperforming the other measures.
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3. Exploring the relationship between storm severity measures and insured loss

These conclusions could be very di↵erent if quantitative insured loss values were

used rather than this classification method. Insured loss data is, however, hard

to acquire and a fully rigorous validation would necessitate the availability of Euro-

pean wide insured loss values for each of the 5730 windstorm events in the data set.
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Figure 3.12. Annual means of (a) LF , (b) A and (c) U3

max, based on all 5730 wind-
storm footprints in the data set. The red curve is the locally weighted scatterplot
smoothing curve, fitted to the annual means.

As explained in the Introduction of this thesis, the re/insurance industry observed a

decline in European windstorm related losses in the mid 1990’s (Mark, 2013). This

20 year lull is reflected in the annual means of LF in the period 1979-2012, shown

in Figure 3.12 (a), which drop at around the year 1996. This further suggests that

LF is, indeed, a good representation of insured loss. In addition, Figure 3.12 shows

how the sudden drop in LF (= AU3

max) is explained by a similar drop in A, which is

not reflected in the annual means of U3

max, further suggesting that A is also a good

representation of insured loss.
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3.6. Application: selecting extreme windstorms

for the XWS catalogue

In 2012, a group of scientists at the Met O�ce and the universities of Exeter and

Reading decided to create a freely available, digitised catalogue of European wind-

storm tracks and footprints for 50 of the most extreme windstorms to hit Europe

in recent years (1979-2012), named the eXtreme Wind Storms (XWS) catalogue.

The catalogue is available at www.EuropeanWindstorms.org and is intended to be

a resource for both academia and the re/insurance industry for understanding the

variation and factors that influenced past windstorm events. This understanding

is thought to be important when evaluating and improving weather, climate and

catastrophe models (Roberts et al., 2014). Information about the 50 European

windstorms selected and how the database was created are available at this web ad-

dress, and in more detail in “The XWS open access catalogue of extreme European

windstorms from 1979 to 2012” by Roberts et al. (2014).

The 23 extreme insurance loss storms were of particular interest to the insurance

community and were therefore essential for inclusion within the catalogue. The

storm severity measures were used to select the remaining 27 extreme events for

the catalogue. For these additional 27 events to be of interest for the catalogue,

from a damage point of view, it was concluded that they should be extreme in the

severity measure that best represented insured loss, such that altogether 50 storms

were classed as extreme, i.e. in categories A, B and C of Figure 3.9. The addi-

tional 27 extreme storms, selected for the catalogue, would therefore have similar

characteristics to the 23 extreme insurance loss storms. Referring to Figure 3.9,

this was quantified by observing which severity measure maximises a
a+c

, such that

a + b + c = 50. Graphically, this was equivalent to maximising a when the line

a = (a+ c)� 27 intercepts the plot of a against (a+ c).

The XWS storm selection was done using a di↵erent definition of the windstorm

footprint where all wind gust speeds outside of a 1000 km radius of the track po-

sition were disregarded, reducing the overlap of di↵erent windstorm events within

one footprint. This was done to ensure that no extreme event was selected twice

(Roberts et al., 2014). These footprints are termed ‘disaggregated’ and are explained

in more detail in Section 2.3.1.

Figure 3.13 shows that the severity measure LF maximises the number of extreme

insurance loss storms in the top a + c events such that a + b + c = 50. Severity

measure LF was therefore used to select the 27 other extreme windstorms. The

XWS catalogue is therefore made up of the 23 extreme insurance loss storms and 27
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Figure 3.13. The number of storms that are extreme in both insured loss and the
severity measure, a, for the (a + c) most extreme values of the severity measure,
for severity measures A, La, Lr, Umax and LF , using disaggregated footprints. The
line a = (a + c) � 27 identifies which severity measure maximises a

a+c
such that 50

storms are selected for the catalogue.

others that are extreme in LF . It is interesting to note that the severity measures

perform similarly when using the disaggregated footprints (Figure 3.13), compared

to using the raw footprints (Figure 3.10). However measures A, La and Lr per-

form slightly better when the disaggregated footprints are used, most likely because

large events overlapping smaller events are removed from the footprints, so less large

events are counted twice meaning the 23 extreme insurance loss storms rank higher.
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Figure 3.14. (a) The location of the centre of the 850 hPa relative vorticity when the
maximum wind speed over land (Umax) occurs for the 50 windstorms selected for the
XWS catalogue using LF . The size of the points is proportional to the magnitude
of LF , and (b) the distribution of years in which the 50 windstorms selected for the
XWS catalogue occurred.
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The spatial and temporal distribution of the 50 windstorms selected for the XWS

catalogue using severity measure LF is shown in Figure 3.14. The peak intensi-

ties are generally located around the UK and Northern Europe. These are strong

Atlantic storms that are well represented in the reanalysis data used to create the

footprints (Roberts et al., 2014). The 50 windstorms selected for the XWS cata-

logue occur in 26 of the 33 year period, well representing the period spanned by the

XWS catalogue. However, more windstorms are selected in the period 1985-1995

and fewer in the period 2000-2010.

3.6.1. Why are category C storms not considered to have

caused extreme insured loss?

Severity measure LF is the most successful at representing insured loss, so why have

the 27 non-extreme insurance loss or category C windstorms, which rank highly in

LF , not been identified as having caused extreme insured loss by the re/insurance

industry? Is there a particular characteristic of category C storms that distinguishes

them from the 23 extreme insurance loss storms?

Three of the storms in category C are documented in Lamb and Frydendahl (1991),

dated 18/01/83, 01/02/83 and 09/02/88, and can therefore be explored in more

detail. Lamb and Frydendahl (1991) state that all 3 of these windstorms caused

damage and loss of life, so why are they not included in the list of 23 extreme in-

surance loss storms? All 3 windstorms occurred mainly over the North sea and the

British Isles (Lamb and Frydendahl, 1991) meaning insured loss was localised and

did not occur over mainland Europe. They occured early in the period of interest

when less people may have been insured and/or overall population might have been

lower. These factors may go some way in explaining why these 3 storms were not

included in the list of extreme insurance loss storms.

Characteristics of the 50 selected windstorm footprints were compared, di↵eren-

tiating between categories A, B and C. Many characteristics were compared and

population density a↵ected and the date of occurrence were found to be of most
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interest. Define:

Pai =
J
X

j=1

H(xi(sj)� 25)p(sj)

Pri =
J
X

j=1

H(xi(sj)� c(sj))p(sj)

representing the total population a↵ected by windstorm i for the absolute and rel-

ative exceedance thresholds repsectively.
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Figure 3.15. The relationship between the population a↵ected by damaging winds
and loss functions using (a) the relative 98th percentile threshold c(sj) and (b) the
absolute threshold of 25ms�1, and (c) the relationship between the date of occurrence
of Umax and LF . Category A, B and C storms are identified.

Figure 3.15 (a) and (b) reveals that all types of windstorm (category A, B and

C) a↵ect a similar overall population. This is particularly true when the abso-

lute 25ms�1 threshold is used. Other thresholds of wind gust speed (e.g. 15ms�1,

30ms�1) were investigated but the same conclusion was made in all cases. Figure

3.15 (a) does, however, indicate that the category C storms tend to have slightly

lower values of L0
r and Pr, suggesting that winds that exceed the relative 98th per-

centile threshold occur in lesser populated regions for category C storms. This

may reduce the insurance loss incurred and might explain why category C storms

are not considered to have caused as much insured losses as the 23 in Table 3.1.

The population density as at 2005 is used to calculate L0
r and Pr (from Haylock

(2011)). Using population density corresponding to the correct year for each wind-

storm would improve the analysis and might give a greater distinction between the

categories of windstorms. In addition, Figure 3.15 (c) shows that, in general, the

category C storms occur earlier in the period when less of the population may have

been insured, potentially explaining why category C storms have not been identified

as causing extreme insurance loss.
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3.7. Conclusions

Within this chapter windstorm footprints are related to insured loss by exploring

which storm severity measures are best at representing insured loss, based on histor-

ical footprints. Due to the incompleteness of historical European wide insured loss

data, this was quantified in terms of their ability to classify 23 extreme insurance

loss windstorms. This methodology was also used to select 50 extreme windstorms

for the XWS catalogue.

Nine storm severity measures were introduced, based on existing measures reviewed

in detail in Section 2.2.2. These nine measures ranged in complexity and form.

Many other storm severity measures could have been included in this investigation,

using di↵erent damage thresholds and exposure variables, however those included

allowed for a number of insights into the relationship between intensity and exposure

characteristics.

A strong positive relationship was found to exist between the footprint damage

area (> 25ms�1), A, and the absolute threshold loss function, La, suggesting that

including the intensity of the wind gust speeds in the exceedance area gives little

extra information about the severity of the windstorm. Strong dependency was also

shown to exist between loss functions with and without population density included,

consistent in the extremes. Similarly, suggesting that including population density

in the measure adds very little extra information about the severity. This is found

to be because of the di↵erence in spatial scale of the wind gust speed excesses and

population densities. The composite measure LF has equal dependence on A and

Umax in the extremes, suggesting that the peak intensity along the track and the

footprint damage area are equally important within the composite measure for ex-

treme windstorms.

The area of damaging winds, A, was the best footprint based classifier of insured loss.

This measure was shown to outperform the spatial 90th percentile wind gust speed,

a measure of the footprint peak intensity, and the loss function severity measures,

most commonly used in previous studies. Including the magnitude of the exceedance

of the damage threshold and population density, as a proxy for exposure, within the

severity measure was shown to be detrimental to the relationship between the mea-

sure and insured loss. In addition, using a relative or absolute threshold made very

little di↵erence when relating the loss function severity measures to insured loss.

The composite severity measure, LF , the product of the footprint damage area and

the cube maximum 925hPa wind speed along the track, was shown to give the best

overall representation of insured loss, both using raw footprints and disaggregated
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footprints. This composite measure was therefore used to select the extreme storms

for the XWS catalogue. This suggests that windstorms that cause large insured

losses have either a large footprint damage area or a high maximum 925hPa wind

intensity, or both.

As explained by Bonazzi et al. (2012), during an extreme windstorm event, insured

losses occur at multiple locations, therefore exploring the spatial structure of indi-

vidual storms is also relevant to understanding how windstorm footprints relate to

total insured loss. Characterising a footprint into a scalar severity measure therefore

does not capture this possible variation in spatial structure and local intensity. This

motivated Bonazzi et al. (2012) to develop a model for the bivariate distribution of

footprint wind gust speeds at pairs of locations, in terms of the local intensity and

spatial dependence, to explore which of these statistical characteristics has the most

influence on insured loss, approximated by a storm severity measure.

In a similar way, in the remainder of this thesis a statistical model for windstorm

footprints will be developed and used in a sensitivity study to explore which sta-

tistical footprint characteristic, local intensity or spatial dependence structure, has

more influence on insured loss. Insured loss will be approximated by the most re-

lated footprint based storm severity measure A. Furthermore, this model based

sensitivity study will help to explain which statistical footprint characteristic has

changed in the last 20 years, causing the observed decline in insured loss in the mid

1990’s (Mark, 2013), reflected in the trend in annual means of A.
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windstorm footprints

4.1. Introduction

This chapter presents the development of a bivariate model for windstorm footprint

wind gust speeds at pairs of locations. This is the first stage in developing a spatial

model for windstorm footprints over the whole European domain which will be used

to explore which of the statistical footprint characteristics, the local intensity or the

spatial dependence structure, have the most influence on insured loss. The insured

loss will be approximated by the area of the footprint that exceeds 25ms�1 over

land, found to be the best footprint based storm severity measure at representing

insured loss.

The model developed within this chapter will be based on all 5730 windstorm events

from extended winters (October - March) 1979 - 2012 and will represent pairs of lo-

cations throughout the European domain. The bivariate model must be extendable

to higher dimensions to allow for simulation of synthetic windstorm footprints, and

must be able to realistically represent joint losses.

Bonazzi et al. (2012) recently developed a bivariate model for footprint wind gust

speeds for the same purpose. This model is, however, based on North-West Europe,

only 135 extreme windstorm footprints and wind gust speeds at pairs of locations

are assumed to be asymptotically dependent, an assumption which is not validated.

Bonazzi et al. (2012) primarily focused on the very extreme wind gust speeds, while

the model developed here aims to realistically model the relationship between dam-

aging wind gust speeds, which occur lower in the tail of the joint distribution. The

Bonazzi et al. (2012) bivariate model will be applied alongside the bivariate model

developed in this chapter as a comparison.

This chapter aims to address three questions:

• How should the marginal distribution of damaging wind gust speeds at each
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location be modelled?

• How should the dependence in extreme wind gust speeds at pairs of locations

be modelled, i.e. is there extremal dependence between locations?

• Can a bivariate model for damaging wind gust speeds be developed that has

the potential to be extended to represent the entire footprint and realistically

represent joint losses?

The general modelling approach will first be introduced. The model specification,

fitting method and validation will then be presented. The ability of the bivariate

model to realistically represent joint losses, approximated by footprint area, will

then be explored.

4.2. General approach

Extreme value theory is a well established topic in statistics with many domains of

application (Coles 2001; Davison et al. 2012). These concepts are particularly useful

when modelling natural hazards that by their nature are rare events in the tail of

the distribution (e.g., Coles and Tawn 2005, Jagger and Elsner 2005, Blanchet et al.

2009). However, there has been little use of extreme value theory to represent ex-

treme windstorms or extratropical cyclones (Economou et al., 2014). Lionello et al.

(2008) used the Generalised Extreme Value (GEV) distribution to model pressure

minima over Europe to investigate changes in future cyclone climatology; Della-

Marta et al. (2009), Della-Marta and Pinto (2009) and Sienz et al. (2010) used a

Generalised Pareto Distribution (GPD) model to analyse future changes in extreme

wind intensity; and Economou et al. (2014) used a Bayesian hierarchical model

(BHM) to spatially and temporally model extreme cyclones. These papers focus

on extremes of cyclone track variables rather than windstorm footprints. Della-

Marta et al. (2009) used the GPD to model the exceedences of scalar storm severity

measures above a suitably chosen threshold, applied to peak gust wind fields, to

investigate the return period of windstorms over Europe; and Bonazzi et al. (2012)

used the GPD to model the marginal distribution of footprint wind gust speeds at

meteorological stations.

As discussed in Section 2.2.3, a number of approaches for modelling multivariate

extremes have been used in previous studies. These include Bayesian Hierarchical

Models (BHMs), also known as latent variable models, max-stable random fields

and copulas. As explained in Section 2.2.3, each method has advantages and disad-

vantages in terms of flexibility, dimensionality and complexity of implementation.

When modelling bivariate extremes, it is of particular importance to correctly rep-
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resent the extremal dependence, which characterises the joint behaviour of variables

as they become large. Coles et al. (1999) explained how the extremal dependence

between variables can take one of two forms: asymptotic dependence, where large

values of the variables tend to occur simultaneously, or asymptotic independence,

where large values rarely occur together. Most available statistical models for multi-

variate extremes are suitable for either one case or the other, but not both. Bonazzi

et al. (2012) used an extreme value copula to model the dependence in windstorm

footprint wind gust speeds at pairs of locations. This approach assumes asymptotic

dependence, an assumption that is not validated. Within this chapter the extreme

dependence property will be explored to validate the choice of model used, ensuring

the correct representation of the joint distribution of footprint wind gusts.

The bivariate model for footprint wind gust speeds developed within this chapter

must be easily extendable to larger dimensions, to enable modelling of the footprint

over the whole European domain, but can be in finite dimensions since simulation

from the model will be on a grid of a given resolution. The modelling approach

must allow for the selection of an appropriate dependence model depending on

what extremal dependence behaviour is identified in the data. From the discussions

in Section 2.2.3, these requirements suggest the use of a copula approach, which

can represent asymptotically dependent variables using extreme value copulas, or

asymptotically independent variables using the Gaussian copula. If a mixture of

asymptotic dependence and independence is identified, more complex methods such

as the method proposed by He↵ernan and Tawn (2004) (see Section 2.2.3) could be

explored. Using the copula approach has the added advantage of being directly com-

parable to the Bonazzi et al. (2012) model. In addition, since the copula approach

represents the joint distribution of random variables in terms of their marginal dis-

tributions and their mutual dependence separately, the local intensity and spatial

dependence structure will be represented separately within the model parameters,

allowing for their influence on insured loss to be easily explored within a sensitivity

study.

The copula is a function that is used to model the joint distribution of the two vari-

ables transformed to uniform margins using their marginal distributions. Mikosch

(2006) suggested that this transformation to uniform margins is mathematically

trivial and may obscure important features of the data that are visible on their

original scale. However, Davison et al. (2012) argued that the implicit separation

of the marginal distributions of variables from their dependence structure provides

a unifying framework for modelling multivariate data. The copula methodology is

well developed in comparison to max-stable theory (Blanchet and Davison, 2011),

which can only represent asymptotic dependence or complete dependence (see Sec-
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tion 2.2.3), and a large number of copula functions are available to choose from

giving a great deal of flexibility in model specification. Therefore, despite possible

drawbacks, the use of copulas to model multivariate extremes has become very pop-

ular with one of the driving forces for the popularity being their application in the

context of financial risk management (Mikosch, 2006). The continued popularity

of the copula method stems from their relative ease of use, applicability to a wide

range of situations (Renard and Lang, 2007) and, since the copula often has only

one unknown parameter, the model fitting and interpretation of the dependence is

simplified. It could be argued, however, that using only one parameter to explain

dependence could limit the flexibility of the model.

Sklar’s Theorem (Nelson (2006), pages 17-24) states that the 2-dimensional joint

distribution of random variables X
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) are the univariate marginal

distributions of X
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, and C, known as the copula, is a 2-dimensional distri-

bution on [0,1]2 that contains complete information about the dependence between

X
1

and X
2

. The function C is uniquely determined for distributions F
1

and F
2

with

absolutely continuous margins (Davison et al., 2012).

Firstly, the form of the marginal distributions F
1

and F
2

will be explored, followed

by the selection of an appropriate copula model. These elements of the model, fol-

lowed by the overall model, will then be validated to ensure realistic representation

of joint losses for pairs of locations throughout the domain, approximated by foot-

print area.

Bonazzi et al. (2012) also used a copula approach in their bivariate footprint model.

Their model has di↵erent specifications of both the marginal distributions and cop-

ula function from those of the model developed here and will therefore be directly

compared throughout as a validation of the modelling choices made.

4.3. Modelling the marginal distributions

4.3.1. Marginal distribution specification

Let X be a vector of maxima, each over � independent random variables with a

common distribution function. Then by the Extremal Types Theorem, first discov-

ered by Fisher and Tippett (1928), and later proved in full generality by Gnedenko
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4. Bivariate modelling of windstorm footprints

(1943), there exists sequences of constants {a� > 0} and {b�} such that

Pr{(X � b�)/a�  z} ! G(z) as � ! 1

where appropriate choices of {a� > 0} and {b�} stabilise the location and scale of

(X � b�)/a� as � increases (Coles, 2001), and G is a non-degenerate distribution

function. Then G belongs to one of three classes of extreme value distributions

known as the Gumbel, Fréchet and Weibull families. These three families can be

combined into a single family of models known as the Generalised Extreme Value

family, having the distribution function of the form:

G(z) = exp

(

�


1 + ⇠

✓

z � µ

�

◆�

1/⇠
)

defined on the set {z : 1 + ⇠(z�µ)/� > 0} and the parameters satisfy �1 < µ < 1,

� > 0 and �1 < ⇠ < 1 where µ is the location, � is the scale and ⇠ is the shape

parameter.

For a pair of locations, (s
1

, s
2

), the wind gust speeds taken from the 5730 windstorm

footprints in the data set (Section 2.3.1), denoted X
1

and X
2

, are a vector of max-

ima, since they are the maximum wind gust speed to occur in each location over the

72 hour period of each windstorm event. The variables X
1

and X
2

should therefore,

by the Extremal Types Theorem, be modelled using the GEV distribution. Since the

aim is to develop a model that realistically represents extreme, damaging footprint

wind gust speeds, it is important that the marginal distributions fit very well in the

upper tail. To improve the fit in the upper tail the GEV marginal distribution is

based only on wind gust speeds that exceed a high threshold. This will be referred

to as the left-truncated GEV distribution. In doing this, the lower wind gust speeds

do not penalise the fit of the distribution in the upper tail and wind gust speeds are

always distributed as being non-negative, consistent with their physical nature.

The vectors of maxima X
1

and X
2

are distributed according to the GEV distri-

bution; therefore X
1

> v
1

and X
2

> v
2

must be distributed according to the left-

truncated GEV distribution, where v
1

and v
2

are left truncation thresholds.

Let G and g denote the GEV distribution and density functions respectively and G⇤

and g⇤ the GEV distribution and density functions truncated at threshold t respec-
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4. Bivariate modelling of windstorm footprints

tively. Then for random variable Z = (z
1

, .., zn) which follows a GEV distribution:

Pr(Z  z) = G(z;µ, �, ⇠)

) Pr(Z  z|Z > t) = G⇤(z;µ, �, ⇠) =
G(z;µ, �, ⇠)�G(t;µ, �, ⇠)

1�G(t;µ, �, ⇠)
,

and

g⇤(z;µ, �, ⇠) =
g(z;µ, �, ⇠)

1�G(t;µ, �, ⇠)
,

which is a valid probability density function because it integrates to 1 above the

truncation threshold, t.

Here, the random variables X
1

and X
2

are thought to be left-truncated GEV dis-

tributed above thresholds v
1

and v
2

respectively, however the distribution for each

variable is needed for the whole support of the variable, to allow for the validation

of the fit of the model against the data e.g. quantile-quantile plots. Below the

truncation threshold the distribution is approximated by the empirical distribution

function of the variable, and above the truncation threshold the left-truncated GEV

distribution is scaled to ensure the density integrates to 1 over the whole support of

the variable. That is,

Pr(Xj  x) = Fj(x;µj, �j, ⇠j) =

8

<

:

F̂j(x) x  vj

(1� �j) + �jG
⇤
j(x;µj, �j, ⇠j) x > vj

for j = 1, 2, where F̂j is the empirical distribution of Xj and �j = 1� F̂j(vj).

In comparison, Bonazzi et al. (2012) used the Generalised Pareto Distribution (GPD)

to model the margins. The GPD is a broadly applicable model for the tail of a se-

quence of independent and identically distributed random variables, above a high

threshold (Coles, 2001). Let X be an arbitrary term in a sequence of independent

and identically distributed random variables then, for large enough � and X > �:

Pr(X  x) ⇡ H(x;↵, �) = 1�  

✓

1 +
↵(x� �)

�

◆�1/↵

where  = H(�;↵, �), ↵ 6= 0 is the shape parameter, equivalent to ⇠ of the GEV

distribution, and � is the scale parameter.
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4. Bivariate modelling of windstorm footprints

4.3.2. Marginal distribution fitting

Maximum Likelihood (ML) estimation, popularised by Fisher (1912), is a well known

and commonly used parametric method for inference in statistics. This method finds

the set of parameters that maximises the probability of observing the data given the

model. Under mild regularity conditions (Cox and Hinkley, 1974) the ML estima-

tor is asymptotically normally distributed, unbiased and fully e�cient (Diggle and

Ribeiro, 2007).

Let X = x
1

, ..., xn denote the vector of maximum wind gust speeds associated with

the n = 5730 windstorm footprints, at a given location. For the ML estimation

approach to be applicable x
1

, ..., xn should be independent. This may not be the

case for all xi because, as discussed in Sections 2.1.3 and 2.3.1, there is a possibil-

ity that more than one windstorm passes through the European region in a given

72 hour period. However, in previous studies, the 72 hour event duration is most

commonly used to achieve the greatest independence between windstorm events.

Haylock (2011) discussed how choosing a shorter period would increase the risk of

one windstorm generating more than one footprint, violating the independence be-

tween events required to carry out statistical analysis, while Donat et al. (2011b)

explained how increasing the event duration to 5 days results in some consecutive

storms being considered as one event, so some events would be lost from the data set.

Assuming independence between windstorm events, the parameters of the left-

truncated GEV distribution fitted to X are estimated by maximising the likelihood

function:

L((µ, �, ⇠); x
1

, ..., xn) =
Y

xi:x>v

g(xi;µ, �, ⇠)

1�G(v;µ, �, ⇠)

where g and G are the density and cumulative distribution function for the standard

GEV respectively. This maximisation of the likelihood function is done using the

Nelder and Mead (1965) optimisation method.

In order to fit this left-truncated GEV marginal distribution, an appropriate left

truncation threshold, v, must be selected for each location. This threshold is spec-

ified as a quantile of the wind gust speed at each location to ensure that the GEV

is fit to a large enough sample of the data. The quantile threshold must be high

enough that the lower wind gust speeds do not negatively impact on the fit of the

distribution in the upper tail, but low enough that all damaging wind gust speeds

are modelled. In Chapter 3, the area of the footprint exceeding 25ms�1 over land

was found to be the best severity measure, based on the footprint only, at represent-

ing insured loss. Wind gust speeds above this threshold must therefore be modelled.

As discussed in Section 2.2.2, a number of studies (e.g., Klawa and Ulbrich 2003,
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4. Bivariate modelling of windstorm footprints

Leckebusch et al. 2007, Pinto et al. 2007) argue that a local threshold should be

used, to account for local adaptation to the wind climatology. They use the local

98th percentile of the climatology wind gust speed as a loss threshold. The 60%

quantile is found to be the highest quantile such that all wind gust speeds greater

than or equal to 25ms�1 and the local 98th percentile climatology wind gust speed,

calculated for the reference period October 1979 to March 2012 (shown in Figure

3.3), are modelled.
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Figure 4.1. The sensitivity of the left-truncated GEV location, (a), scale, (b), and
shape, (c), parameters to a change in left-truncation threshold. The vertical lines
show the 95% confidence intervals based on the assumption of asymptotic normality
of ML estimates.

Figure 4.1 shows the sensitivity of the left-truncated GEV location, scale and shape

parameters, µ, � and ⇠ to a change in the quantile left truncation threshold for

12 locations in Europe. These 12 locations are chosen because they are located

throughout the European domain so representing the general fit in di↵erent regions.

On the whole, the estimated parameters are not very sensitive to the threshold

choice, although some variation exists in µ and � for Amsterdam and Bordeaux.

These two parameters, however, compensate one another in the left-truncated GEV

distribution function. The 60% quantile threshold gives stable values for the param-

eters in most cases, ensures damaging wind gust speeds are modelled and is high

enough in the tail to ensure a good fit to extreme winds.

The GPD margins must also be fitted above an appropriately high threshold, now

to satisfy extreme value theory (Coles, 2001). Similarly, threshold selection involves

fitting the GPD at a range of thresholds and observing the stability of the parameter

estimates (Coles, 2001). The argument for this methodology is that, if a GPD is a

reasonable model for excesses of a threshold ⌫
0

, then excesses of a higher threshold ⌫

should also follow a GPD (Davison and Smith, 1990). The shape parameter, ↵ and

the modified scale, defined as �⇤ = �⌫�↵⌫, where �⌫ is the scale parameter estimate

when using threshold ⌫, should be consistent above ⌫
0

if ⌫
0

is a valid threshold for
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4. Bivariate modelling of windstorm footprints

excesses to follow the GPD.
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Figure 4.2. The sensitivity of GPD (a) modified scale and (b) shape parameters to
a change in GPD threshold. The vertical lines show the 95% confidence intervals
based on the assumption of asymptotic normality of ML estimates.

Again, a quantile threshold is preferable to ensure enough data is used to fit the

distribution. Figure 4.2 shows the sensitivity of the modified scale, �⇤ and shape,

↵, parameters of the GPD distribution to a change in threshold for the same 12

locations. A quantile threshold of 0.7 is chosen since both the modified scale and

the shape parameter vary systematically for quantile thresholds below this, but

remain relatively constant above. In some locations, however, the 70% quantile is

greater than the 25ms�1 damage threshold. The minimum of the 70% quantile and

25ms�1 is therefore used to ensure that all damaging winds are modelled.

4.3.3. Marginal distribution validation

The fit of the GEV, left-truncated GEV and GPD marginal distributions are com-

pared for four locations, London, Amsterdam, Berlin and Paris. These particular

locations are shown because they are places that generally experience high wind

gust speeds and must therefore be well modelled to ensure accurate loss estimates.

Figure 4.3 shows that all three distributions appear to fit well with the left-truncated

GEV and GPD fits looking very similar. It is hard to tell from these plots how well

the distributions are fitting in the very upper tail of the distribution which is most

important for modelling realistic losses. Quantile-Quantile (Q-Q), and in particu-

lar return level plots represent the upper tail of the distribution better. These are

shown in Figures 4.4 and 4.5.
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4. Bivariate modelling of windstorm footprints

Figures 4.4 and 4.5 show that both the left-truncated GEV adjusted marginal dis-

tribution (F (x), x > v) and the GPD distribution (H(x), x > �) are a very good fit

to the data at the 4 locations presented, with the left-truncated GEV performing

much better in the upper tail of the distribution compared to the standard GEV

(G(x)). This is found to be consistent throughout the European domain.
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Figure 4.3. Histogram for footprint wind gusts at (a) London, (b) Amsterdam, (c)
Berlin and (d) Paris with the best fit GEV, G(x), left-truncated GEV, F (x) for
x > v and GPD, H(x) for x > � distributions. Vertical lines show the thresholds v
and �, above which the left-truncated GEV and GPD are fit.

Figure 4.6 (a)-(d) shows the resulting location µ, scale � and shape ⇠ parameters

and the truncation threshold v of the left truncated GEV for each land location in

the domain. Figure 4.6 (e) shows the upper limit of the distribution calculated as

µ� �/⇠ valid for ⇠ < 0. When ⇠ � 0 the upper tail of the distribution is infinite.

For most locations the shape parameter is negative meaning there is a finite up-

per limit to the GEV distribution. An upper limit to the wind gust speed at a given

location is physically reasonable, so a negative shape parameter is preferable. The

Alps region of Italy is an exception to this, where a positive shape parameter leading

to an infinite upper tail is found to be because the majority of the distribution of

wind gust speeds are very low with a small number of higher wind gusts extending

the upper tail of the distribution. The location and truncation threshold are highest

in the UK and the north coast of mainland Europe as would be expected since the
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Figure 4.4. Q-Q plots for the GEV, G(x), left-truncated GEV, F (x), and GPD,
H(x), marginal distributions fitted to 4 cities in Europe. Dashed lines represent
bootstrap 95% confidence intervals.

majority of windstorms cross this region and wind gusts are known to be generally

stronger in the north (see Figure 3.1). The scale parameter is relatively consistent

throughout the domain, with the exception of south Germany where this parameter

is much higher, compensated by a lower location parameter. The quantile-quantile

and return level plots for these unusual locations still show that the left-truncated

GEV is a good fit to the data.
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Figure 4.5. Return level plots for the GEV, G(x), left-truncated GEV, F (x), and
GPD, H(x), marginal distributions fitted to 4 cities in Europe. Dashed lines repre-
sent bootstrap 95% confidence intervals of the empirical return levels.

4.4. Modelling bivariate dependency

4.4.1. Bivariate dependence model specification

The bivariate dependence between footprint wind gusts at pairs of locations will be

modelled using a copula function. Mikosch (2006) describes how the most popular

copula functions are mostly chosen because they are mathematically convenient and

the rationale for their applications is often not well justified. Bonazzi et al. (2012)

is an example of this, where the justification for using the Gumbel copula is that it

is “in line with many examples of this model found in the literature” (Bonazzi et al.

2012, page 1773). Here the copula selection will be thoroughly validated, based on

the extremal dependence properties identified within the data. Initially some exam-

ple copula functions will be introduced, the extremal dependence properties of the

data will then be assessed and an appropriate copula selected to model the bivariate

dependency in footprint wind gust speeds at pairs of locations.
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4. Bivariate modelling of windstorm footprints

Figure 4.6. left-truncated GEV (a) location, (b) scale, (c) shape, (d) truncation
threshold and (e) upper limit, for each location in the domain over land. Locations
with a positive shape parameter will have no finite upper limit and are therefore left
white in (e).

Let

U = F
1

(X
1

)

V = F
2

(X
2

)

C(u, v) = Pr(U  u, V  v)
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There are infinitely many parametric copula functions that can represent C, four

of which are defined below, shown graphically in Figure 4.7. These four copula

functions are compared here because they represent a range of dependence and

extremal dependence behaviour.

1. Bivariate Independent Copula:

C(u, v) = uv

The joint distribution of (U, V ) is bivariate uniform since f(u, v) = @2C
@u@v

= 1.

2. Bivariate Gaussian Copula:

C(u, v) = �(��1(u),��1(v)) =
R

�

�1
(u)

�1
R

�

�1
(v)

�1
1

2⇡(1�⇢2)1/2
exp

n

� s2�2⇢st+t2

2(1�⇢2)

o

dsdt

Where � is the standard Gaussian cumulative distribution function,

(��1(u),��1(v))T ⇠ MVN
⇣

�

0

0

�

,
�

1 ⇢
⇢ 1

�

⌘

and ⇢ is the correlation between

��1(u) and ��1(v).

3. Bivariate Gumbel Copula:

C(u, v) = exp[�{(�log(u))r + (�log(v))r}1/r]
Where r = 1 represents independence and r = 1 represents perfect depen-

dence. The Gumbel copula belongs to the family of multivariate extreme value

copulas (Galambos, 1987).

4. Bivariate Perfectly Dependent Copula:

C(u, v) = min(u, v).

Since X
1

and X
2

are perfectly dependent, the variable transformed to uniform

margins as U and V , will be equal. The joint distribution of (U, V ) becomes

univariate, based on U or V , depending on whether u or v is smaller.

As explained in Section 2.2.3, di↵erent copula functions represent di↵erent extremal

dependence behaviour. The empirical extremal dependence behaviour must there-

fore be explored and the most appropriate copula function selected to model the

dependence. This extremal dependence behaviour can be quantified using two mea-

sures, introduced by Coles et al. (1999). These measures are defined as

�(u) = Pr(V > u|U > u) for 0  u  1 (4.1)

�̄(u) =
2logPr(U > u)

logPr(U > u, V > u)
� 1 for 0  u  1 (4.2)

The measure �(u) 2 [0, 1], also known as the Extremal Dependence Coe�cient,

represents the conditional probability of V being extreme given U is extreme. If the

asymptotic limit of �(u) is zero, as u ! 1, U and V are said to be asymptotically

independent, while if this limit is non-zero, U and V are said to be asymptotically

dependent.
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Figure 4.7. (a) Scatter plots of (U, V ) simulated from bivariate copula functions 1-4
(defined above) where ⇢ = 0.6 and r = 5, and (b) Contour plots of the associated
copula functions.

Denote � = limu!1

�(u), then when variables are asymptotically independent � = 0

and is therefore unable to provide information on the relative strength of depen-

dence within this class (Coles et al., 1999). To overcome this Coles et al. (1999)
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introduce the non-vanishing extremal dependence measure �1 < �̄(u)  1. De-

note �̄ = limu!1

�̄(u) then the complete pair (�, �̄) is required as a summary of

extremal dependence (Coles et al., 1999): (� > 0, �̄ = 1) represents asymptotic

dependence, and the value of � measures the strength of asymptotic dependence, or

(� = 0, �̄ < 1) represents asymptotic independence, and the value of �̄ represents

the strength of the non-asymptotic dependence.

The extremal dependence measures, �(u) and �̄(u), can be defined in a number

of ways, aiding in calculating the asymptotic limit for the four copula functions

previously introduced:

�(u) = Pr(V > u|U > u) for 0  u  1

=
Pr(V > u, U > u)

Pr(U > u)

=
C̄(u, u)

1� u

=
1� 2u+ C(u, u)

1� u

= 2� 1� C(u, u)

1� u

⇡ 2� log(C(u, u))

log(u)
as u ! 1

�̄(u) =
2logPr(U > u)

logPr(U > u, V > u)
� 1 for 0  u  1

=
2log(1� u)

logC̄(u, u)
� 1 (4.3)

where C̄(u, v) = Pr(U > u, V > v) = 1 � u � v + C(u, v) is known as the survivor

function. The extremal dependence property can therefore be identified for each of

the four copula functions by observing the behaviour of �(u) and �̄(u) as u ! 1:

1. Bivariate Independent Copula:

C̄(u, u) = (1� u)2

�(u) = (1�u)2

1�u
= 1� u ! 0 as u ! 1

�̄(u) = 2log(1�u)
log((1�u)2)

� 1 = 0 < 1

(� = 0, �̄ < 1) ) Asymptotic independence

2. Bivariate Gaussian Copula:

C̄(u, u) ⇠ c⇢(�log(1� u))⇢/(1+⇢)(1� u)2/(1+⇢), (Coles et al., 1999)

where c⇢ = (1 + ⇢)3/2(1� ⇢)1/2(4⇡)�⇢/(1+⇢)

�(u) =
¯C(u,u)
1�u

! 0 as u ! 1

�̄(u) = 2log(1�u)

log

¯C(u,u)
� 1 = ⇢ < 1 as u ! 1, giving a useful interpretation of �̄
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(� = 0, �̄ < 1) ) Asymptotic independence

3. Bivariate Gumbel Copula:

�(u) ⇡ 2� (2log(u)r)1/r

log(u)
= 2� 21/r > 0

C(u, u) = exp(((�2log(u))r)1/r) = u�2

�̄(u) = 2log(1�u)
log(1�2u+u�2

)

� 1 = 2 log(1�u)
log((1�u)2u2

)

� 1 ! 1 as u ! 1

(� > 0, �̄ = 1) ) Asymptotic dependence

4. Bivariate Perfectly Dependent Copula:

C̄(u, u) = 1� 2u+ u = 1� u

�(u) = 1�u
1�u

= 1 > 0

�̄ = 2 log(1�u)
log(1�u)
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Figure 4.8. Extremal dependence measures (a) �(u), (b) �̄(u) for u 2 [0, 1] associ-
ated with copula functions 1-4.

The extremal dependence measures, �(u) and �̄(u) for u 2 [0, 1], for these four cop-

ula functions are displayed graphically in Figure 4.8. The di↵ering behaviour in the

asymptotic limit of the measures is apparent, with the independent and Gaussian

copulas characterising asymptotic independence (� = 0, �̄ < 1) and the Gumbel and

perfectly dependent copulas characterising asymptotic dependence (� > 0, �̄ = 1) .

These extremal dependence measures can be calculated empirically for pairs of lo-

cations to investigate the asymptotic dependence in footprint wind gust speeds,

allowing for the selection of a suitable copula function that represents the same

behaviour.
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4. Bivariate modelling of windstorm footprints

Figure 4.9. Empirical copula and empirical dependence measures �(u) and �̄(u) for
u 2 [0, 1], for London paired with 3 other European cities.

Figure 4.9 shows the empirical copula (F̂
1

(X
1

) against F̂
2

(X
2

), where F̂ is the em-

pirical cumulative distribution function) and empirical estimations of �(u) and �̄(u),

for wind gusts at London (X
1

) paired with three other European cities: Amsterdam,

Berlin and Paris (X
2

). Referring back to Figure 4.8, it is clear from the shape of

�(u) and �̄(u) that wind gusts at these pairs of locations are neither independent

nor perfectly dependent. There is an indication of asymptotic independence since in

all cases �̄ < 1 and the curve of �(u) ! 0 as u ! 1, resembling the Gaussian cop-

ula in Figure 4.8. These results are representative of pairs of locations throughout

the domain. However, the asymptotic limit of these measures is needed to identify

asymptotic independence or dependence and cannot be found empirically due to the

restricted sample size and the rarity of extreme events in the data set.

These limits can be estimated using a parametric bivariate model derived by Ledford

and Tawn (1996), introduced in Section 2.2.3. This is a bivariate tail model that is

100



4. Bivariate modelling of windstorm footprints

able to represent both extremal dependence classes. Let Z
1

and Z
2

denote X
1

and

X
2

transformed to unit Fréchet margins, Pr(Z
1

 z) = Pr(Z
2

 z) = exp(�1/z).

The joint survivor function for Z
1

and Z
2

takes the form

Pr(Z
1

> r, Z
2

> r) ⇠ L(r)p1/⌘ (4.4)

for large r (Coles et al., 1999), where p = Pr(Z
1

> r) = Pr(Z
2

> r), 1

2

 ⌘  1 is a

constant and L(r) is slowly varying function (i.e. L(tr)/L(r) ! 1 as r ! 1 for all

fixed t > 0).

The parameter ⌘, named the coe�cient of tail dependence by Ledford and Tawn

(1996), characterises the nature of the asymptotic dependence and L represents the

relative strength of dependence for a given ⌘. Exact independence occurs when

⌘ = 1

2

and L(r) = 1, and perfect dependence when ⌘ = 1 and L(r) = 1.

By Eqn (4.4) and (4.12) and following Coles et al. (1999):

�(u) ⇠ L(u)(1� u)1/⌘�1

�̄(u) =
2log(1� u)

logL{(1� u)�1}+ 1

⌘
log(1� u)

� 1 (4.5)

! 2⌘ � 1 as u ! 1

and so �̄ = 2⌘�1. If ⌘ = 1 and L(r) ! c as r ! 1, with 0 < c  1, (� = c, �̄ = 1),

the variables are asymptotically dependent of degree c (Coles et al., 1999). Alter-

natively, if ⌘ < 1, (� = 0, �̄ = 2⌘� 1), the variables are asymptotically independent

with non-asymptotic dependence of degree 2⌘ � 1.

As an aside, this model is not suitable for modelling the dependence in the footprint

wind gust data because the theory is restricted to the bivariate case and therefore

cannot be extended to model the whole domain. However, since the model is able

to represent both asymptotic dependence and independence, the ⌘ parameter esti-

mated using this model can be used to identify which class of asymptotic behaviour

is present in the data.

Ledford and Tawn (1996) derive a method for estimating ⌘ using the joint survivor

function along the diagonal, equivalent to the univariate distribution of variable

T = min{Z
1

, Z
2

}, known as the structure variable. Then Pr(T > r) = Pr(Z
1

>

r, Z
2

> r) and the distribution of the exceedance of T above some a high threshold

w satisfies

Pr(T > w + t|T > w) ⇠ L(w + t)

L(w) (1 + t/w)�1/⌘ ⇠ (1 + t/w)�1/⌘
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4. Bivariate modelling of windstorm footprints

since L is a slowly varying function. This can be expressed in terms of the GPD,

giving

Pr(T > w + t|T > w) ⇠ (1 + ⇠t/�)�1/⇠

where ⇠ = ⌘ and � = ⌘w, and ⌘ is therefore estimated as the shape parameter of

this univariate GPD by maximum likelihood.

Alternatively, here ⌘ is estimated as in Ferro (2007), who uses the Ledford and Tawn

(1996) model in the application of forecast verification of rare, extreme weather

events. The original variables can be transformed to exponential margins: Zj =

�log(1 � F̂j(Xj)) and Pr(Z
1

 z) = Pr(Z
2

 z) = 1 � exp(�z). Realisations

Ti = min{Z
1i, Z2i} are constructed from the data {(Z

1i, Z2i) : i = 1, ..., n}, where
here n = 5730, the number of windstorm footprint wind gust speeds at each loca-

tion, and the exceedance of Ti above a high threshold w is well approximated by a

Poisson process. The probability of Ti exceeding threshold t � w therefore has the

form

Pr(Ti > t) =
1

n
exp



�
✓

t� ↵

⌘

◆�

for t � w (4.6)

where ↵ is a location parameter and 0 < ⌘  1 is a scale parameter which, as before,

is the coe�cient of tail dependence with the same properties and interpretation as

in Ledford and Tawn (1997). These parameters can be estimated by maximising the

likelihood

L(⌘,↵) = exp

⇢

�exp



�
✓

w � ↵

⌘

◆��

Y

i:Ti>w

1

⌘
exp



�
✓

Ti � ↵

⌘

◆�

(4.7)

This maximisation can be performed analytically to give an estimate of ⌘ and ↵.

⌘̂ = min

(

1,
1

m

X

i:Ti>w

(Ti � w)

)

(4.8)

↵̂ = w + ⌘̂log(m) (4.9)

where m is the number of Ti exceeding w.

As in Ledford and Tawn (1997) the asymptotic dependence behaviour between vari-

ables is examined by observing maximum likelihood estimates and profile likelihood

based confidence intervals for the coe�cient of tail dependence, ⌘, over a range of

values of structure variable threshold w. Taking the same approach as Ledford and

Tawn (1996), two variables are said to be asymptotically dependent if the line ⌘ = 1

is contained within these confidence intervals for a majority of the range w, other-
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wise the variables are asymptotically independent.

For a given threshold w, the 100(1� a)% profile likelihood confidence interval for ⌘

is the set of values ⌘
0

such that the two-sided test of the null hypothesis H
0

: ⌘ = ⌘
0

would not be rejected at the a significance level. The value of ⌘
0

is allowed to ex-

ceed 1 to give a non-truncated confidence interval. The associated likelihood ratio

test statistic, calculated using Eqn (4.7) is 2(logL(⌘̂, ↵̂)� logL(⌘
0

, ↵̂
0

)), where ⌘̂ and

↵̂ are the maximum likelihood estimates from the full model and ↵̂
0

is the maxi-

mum likelihood estimate of ↵ when ⌘ = ⌘
0

. The likelihood ratio test statistic is

asymptotically chi-square distributed and the null hypothesis is true if and only if

2(logL(⌘̂, ↵̂)� logL(⌘
0

, ↵̂
0

)) < �2

1�a(1)

, logL(⌘
0

, ↵̂
0

) > logL(⌘̂, ↵̂)� �2

1�a(1)/2

where �2

1�a(1) is the 1� a quantile of the �2 distribution with 1 degree of freedom.

Towe et al. (2013) use a similar, likelihood ratio test approach to identify the class

of extremal dependence between storm peak significant wave height, wind speed

and surface level pressure in the Northern North sea, based directly on the Ledford

and Tawn (1996) model, testing �̄ = 1 v �̄ < 1. They note that the maximum

likelihood estimates of �̄ will depend on the choice of threshold w. They exercise

careful consideration for their choice of threshold and present the results for when

the 80% quantile is used. Here, however, the results will be presented for a range of

w, giving a more complete picture of the test for extremal dependence.

Figure 4.10 shows the maximum likelihood estimates for ⌘ for the pairs of loca-

tions in Figure 4.9 (top panel) and for London, Amsterdam and Paris paired with a

neighbouring location with separation distance ⇠ 25km (bottom panel). The neigh-

bouring extremal dependence behaviour is presented because the closest locations

will have the strongest dependence. The non-neighbouring locations are asymptoti-

cally independent since over the range of structure variable thresholds used, the line

⌘ = 1, corresponding to asymptotic dependence, is not within the 95% profile likeli-

hood confidence intervals for estimated ⌘. This conclusion is consistent throughout

the domain for all pairs of non-neighbouring locations tested. There is a stronger

dependence between neighbouring locations as would be expected; however, over

most of the range of structure variable thresholds used, the line ⌘ = 1 is still not

within the 95% profile likelihood confidence intervals for estimated ⌘. Figure 4.10

(f), does however suggest Paris and the neighbouring location may be asymptoti-

cally dependent, suggesting the assumption of asymptotic independence throughout

the domain may be incorrect in a small number of cases.
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Figure 4.10. Maximum likelihood estimates (solid) and 95% profile likelihood con-
fidence intervals (dashed) of ⌘ for structure variable threshold w in the range of the
0.5 � 1 quantile of T for London paired with (a) Amsterdam, (b) Berlin and (c)
Paris, and neighbouring locations paired with (d) London, (e) Amsterdam and (f)
Paris (separation distance ⇠ 25km).

So which type of dependence model should be used to model footprint wind gust

speeds? When modelling extremes, such as windstorm footprint wind gusts, it is

preferable to use extreme value copulas because they satisfy properties of max-

stability, allowing for extrapolation beyond the observational range. This class of

models, however, assumes asymptotic dependence or complete independence be-

tween variables and is therefore not suitable for modelling the dependence in wind

gust speeds which have been found to be dominantly asymptotically independent.

The Ledford and Tawn (1996) model is able to represent both asymptotic depen-

dence classes and satisfies max-stability, however, as previously mentioned is re-

stricted to the bivariate case and only applicable when both variables are large.

The conditional model developed by He↵ernan and Tawn (2004) overcomes these

issues and allows for the modelling of both extremal dependence classes, in a mul-

tivariate setting, when just one of the variables is large. However, in order to ex-

tend the He↵ernan and Tawn (2004) model to model the whole European domain,

containing J = 14872 locations, 4 parameters must be estimated for each pair of

locations, which would be extremely computationally expensive. For simplicity and

based on the test for extremal dependence presented in Figure 4.10, which identified

that asymptotic independence dominates throughout the region, an asymptotically

independent copula approach will be used to model the bivariate dependence in

windstorm footprint wind gust speeds.
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4. Bivariate modelling of windstorm footprints

The Gaussian copula imposes asymptotic independence. This copula does not sat-

isfy max-stability, however, as discussed in Section 2.2.3, it has been used to model

asymptotically independent extremes in the literature (Renard and Lang, 2007; Bor-

tot et al., 2000). Bortot et al. (2000) demonstrated that for modelling extremes

that are asymptotically independent the multivariate Gaussian copula model is ro-

bust, has simple diagnostics, easily interpretable parameters and extends straight-

forwardly to higher dimensions. In addition, Bortot et al. (2000) carry out a sim-

ulation study to examine the performance of the bivariate Gaussian copula model,

fit to the upper tail of the data, relative to other tail models including the Gum-

bel model. They conclude that for asymptotically independent parent populations

the Gaussian tail model is su�ciently flexible to provide accurate inferences for tail

probability estimates, relative to the sampling uncertainty in such estimates and,

even for asymptotically dependent parent populations, the estimation error of the

Gaussian tail model is acceptably small. This suggests that, even if some pairs of

neighbouring locations are asymptotically dependent, the Gaussian copula should

provide a reasonable fit.

The data are transformed to standard Gaussian margins using the marginal left-

truncated GEV distribution fitted to each location, a method known as Gaussian

anamorphosis, and treated as multivariate Gaussian. The dependence between each

pair of locations is then modelled as the correlation between the left-truncated stan-

dard Gaussian variables. This is similar to the novel multivariate Gaussian tail

model developed by Bortot et al. (2000), derived from the joint tail of a multivari-

ate Gaussian distribution with marginal transformation based on the GPD.

Since the dependence between locations is modelled as the correlation between stan-

dard Gaussian variables, it is directly relatable to the correlation function used in

geostatistics which models the dependence in the spatial field as a function of sep-

aration distance and direction. Extending the model to cover the whole domain is

greatly simplified if the dependence can be represented in this geostatistical way.

The resulting GEV-Gaussian model is defined on the region (v
1

,1)⇥(v
2

,1), where
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both variables are large, and is specified as

(X
1

, X
2

)T = (F�1

1

(�(Y
1

)), F�1

2

(�(Y
2

)))T

(Y
1

, Y
2

)T ⇠ MVN(0,⌃)

⌃ =

✓

1 ⇢

⇢ 1

◆

Fj(x) = (1� �j) + �j

✓

Gj(x)�Gj(vj)

1�Gj(vj)

◆

for x > vj

�j = 1� F̂j(vj)

Gj = GEV (µj, �j, ⇠j), i.e. Gj(x) = exp

(

�


1 + ⇠j

✓

x� µj

�j

◆�

1/⇠j
)

Bonazzi et al. (2012) used the Gumbel copula to model the dependence in footprint

wind gust speeds at pairs of locations. The Gumbel copula belongs to the family

of multivariate extreme value copulas (Davison et al., 2012) and therefore satisfies

the max-stability property. The Gumbel copula, however, assumes asymptotic de-

pendence between variables which Figure 4.10 suggests is an incorrect assumption.

The resulting GPD-Gumbel model is applicable when one varibale is large and is

specified as

(X
1

, X
2

)T = (H�1

1

(U
1

), H�1

2

(U
2

))T

C(u
1

, u
2

) = Pr(U
1

 u
1

, U
2

 u
2

) = exp{�((�logu
1

)r + (�logu
2

)r)1/r}

Hj = GPD(↵j, �j) i.e. Hj(x) = 1�
✓

1 +
↵j(x� �j)

�j

◆�1/↵j

4.4.2. Bivariate dependence model fitting

Let Y
1

and Y
2

denote the Gaussian transformed wind gust speeds at locations s
1

and s
2

respectively, that is

Y
1

= ��1(F
1

(X
1

)) for X
1

> v
1

Y
2

= ��1(F
2

(X
2

)) for X
2

> v
2

where � is the standard Gaussian cumulative distribution function and F
1

and F
2

are the marginal left-truncated GEV cumulative distribution functions fitted to wind

gust speeds at locations s
1

and s
2

, X
1

and X
2

respectively.

The Gaussian copula has one parameter, ⇢, the correlation between Y
1

and Y
2

.

Since these variables are transformed from the data above a threshold, Xj > vj,

they too must be greater than a threshold, Yj > ⌫j where ⌫j = ��1(Fj(vj)). In-

106



4. Bivariate modelling of windstorm footprints

ference for this model is made complicated by the fact that the bivariate pair may

exceed the specified threshold in just one of its components. To overcome this a

truncated likelihood method is used and ⇢ is estimated by maximising

L(⇢; (y
11

, y
21

), ..., (y
1n, y2n)) =

Y

Y1>⌫1,Y2>⌫2

�(y
1i, y2i)

p
(4.10)

where � is the standard bivariate Gaussian density function with correlation ⇢ and

p = Pr{X
1

> v
1

, X
2

> v
2

} = Pr{Y
1

> ⌫
1

, Y
2

> ⌫
2

} =

Z 1

⌫2

Z 1

⌫1

�(y
1i, y2i)dy1dy2

= 1� �(⌫
1

)� �(⌫
2

) + �(⌫
1

, ⌫
2

)

where �(⌫
1

, ⌫
2

) is calculated using a numerical integration algorithm (Genz, 1992).

This method therefore only uses data that are above the left truncation threshold

for both locations, with the justification being that these are the only data that have

been accurately transformed to standard Gaussian.

The truncated likelihood method for estimating ⇢ imposes the assumption of a bi-

variate Gaussian distribution on the data. Alternatively, ⇢ can be estimated using

the model developed by Ledford and Tawn (1996) which does not impose any dis-

tributional assumptions. By Eqn 4.5, �̄ = 2⌘ � 1 and it was shown that �̄ ⇠ ⇢ for

bivariate Gaussian random variables, therefore ⇢ can be estimated as ⇢ = 2⌘ � 1,

where ⌘ is determined from the Ledford and Tawn (1996) model.

This method, however, results in a biased estimate of ⌘ and therefore ⇢, as shown

by Ledford and Tawn (1996) and results from a simulation study shown in Table

4.1. The simulations involved 1000 repetitions of samples of 2500 points from the

bivariate Gaussian distribution and the parameter ⇢̂Led = 2⌘̂ � 1 is estimated using

the Ledford and Tawn (1996) methodology with structure variable threshold, w,

equal to the 95% quantile of the simulated variable, as in Ledford and Tawn (1996).

Table 4.1 shows the median and standard deviation (in brackets) of the bias in the

estimated ⇢̂Led, for the bivariate normal dependence structure for a range of corre-

lations, ⇢. The truncated likelihood method for estimating ⇢̂Trunc, Eqn (4.10), is

also applied to the same simulated data to compare the biases in the two methods.

In addition the simulation study is repeated using a bivariate Gumbel dependence

structure for a range of dependence parameters r = 1/↵ for comparison, as in Led-

ford and Tawn (1996). Since ⇢� ⇢̂ = 2(⌘� ⌘̂), the bias in ⇢ is calculated based on the

bias in ⌘ for the two models where the true ⌘ = 1 because the Gumbel dependence

structure imposes asymptotic dependence.

When the simulated data has a Gaussian dependence structure, similarly to Led-
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⇢ 0.00 0.25 0.50 0.75 0.9
⇢� ⇢̂Led 0.006 (0.041) 0.058 (0.047) 0.098 (0.050) 0.140 (0.049) 0.148 (0.040)
⇢� ⇢̂Trunc -0.003 (0.061) 0.009 (0.069) -0.003 (0.050) 0.000 (0.019) 0.000 (0.006)

↵ 0.99 0.95 0.85 0.6 0.4
⇢� ⇢̂Led 0.946 (0.046) 0.738 (0.053) 0.410 (0.060) 0.134 (0.047) 0.100 (0.035)
⇢� ⇢̂Trunc 0.698 (0.018) 0.658 (0.019) 0.573 (0.019) 0.393 (0.016) 0.232 (0.011)

Table 4.1.. Median and standard deviation (in brackets) of the bias in the estimated
correlation parameter ⇢̂, for the bivariate Gaussian dependence structure with cor-
relation ⇢ and then Gumbel dependence structure with r = 1/↵. The first rows of
the two dependence structure studies relate to the method of estimating ⇢ from ⌘
in the Ledford and Tawn (1996) model and the second row relates to the truncated
likelihood method for estimating ⇢.

ford and Tawn (1996), a positive bias is identified in ⇢ � ⇢̂Led. This is because the

model is based on asymptotic theory in the limit as w ! 1 and using a lower

threshold, necessary to ensure the model is being fit to enough data, results in the

higher order terms neglected in Eqn (4.4) being non-negligible (Ledford and Tawn,

1996). Increasing the threshold would reduce the bias but increase the standard

deviations of the estimated parameter. The standard deviations associated with

⇢̂Led are similar for all values of ⇢. The bias associated with the truncated likelihood

method, ⇢� ⇢̂Trunc, is much lower and decreases to approximately 0 as ⇢ increases.

The largest standard deviations associated with ⇢̂Trunc are similar to those for ⇢̂Led

but become much smaller as ⇢ increases.

When the simulated data has a Gumbel dependence structure, again as was seen by

Ledford and Tawn (1996), the bias associated with ⇢̂Led is small for lower values of

↵, when the dependence between variables is strong. However, as ↵ increases, corre-

sponding to a weaker degree of asymptotic dependence, the estimates of ⇢ are more

biased. Again, Ledford and Tawn (1996) note that this e↵ect is due to the structure

variable threshold being too low. The bias associated with the truncated likelihood

method, ⇢ � ⇢̂Trunc, is lower than that for the ⇢̂Led method when ↵ is large. The

bias decreases as ↵ decreases because the correlation is getting stronger, however

this decrease in the bias smaller than for ⇢̂Led because the asymptotic dependence

is not accounted for.

This simulation study shows that the truncated likelihood method of estimated

⇢ is preferable when the underlying process is asymptotically independent or very

weakly asymptotically dependent and will therefore be used here.

Fitting the Gumbel copula for the Bonazzi et al. (2012) copula model, requires

the estimation of the dependence parameter, r. Again, the marginal GPDs are fit
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above a threshold, complicating the inference of the model. For consistency with

the methodology used by Bonazzi et al. (2012), a censored likelihood method, as

defined in chapter 8 of Coles (2001) is used to estimate r at the same time as the

GPD marginal parameters. The overall bivariate likelihood is a product of four par-

tial likelihoods that account for both components being above or below thresholds,

or one component above and the other below. For example if X
1

> �
1

and X
2

 �
2

,

there is information in the data concerning the marginal X
1

component, but not the

X
2

component so the likelihood contribution for such a point is:

Pr{X
1

= x
1

, X
2

< �
2

} =
@H

@x
1

�

�
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Figure 4.11. The best fit (a) Gaussian and (b) Gumbel bivariate copula functions
for London paired with Amsterdam and (c) shows the di↵erence between these
functions. The functions are displayed for u and v greater than 0.7 because of the
truncated nature of the models.

Figure 4.11 shows the best fit Gaussian and Gumbel bivariate copula models for

wind gust speeds in London and Amsterdam. The Gaussian dependence parameter

is estimated to be ⇢ = 0.788 and the Gumbel dependence parameter r = 1.942. The

resulting functions appear to be very similar in (a) and (b), however the di↵erence

between the functions (Gumbel copula surface minus the Gaussian copula surface),

shown in (c) displays how the Gumbel copula exhibits a stronger dependence in the

extremes of the variables, due to the assumption of asymptotic dependence.

4.4.3. Bivariate dependence model validation

The challenge of applying goodness-of-fit (GoF) tests for copula models relates to

the general di�culty of testing multivariate probability densities or distribution

functions (Schoelzel and Friederichs, 2008). While the evaluation of univariate dis-

tributions is well documented, the study of GoF tests for copula models has emerged

only recently as a challenging inferential problem (Berg, 2009). Some examples of
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4. Bivariate modelling of windstorm footprints

goodness-of-fit (GoF) tests for copula models in the literature include the multidi-

mensional �2-tests, as in Fermanian (2005), which are simple to apply but require

arbitrary probability binning and an adequate sample size (Schoelzel and Friederichs,

2008). More refined GoF tests for copula models are based on the Probability Inte-

gral Transform that project the multivariate problem into a univariate distribution

allowing standard univariate tests to be applied (Schoelzel and Friederichs, 2008).

Since the field is still in its infancy, guidelines and recommendations are sparse and

Mikosch (2006) goes as far as to say that the best GoF tests for copulas are still

unresolved.

Rather than apply these generic copula GoF tests, the models are tested to ensure

they are fit for purpose, which here means having the correct extremal dependence

relationship between pairs of locations. Comparing the Gaussian and Gumbel cop-

ula models, which have di↵erent extremal dependence representations, will give a

further indication of which is most appropriate for representing the dependence in

the data.

Firstly, the assumed extremal dependence relationships of the Gaussian and Gumbel

copula models will be validated by comparing the extremal dependence measures

�(u) and �̄(u) evaluated empirically and using each of the models. These measures

are evaluated using a simulation approach for the Gaussian model, and directly from

the copula function for the Gumbel model (see Appendix A.1).

The Ledford and Tawn (1996) model (Eqn (4.4)) will be included in the comparison

for interest. This model can represent the diagonal of a copula, i.e. C(u, v) for

u = v, and will be referred to as the power law copula. Suppose Pr(X
1

 x
1

) =

Pr(X
2

 x
2

) = u. Let Z
1

and Z
2

denote X
1

and X
2

transformed to Exponential

margins, as in Ferro (2007), and T = min{Z
1

, Z
2

}, then, by Eqn (4.6):

�(u) = Pr(X
2

> x
2

|X
1

> x
1

)

= Pr(X
1

> x
1

, X
2

> x
2

)/Pr(X
1

> x
1

)

= Pr(T > �log(1� u))/(1� u)

=
1

n
exp

✓

↵

⌘

◆

exp

✓

log(1� u)

⌘

◆

/(1� u)

=
1

n
exp

✓

↵

⌘

◆

(1� u)1/⌘�1 (4.11)
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�̄(u) =
2logPr(X

1

> x
1

)

logPr(X
1

> x
1

, X
2

> x
2

)
� 1

=
2log(1� u)

log
⇣

1

n
exp

⇣

↵
⌘

⌘⌘

+ log((1� u)1/⌘)
� 1 (4.12)

The parameters ⌘ and ↵ are estimated using a structure variable threshold probabil-

ity of 0.85. Ferro (2007) explains how the chosen threshold should be high enough

that the asymptotic model is valid but low enough that enough data are used to es-

timate the parameters. The good fit of the power law copula in Figure 4.12 indicates

that this threshold is appropriate
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Figure 4.12. Extremal dependence measures evaluated empirically and using the
Gaussian, Gumbel and power law copulas for London paired with (a)/(d) Amster-
dam, (b)/(e) Berlin and (c)/(f) Paris. The measure �(u) is shown in the top row and
�̄(u) in the bottom row. The 95% confidence intervals are based on parametric boot-
strapping for the Gaussian copula (see Appendix A.1) and percentile bootstrapping
for the Gumbel copula and the profile likelihood for the power law copula.

From Figure 4.12 it is clear that the Gaussian copula is more successful than the

Gumbel copula at capturing the empirical bivariate dependence structure, particu-

larly in the extremes. The Gumbel copula, which assumes asymptotic dependence,

is overestimating the conditional probability of joint extremes while the Gaussian

copula, which assumes asymptotic independence, captures the empirical relationship

well. The Gaussian and power law copulas are almost identical, further indicating

that the Gaussian copula is performing well and extremal independence is a valid as-
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4. Bivariate modelling of windstorm footprints

sumption for the model. The power law copula also shows that the limu!1

�(u) = 0

for all three pairs, again indicating extremal independence.

Figure 4.12 validates the fit of the copula models along the diagonal of the cop-

ula, but what if damage occurs in one location at a lower quantile threshold than

another? Berlin and Paris, for example, experiences lower winds than London, on

average, because most storms follow a track further to the North-West of Europe.

Suppose that Berlin and Paris are therefore less well adapted to strong winds so the

same hazard could exist in Berlin and Paris at a local quantile wind gust speed 5%

and 10% lower than in London respectively. Conversely, in general stronger wind

gust speeds are experienced in Amsterdam than London and the same hazard may

exist there when the quantile is 10% higher. Equivalent plots to those in Figure 4.12

with the Berlin quantile threshold 5% lower, and the Amsterdam quantile threshold

10% higher than London, are presented in Figure 4.13. The power law copula only

represents the diagonal of the copula and therefore cannot be included in this plot.

Figure 4.13. Extremal dependence measures evaluated empirically and using the
Gaussian and Gumbel copulas for London paired with Amsterdam, Berlin and Paris.
The measure �(uLondon, uOther) is shown in the top row (a)-(b) and �̄(uLondon, uOther)
in the bottom row (c)-(d), where uAmsterdam = uLondon+0.1, uBerlin = uLondon�0.05
and uParis = uLondon � 0.1. The 95% confidence intervals are based on parametric
bootstrap for the Gaussian copula (see Appendix A.1) and percentile bootstrapping
for the Gumbel copula.
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4. Bivariate modelling of windstorm footprints

From Figure 4.13 it can be seen that the Gaussian copula is performing equally

well on the o↵ diagonal of the copula. The Gumbel copula still over estimates the

dependence between London and Berlin, but it is performing better for London and

Paris and particularly well for London and Amsterdam. This is because the London

and Amsterdam and London and Paris quantile thresholds are 10% apart; therefore

extreme thresholds are not modelled in both locations at the same time and the

inappropriate assumption of asymptotic dependence does not have as much of an

a↵ect on the fit of the model. When the di↵erence in quantile threshold is only 5%,

in the case of London-Berlin, the model is high enough in the tail for both loca-

tions that the inappropriate assumption of asymptotic dependence is still causing

the Gumbel copula to over estimate the dependence between locations.

The extremal dependence measures are a function of the copula and are not af-

fected by the fit of the marginal distribution (shown in Appendix A.2). This means

that the results shown above are not sensitive to the accuracy of the fitting of the

marginal distributions.

4.5. Bivariate model validation

Both the left-truncated GEV marginal distributions and the Gaussian copula that

make up the GEV-Gaussian model have been shown to be a good fit to the data.

The model has the potential to be extended to the whole domain; therefore all that

remains is to validate the model as a whole to ensure it is able to realistically repre-

sent joint losses. In order to do this, two conceptual loss functions will be introduced

as a proxy for re/insurance loss. Again, the same validation will be applied to the

GPD-Gumbel model as a comparison.

The conceptual loss functions are defined as having the form:

L(X
1

, X
2

) = H(X
1

� t
1

) +H(X
2

� t
2

)

where t
1

and t
2

are high loss thresholds at each location and H(n) as a Heaviside or

indicator function H(n) = 1 if n > 0 and H(n) = 0 otherwise. For the first function

the loss threshold tj is the 98th percentile of climatology wind gust speed at location

sj, calculated from October-March 1979-2012, (Figure 3.3). For the second function

t
1

= t
2

= 25ms�1. The two conceptual loss functions will therefore be denoted L
98

and L
25

respectively.

These particular functions are used to represent loss based on the conclusions of
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Chapter 3 of this thesis. A number of storm severity measures were compared for

how well they represented insured loss. It was found that severity measures that

included the magnitude of the exceedance above the damage threshold (25ms�1) and

population density were less representative of insured loss than the severity measure

that characterised exceedance area only. The exceedance of the 98th percentile of

climatology wind gust speed is included because it is a loss threshold commonly

used in the literature (e.g., Klawa and Ulbrich 2003, Leckebusch et al. 2007, Pinto

et al. 2007).
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Figure 4.14. The Empirical bivariate distribution of wind gusts at London and
Amsterdam with regions A, B, C and D indicating where the bivariate conceptual
loss functions (a) L

98

and (b) L
25

take values 2, 1, 1 and 0 respectively.

The bivariate loss function takes the value of 0, 1 or 2 depending on the exceedance

of the high loss threshold. This is demonstrated graphically for London and Amster-

dam in Figure 4.14. Using these two di↵erent loss thresholds will validate how well

the bivariate model is able to realistically represent the data at di↵erent extremities

since the 25ms�1 threshold is generally further into the tail of the joint distribution

compared to the climatology percentile threshold. The conceptual loss distributions

are calculated empirically and using each of the bivariate models where, again, a

simulation method is used for the GEV-Gaussian model (see Appendix A.1), shown

in Figure 4.15

Figure 4.15 clearly shows that the GEV-Gaussian model is better at realistically

representing joint losses for these pairs of locations. This further indicates that the

dependence in extremes should be modelled using an asymptotically independent

model. The GPD-Gumbel model overestimates the probability of loss equalling 0

for L
98

and L
25

and 2 for L
25

and consistently underestimates the probability that

loss equals 1. This indicates that within this model the dependence is too strong

in the extremes, due to the assumption of asymptotic dependence. This analysis

was repeated using a number of other pairs of locations, with the same resulting
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4. Bivariate modelling of windstorm footprints

Figure 4.15. Empirical, GEV-Gaussian model and GPD-Gumbel model loss distri-
butions for (a)-(c) conceptual loss function L

98

and (d)-(f) conceptual loss function
L
25

, for London paired with (a)/(d) Amsterdam, (b)/(e) Berlin and (c)/(f) Paris.

conclusions.

To gain a greater understanding of how well these models realistically represent

joint losses throughout the domain the loss distributions associated with the two

conceptual loss functions are presented for London paired with all other locations

in the domain. This is done in terms of the measures

�t = Pr(X
2

> t
2

|X
1

> t
1

) = a/(a+ c)

�̄t =
2logPr(X

1

> t
1

)

logPr(X
1

> t
1

, X
2

> t
2

)
� 1 =

log((a+ c)/n)

log(a/n)
� 1

where a and c are the number of points in sections A and C of the diagram in Figure

4.14 (a) and (b) for L
98

and L
25

respectively and n is the total number of points.

These measures are used because it can be shown that the loss distribution can

be represented in terms of �t (see Appendix A.3) and the non-vanishing extremal

dependence measure �̄t will give information about the dependence between loca-

tions when �t falls to zero, therefore aiding in the validation of the models.

The resulting measures are denoted �
98

and �̄
98

for the L
98

conceptual loss function

and �
25

and �̄
25

for the L
25

conceptual loss function. As before, these measures
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are estimated by a simulation method for the GEV-Gaussian model (see Appendix

A.1). The presented results are representative of pairs of locations throughout the

domain.

Figure 4.16. The di↵erence between empirical and modelled �
98

for (a) the GEV-
Gaussian model and (b) the GPD-Gumbel model and the di↵erence between empir-
ical and modelled �̄

98

for (c) the GEV-Gaussian model and (d) the GPD-Gumbel
model, for London paired with all other locations over land.

Figures 4.16 and 4.17 show that, for both conceptual loss functions, the GEV-

Gaussian model out performs the GPD-Gumbel model. The GEV-Gaussian model

slightly over estimates the conditional dependence in losses represented by �t and

�̄t for the higher threshold loss function L
25

for nearby locations with some small

areas are underestimated. The lower threshold loss function L
98

is very well rep-

resented by the GEV-Gaussian model with only a slight underestimation of �̄
98

in

some places. This indicates that the GEV-Gaussian model is, in general, able to

realistically represent joint losses and the conditional dependence in losses at pairs

of locations throughout the domain.

The GPD-Gumbel model underestimates the conditional dependence in losses rep-

resented by �t and �̄t for the lower threshold loss function, L
98

, but overestimates

this dependence for the higher threshold loss function, L
25

. This is consistent with
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Figure 4.17. As in Figure 4.16 but for �
25

and �̄
25

the over and under estimation of these measures in Figure 4.12. This is partic-

ularly evident in Figure 4.17 (d), where �̄
25

is greatly over estimated for London

paired with locations at a medium to large separation distance apart. Again, this

is showing how the asymptotic dependence assumption of Gumbel copula results in

overestimation of the dependence in the joint extremes.

4.6. Conclusions

This chapter presents the development and validation of a bivariate model for ex-

tremal windstorm footprint wind gust speeds, referred to as the GEV-Gaussian

model. Various methods for modelling multivariate extremes were discussed and

compared here and in Section 2.2.3. The copula approach was chosen due to its

simplicity, flexibility and the potential for it to be extended to more dimensions.

This copula methodology allows the joint distribution of two variables to be repre-

sented in terms of the marginal distributions of each variable and a copula function

which models the dependence between the variables when the margins are trans-

formed to the same scale.
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Since the footprint wind gust speeds at a given location are a set of maxima, the

GEV distribution is an appropriate model for the marginal distributions. A left-

truncated GEV was shown to fit the data better in the upper tail of the distribution

and also ensured wind gust speeds were modelled as non-negative.

Infinitely many copula functions exist for modelling the dependence between vari-

ables. A copula selection investigation was presented, based on extremal depen-

dence behaviour. Using the method for identifying asymptotic independence or

dependence explained by Ledford and Tawn (1996), footprint wind gust speeds were

found to be asymptotically independent throughout the domain, with the possible

exception of some neighbouring locations. The Gaussian copula, which assumes

asymptotic independence, was therefore used to model the dependence within the

bivariate model. This copula method was chosen over the conditional He↵ernan

(2000) model due to simplicity. This Gaussian dependence model was validated and

shown to be a good fit to the data, confirming that more complex, flexible models

do not need to be used to accurately model the dependence between footprint wind

gust speeds.

The ability to realistically represent joint losses was validated by comparing the

empirical joint probability of loss with those evaluated using the model. This was

done for two conceptual loss functions with di↵ering loss thresholds for comparison.

The GEV-Gaussian model was shown to relatively realistically represent the joint

loss distributions for London paired with three other locations. The ability for the

model to represent the conditional dependence in losses for London paired with all

other locations over land was also investigated, again showing that the model is able

to realistically represent the relationship between losses at pairs of locations.

Throughout the GEV-Gaussian model was compared to the GPD-Gumbel model

formulation used by Bonazzi et al. (2012). This model assumes asymptotic depen-

dence and is therefore shown to overestimate the dependence in footprint wind gust

speeds and hence the probability of joint losses. This indicates that using a Gaus-

sian copula to model the dependence is preferred.

The Gaussian copula has other advantages in that it is easily extended to more

than two dimensions (as will be discussed in Sections 5.2) and, since the depen-

dence between locations is modelled as the correlation between standard Gaussian

variables, it is directly relatable to the correlation functions used in geostatistical

models.
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windstorm footprints

5.1. Introduction

In the previous chapter, a bivariate model for damaging windstorm footprint wind

gust speeds was presented as an initial step in footprint modelling. The bivariate

model was rigorously validated and was shown to represent realistic joint losses. The

bivariate model will now be extended to all land locations in the European domain,

allowing for the simulation of synthetic windstorm footprints over land with spec-

ified characteristics, determined by the parameters of the statistical model. This

footprint simulation model will be used in Chapter 6, in a sensitivity analysis exper-

iment to investigate which windstorm footprint characteristics are most damaging

or important for determining insured loss.

This footprint simulation model must correctly model dependence between loca-

tions. The model must be computationally inexpensive for simulation to ensure

that it can be used in the sensitivity analysis experiment which will require a large

number of synthetic footprints. As in the previous chapter, it is also essential that

the model is able to simulate synthetic footprints that realistically represent joint

losses. This chapter aims to address three main questions:

• How should the spatial dependence in wind gust speeds be modelled?

• Can a function of distance and direction capture the correlation structure of

wind gusts?

• Can the windstorm footprint model represent realistic losses across the do-

main?

The general modelling approach will first be introduced in Section 5.2. The model

specification, fitting and validation will then be presented, answering the questions

above and ensuring that the footprint simulation model is fit for purpose in the ways

specified above.
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5.2. General approach

The intended aim is to extend the bivariate GEV-Gaussian copula model for extreme

footprint wind gusts developed and validated in the previous chapter. This copula

model uses the left-truncated GEV distribution to model the marginal distribution

of wind gusts at each location and the bivariate Gaussian copula to model the

dependence between pairs of locations. A simple extension of this bivariate model

formulation would be to use a multivariate Gaussian copula to model the dependence

between a finite set of locations in the domain. The joint distribution of wind gust

speeds at J locations is then

Pr(X
1

 x
1

, X
2

 x
2

, ..., XJ  xJ) = F (x
1

, x
2

, ..., xJ)

= �{��1(F
1

(x
1

)),��1(F
2

(x
2

)), ...,��1(FJ(xJ));⌃}

= �(y
1

, y
2

, ..., yJ)

where � is the standard Normal cumulative distribution function, �J is the J-

dimensional multivariate standard Normal cumulative distribution function, Fj is

the left-truncated GEV cumulative distribution function, fit to wind gust speeds at

location sj above the truncation threshold vj and yj = ��1(Fj(xj)) are standard

Gaussian above the threshold ⌫j = ��1(Fj(vj). The dependence within the whole

domain is then determined by the covariance matrix for Gaussian transformed wind

gust speeds Y , with the (i, j)th entry

⌃ij = Cov(Yi, Yj)

=
q

Var(Yi)Var(Yj)Cor(Yi, Yj)

= Cor(Yi, Yj)

since, by definition, Var(Yj) = 1 for all j.

A few recent studies have adopted a multivariate copula approach including Davison

et al. (2012), who fit a variety of models to annual maximum rainfall data for 51

locations in Switzerland to investigate which are the most appropriate for modelling

extremal data. Another example is Bortot et al. (2000) who use a multivariate cop-

ula model with GPD margins and a Gaussian copula to model extreme sea-levels at

3 locations to investigate the probability of flooding. A multivariate copula model

is feasible in these examples because few locations are being considered. However,

the windstorm footprint data to be modelled here consists of 14872 locations (see

Section 2.3.1), resulting in a very large 14872⇥14872 covariance matrix, ⌃, which

would be poorly estimated and di�cult to simulate from.
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The computational cost can be greatly reduced by modelling the dependence be-

tween locations using a covariance function, C(·), a function of distance between

locations. This distance can be a measure of separation distance only or of both

the distance and direction of separation. The most common form for the covariance

function to take is for the dependence (i.e. correlation/covariance) between loca-

tions si and sj to decrease as the distance increases. For example, the correlation

may be thought to decay exponentially:

C(d) = exp

✓

�d

�

◆

where 1/� is the rate of exponential decay of the covariance with distance, d. The

parameters of covariance functions therefore have simple interpretations and can

be easily varied, simplifying the intended sensitivity study. This approach is a key

element of geostatistics.

Geostatistics is a large and rapidly developing domain of statistics, with standard

texts on the topic including Cressie (1993), Stein (1999), Wackernagel (2003), Baner-

jee et al. (2004), Schabenberger and Gotway (2005) and Diggle and Ribeiro (2007).

This field of statistics originated in the mining industry in the 1960s with initial

developments by Daniel G. Krige, a mining engineer in South Africa and Georges

Matheron, a French mathematician and geologist who created the Paris School of

Mines. The original aim was to predict ore grade for blocks of ore based on samples

from neighbouring blocks. Geostatistics is now accepted as the main method for

spatial data analysis in many disciplines (Haskard, 2007).

Davison et al. (2012) identify three common data types used in geostatistics: spa-

tial point processes, where the observation sites are treated as random; areal data,

where interpolation between observation sites may not be interpretable; and point-

referenced or geostatistical data, where the observations are at fixed sites, between

which interpolation makes sense. Footprint wind gust speeds are assumed to take

the form of geostatistical data with the centre of the 25km grid-cell used as the

location of wind gust speed associated with that grid-cell.

The basic format for univariate goestatistical data, as defined by Diggle and Ribeiro

(2007), is

(sj, yj), j = 1, ..., J

where sj identifies a spatial location, typically in two-dimensional space, and yj is a

scalar value of the measurement or response variable associated with location sj. If

n measurements of the variable exist at each location, yj becomes a vector of length
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n,

yj = (y
1j, y2j, ..., ynj).

The response variable is defined throughout a continuous study region, sj 2 D,

where the sampling design of the location sj is either deterministic (e.g. on a grid)

or independent of the process which generates yj (Diggle and Ribeiro, 2007). Each

y·j is a realisation of a random variable Yj whose distribution is dependent on the

value of the underlying continuous stochastic process Z(s) at location sj, which is

not directly observable (Diggle and Ribeiro, 2007).

The resulting geostatistical model has two elements: a real valued stochastic process

{Z(s) : s 2 D}, known as the signal; and a multivariate distribution for random

variable Y = (Y
1

, ..., YJ) conditional on Z(·), known as the response (Diggle and

Ribeiro, 2007).

The best explored approach to modelling point-referenced geostatistical data are

to suppose that Z(s) follows a Gaussian process (Davison et al., 2012). A Gaussian

spatial process {Z(s) : s 2 D} is a stochastic process with the property that for any

collection of locations s
1

, ..., sj 2 D the joint distribution of Z = {Z(s
1

), ..., Z(sj)}
is multivariate normal (MVN). The process is made up of two parts; the mean term,

µ(s) = E(Z(s)), which corresponds to the global or first-order behaviour and the

error term ✏(s) which captures the local, or second-order, behaviour through the pos-

itive definite covariance function, C(s, s0) = Cov{Z(s), Z(s0)} (Diggle and Ribeiro,

2007).

Let µZ be the J element mean vector with elements µ(sj) and ⌃Z be the J⇥J matrix

with elements ⌃Z(si, sj) = C(si, sj). Then Z(s) = µ(s)+ ✏(s) and ✏ ⇠ MVN(0,⌃Z)

so Z ⇠ MVN(µZ ,⌃Z). The covariance function is often called the covariogram

when in graphical form.

Figure 5.1 shows the empirical spatial covariogram for Gaussian transformed wind

gust speeds centred on London, Amsterdam and Berlin, i.e. C(s
0

, s0) where s
0

is

the nearest grid point to London, Amsterdam or Berlin. The dependence struc-

ture is generally similar for the three locations suggesting that representing the

dependence in the domain using a covariance function of separation distance may

be feasible. There appears to exist a larger correlation length in the west-east direc-

tions compared to the north-south direction suggesting that the dependence may be

a function of separation direction as well as distance. This is thought to be because

most windstorms move across the European region from west to east (Hanley and

Caballero, 2012). It is interesting to note that the covariance does not decay to
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5. Geostatistical modelling of windstorm footprints

Figure 5.1. Empirical correlation between (a) London, (b) Amsterdam and (c) Berlin
and all other land locations over land, plotted against distance in (d), (e) and (f)
respectively and for distance binned average correlation in (g), (h), (i) respectively.

zero but becomes negative for a number of pairs of locations with large separation

distances. This negative relationship can be interpreted physically as represent-

ing how an area of atmospheric low pressure creating strong cyclonic winds will

be balanced by a nearby area of high pressure, having weaker wind speeds. The

distance binned empirical correlations (Figure 5.1 (g)-(i)) do, however, decay to ap-

proximately zero for all three cases. When observing the same empirical correlation

plots for other locations in the domain, the spatial dependence structure is observed

to vary, particularly in the south of Europe, with locations having either larger or

smaller correlation ranges relative to those seen in Figure 5.1. However, it can be

argued that, since regions which experience higher wind gust speeds (see Figure

3.1), which are therefore more influential in ensuring the joint losses are modelled

correctly, i.e. north-west Europe, have a more consistent dependence structures,

there is potential for the use of a geostatistical covariance function for modelling

spatial dependence.
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5. Geostatistical modelling of windstorm footprints

The general approach will therefore be to model the spatial dependence in the

Gaussian transformed wind gust speeds using a geostatistical covariance function.

This methodology is preferred over the max-stable approach of modelling multivari-

ate spatial extremes because, as explained in the previous chapter, all max-stable

models assume asymptotic extremal dependence between locations, while using this

Gaussian dependence methodology to model the spatial dependence will correctly

impose asymptotic extremal independence between locations.

5.3. Marginal distributions

Marginal distribution specification, fitting and goodness-of-fit are as presented in

Section 4.3. Fitting the geostatistical spatial covariance function is complicated

because of missing values in the data. Therefore a slight variation to the approach

in Section 4.3 is used to produce the Gaussian transformed wind gust speeds to

which the covariance function is fitted. The left truncated GEV, which is used for

the margins, is only valid above a left truncation threshold, v, selected as being

the 60% quantile wind gust speed at each location. To ensure no missing values

are present in the data, wind gust speeds below the truncation threshold must also

be transformed to standard Gaussian. Gaussian transformed wind gust speeds at

location, sj, are therefore now created for wind gust speeds both above and below

the truncation threshold:

Yj = ��1(Fj(Xj))

for Fj defined as in Section 4.3:

Fj(x) =

8

<

:

F̂ (x) x  vj

(1� �j) + �j

⇣

Gj(x)�Gj(vj)

1�Gj(vj)

⌘

x > vj

where �j = 1 � F̂ (vj), F̂ is the empirical distribution function of Xj and Gj(x) is

the GEV distribution function with parameters µ, � and ⇠.

5.4. Modelling spatial dependence

5.4.1. Assumptions

Geostatistical approaches are based on the assumption of spatial second-order sta-

tionarity. A process is said to be second-order stationary if the mean is constant in
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5. Geostatistical modelling of windstorm footprints

space; µ(s) = µ for all s, and Cov{Z(s), Z(s0)} does not depend on the locations s

and s0, only the distance between them, d = s � s0, i.e. Cov{Z(s), Z(s0)} = C(d).

The variance of a second-order stationary process is also constant, �2 = C(0).

The Gaussian transformed footprint wind gust speeds Yj at each location sj are,

by definition, univariate standard Gaussian distributed if the left truncated GEV is

well specified, that is

Yj ⇠ N(0, 1) for j = 1, ..., J.

Figure 5.2. The empirical (a) mean and (b) the variance of Gaussian transformed
footprint wind gusts yj at each location sj over land within the model domain.

Figure 5.2 shows that the empirical mean and variance of the Gaussian transformed

footprint wind gusts are approximately equal to 0 and 1 respectively for most lo-

cations in the domain, with the mean in the range (0.003, 0.086) and the variance

in the range (0.895, 0.993). The greatest deviation from standard Gaussian is in

the north of Italy. Referring back to Figure 4.6, this is the region in which the

left-truncated GEV marginal distributions have a positive shape parameter, mean-

ing there is no upper limit to the distribution, because the empirical distribution is

made up of mainly low values and a small number of much greater extreme values

causing the fitted GEV tail to extend infinitely. Figure 5.1 suggests that the co-

variance could be a stationary function of separation distance and does not depend

strongly on the location. It can therefore be concluded that the mean, variance

and covariance structure are relatively constant throughout the domain, suggesting

second-order stationarity and standard normal behaviour. This also implies that the

mean trend surface part of the Gaussian process model can be ignored and since the
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variance throughout the domain is unity, the correlation and covariance functions

are synonymous.

As an aside, a weaker assumption, relied upon in classical geostatistical theory

(Matheron, 1974), is that of intrinsic stationarity which asserts that the increment

process Id = {Z(s)�Z(s+ d)} is stationary for all di↵erence vectors d 2 R2. Then

E(Z(s) � Z(s + d)) and E(Z(s) � Z(s + d))2 do not depend on s and the vari-

ogram, rather than the covariance function, is used to model the dependence in the

Gaussian field, defined as

�(d) =
1

2
E(Z(s)� Z(s+ d))2, d 2 R2.

Any stationary process is intrinsically stationary, but the converse is not true (Baner-

jee et al., 2004). Gneiting et al. (2001) explains how the variogram is more general

than the covariance function but less well understood theoretically, with many im-

portant properties, characterisations and decomposition theorems established for

covariance functions only. The covariance function will be used here but similar

spatial dependence model fitting could be carried out using the variogram.

5.4.2. Dependence model specification

A stationary spatial process is said to be isotropic if the covariance depends only

on the Euclidean distance between locations, i.e. the length of s � s0, not on the

orientation, then C(d) = C(kdk). Here, initially an isotropic model will be fit to

the data. The anisotropy identified in Figure 5.1 will then be explored to achieve

the most appropriate model. As noted by Banerjee et al. (2004), isotropy is a

convenient assumption because of its simplicity, interpretability and there are a

number of relatively simple parametric functions available as candidates for the

covariance function. Three such isotropic covariance functions are the Exponential,

Gaussian and Matérn covariance functions, which have parametric equations:

Exponential: C(t) =

8

<

:

�2exp
⇣

� t
�

⌘

if t > 0

⌧ 2 + �2 otherwise

Gaussian: C(t) =

8

<

:

�2exp
⇣

� t2

�2

⌘

if t > 0

⌧ 2 + �2 otherwise
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Matérn: C(t) =

8

<

:

�2

2

⌫�1
�(⌫)

⇣

2

p
⌫t

�

⌘⌫

K⌫

⇣

2

p
⌫t

�

⌘

if t > 0

⌧ 2 + �2 otherwise

where t = kdk, �(·) is the gamma function and Ka is the modified Bessel function of

order a. The parameters of the covariance functions are the spatial e↵ect variance

�2; the covariance length scale �; the measurement error variance or non-spatial

e↵ect variance ⌧ 2, known as the nugget e↵ect; and, unique to the Matérn covariance

function, the shape parameter ⌫, often referred to as the smoothness parameter

(Banerjee et al., 2004). Each parameter will now be introduced in more detail.

The spatial e↵ect variance �2, also known as the sill in the context of variogram

fitting, represents the global variance. This parameter would therefore equal 1 if the

underlying data are standard Gaussian.

The covariance length scale, �, is a measure of the separation distance at which

locations are considered to be independent. Banerjee et al. (2004) noted that for

the Exponential covariance function, zero covariance is reached asymptotically and

� is therefore infinite. They introduced the notion of the ‘e↵ective range’, t
0

, the

distance at which the covariance drops to 0.05. By setting exp(�t
0

/�) = 0.05, it can

be derived that t
0

⇡ 3�, since log(0.05) ⇡ �3, giving � a more intuitive interpreta-

tion. A similar calculation can be done for other covariance functions, for example

for the Gaussian covariance function t
0

=
p
3�.

As explained by Diggle and Ribeiro (2007), the nugget e↵ect, ⌧ 2, has a duel inter-

pretation as either measurement error or spatial variation on a spatial scale smaller

than the smallest distance between any two points, or a combination of these two

e↵ects.

These three parameters are common to all three covariance functions introduced

above, however the Matérn model has another parameter, the shape ⌫, which adds

extra flexibility. This parameter determines the analytic smoothness of the un-

derlying process (Diggle and Ribeiro, 2007), meaning the number of times it is

mean-square di↵erentiable (see Appendix B). Specifically a process is [⌫]� 1 times

mean-square di↵erentiable, where [⌫] is the smallest integer greater than or equal

to ⌫. For ⌫ < 1 the process is non mean-square di↵erentiable and is said to be

mean-square continuous. When ⌫ = 0.5 the Matérn reduces to the exponential co-

variance function and as ⌫ ! 1 the Matérn approaches the Gaussian covariance

function. When the value of ⌫ is a half integer, m + 1

2

where m is an integer, the

modified Bessel function K⌫(·) takes an explicit form and the Matérn covariance

function is a product of exp(�2
p
⌫d/�) and a polynomial of degree m (Haskard,

2007). The Matérn covariance function gives a broad range of shapes of covariance
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functions, allowing any degree of smoothness at the origin, from continuous but

non-di↵erentiable when ⌫ < 1 to infinitely di↵erentiable as ⌫ ! 1. This flexibility

means the Matérn covariance function is often preferred in practise, however the

shape parameter, ⌫, can be problematic to estimate (Diggle and Ribeiro (2007),

Stein (1999)). More detail is given on this in Section 5.4.3.

A number of parameterisations for the Matérn covariance function exist with the

parameterisation proposed by Handcock and Wallis (1994) presented above. An

alternative parameterisation, named the Whittle covariance model, has scale pa-

rameter & = �/2
p
⌫. Diggle and Ribeiro (2007) explained how within the Whittle

parameterisation ⌫ and & are non-orthogonal. Suppose the true correlation structure

of a process is Whittle with parameters ⌫ and & then the best fitting approxima-

tion with order ⌫⇤ 6= ⌫ will also have &⇤ 6= & so the scale parameters corresponding

to di↵erent orders of Matérn covariance are not directly comparable. The Matérn

parameterisation is preferred over the Whittle parameterisation because the shape,

⌫, and scale, �, are almost orthogonal in their e↵ect on the induced covariance

structure (Diggle and Ribeiro, 2007). Haskard (2007) explains how in the Matérn

covariance function ⌫ primarily determines the behaviour of the covariance function

at the origin and � broadly determines how quickly the covariance decreases with

distance, roughly independently of ⌫. Haskard (2007) goes on to suggest that using

the Matérn parameterisation should therefore improve the stability of covariance

model parameter estimation.
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Figure 5.3. Exponential, Matérn (⌫ = 1.5) and Gaussian covariance functions with
scale parameter � adjusted to give the same practical range.
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Figure 5.3 shows the covariance functions for the exponential model (equivalent

to the Matérn with ⌫ = 0.5), the Matérn model with ⌫ = 1.5 and the Gaussian

model (equivalent to the Matérn with ⌫ = 1). For all functions �2 = 1 and ⌧ 2 = 0.

The values of � have been adjusted so all three functions have the same practical

range, t
0

= 0.75, calculated by setting the covariance to 0.05 and d = 0.75. For the

Matérn function the appropriate value of � is ascertained by plotting the covariance

function for d = 0.75 and � 2 (0, 1) and finding which value of � corresponds to a co-

variance of 0.05. The covariance initially decays quickest for the exponential model

followed by the Matérn (⌫ = 1.5) model meaning locations that are close together

are less correlated for the exponential model, with the Gaussian model having the

greatest correlation at small distances making the process smoother. This behaviour

of the covariance functions near the origin is based on the increasing value of ⌫ in

the equivalent Matérn functions.

Figure 5.4. (a)-(c) two-dimensional simulations from Gaussian processes with Ex-
ponential, Matérn (⌫ = 1.5) and Gaussian covariance functions respectively. (d)-
(f) one-dimensional representations of the same Gaussian processes respectively, a
cross-section of the two-dimensional simulation at sy = 0.5.

This increasing analytic smoothness of the processes as ⌫ increases has a large e↵ect

on the resulting covariance structure of the Gaussian process. This can be seen in

Figure 5.4 (a)-(c) which show simulated two-dimensional realisations of Gaussian

processes and (d)-(f) which show a one-dimensional cross-section for each of the

three covariance functions in Figure 5.3. The most noticeable di↵erence is between

the non-di↵erentiable exponential covariance structure, which gives a much rougher

process compared to the di↵erentiable Matérn (⌫ = 1.5) and Gaussian covariance

structures.
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Rather than imposing a mean-square di↵erentiability property by fitting the ex-

ponential or Gaussian covariance functions, the Matérn covariance function will be

used here, allowing the data to define this property by estimating the shape param-

eter ⌫.

Spatial processes are often not isotropic, that is the covariance depends on the sep-

aration direction as well as the separation distance. Anisotropy can be accounted

for within a geostatistical model, while still allowing for the use of a simple isotropic

covariance function, by transforming the domain via a stretching and rotation of the

coordinate axes. Therefore anisotropy is defined by additional parameters, ✓, the

anisotropy angle, and spatial scale parameters in the longitudinal, �
1

, and latitu-

dinal, �
2

, directions. Alternatively, as in Diggle and Ribeiro (2007), an anisotropic

ratio can be defined which is simply �
1

/�
2

. Here, �
1

and �
2

will be represented

separately so they can be varied separately, allowing for greater flexibility in spatial

dependence structures within the sensitivity study in the next chapter of this thesis.

A process with anisotropy in spatial coordinates s = (s
1

, s
2

) can be converted to an

isotropic process in coordinates s̃ = (s̃
1

, s̃
2

) by the transformation

(s̃
1

, s̃
2

) = (s
1

, s
2

)

 

cos(✓) �sin(✓)

sin(✓) cos(✓)

! 

1/�
1

0

0 1/�
2

!

. (5.1)

Figure 5.5 illustrates this transformation. The directional e↵ect is clearly visible

with longitudinal scale 4 times as large as latitudinal scale and an axes rotation of

�⇡/3, resulting in the longitude pointing along the diagonal. Anisotropy will be

identified by fitting both an isotropic and anisotropic Matérn covariance function to

the spatial data and observing which is the better fit to the data.
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Figure 5.5. A simulation from an anisotropic Gaussian spatial process with a Matérn
(⌫ = 1.5) covariance structure with anisotropy parameters �

1

= 0.277,�
2

= �
1

/4 =
0.069 and ✓ = �⇡/3.
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5.4.3. Dependence model fitting

In the general case, fitting a spatial Gaussian process to candidate data requires the

estimation of the mean and covariance function parameters. This means making

inference about the underlying spatial process, Z(s), based upon the partial reali-

sation Yj : j = 1, ..., J , at spatial locations sj : j = 1, ..., J .

The mean function µ(s) can most simply be represented by a linear regression model

on K spatial covariates, {w
1

(s), ..., wK(s)}, such as longitude, latitude and altitude,

µ(s) = �
0

+
K
X

k=1

�kwk(s),

where � = (�
0

, �
1

, ..., �K) must be estimated, based on the data Y . The number of

covariance function parameters to be estimated depends on whether the data are

isotropic or anisotropic. When isotropy is assumed

Y ⇠ MVN(W�,⌃(⌧ 2, �2,�, ⌫)),

where the shape parameter ⌫ is only included for the Matérn covariance function.

Alternatively, if anisotropy is assumed the covariance function includes the param-

eters to stretch and rotate the spatial domain, therefore

Y ⇠ MVN(W�,⌃(⌧ 2, �2, ✓,�
1

,�
2

, ⌫)).

Parameters can be estimated using maximum likelihood (ML). Suppose that at

each location the response variable Yj is observed n times. Then define yij as the ith

observation of the response variable at the jth location for i = 1, ..., n and j = 1, ..., J .

Then define yi· as the ith observation of the response variable for all J locations and

y·j, all n observations of the response variable at location j. Then the log-likelihood

l(�, ;Y ), where  = (⌧ 2, �2,�, ⌫) in the isotropic case and  = (⌧ 2, �2, ✓,�
1

,�
2

, ⌫)

in the anisotropic case, is derived from the multivariate Gaussian density function

as,

fY (y·1, ..., y·J) = L(�, ;Y ) (5.2)

=
n
Y

i=1

((2⇡)J |⌃( )|)�
1
2 exp

 

�1

2

n
X

i=1

(yi· �W�)T⌃�1( )(yi· �W�)

!

(5.3)

l(�, ;Y ) = log(L(�, ;Y )) (5.4)

= �nJ

2
log(2⇡)� n

2
log|⌃( )|� 1

2

n
X

i=1

(yi· �W�)T⌃�1( )(yi· �W�)

maximisation of which yields the ML estimates of the model parameters. This max-

imisation is done here numerically using the quasi-Newton optimisation algorithm
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introduced by Byrd et al. (1995).

An alternative approach for covariance model fitting, known as the Least Squares

(LS) approach, is also commonly discussed (e.g. Diggle and Ribeiro 2007, Stein

1999 and Banerjee et al. 2004). The LS approach involves estimating �, removing

the trend surface from the data and then fitting the covariance function, via a curve

fitting algorithm, to the empirical binned covariogram, defined as

C⇤
ij =

1

NBij

X

(k,l):ksk�slk2Bij

Cov(Yk, Yl) (5.5)

where NBij is the number of pairs of locations that have separation distance in bin

Bij. The LS approach is equivalent to a non-linear regression analysis, treating the

empirical covariogram as the response variable and the separation distance-bin mid-

point as the corresponding explanatory variable (Diggle and Ribeiro, 2007). The

ML approach has a number of advantages over the Least Squares (LS) approach.

The ML approach allows for the mean trend parameter vector � to be estimated

at the same time as the covariance function parameters,  while this must be done

in two separate steps for the LS approach. The LS parameter estimates for the

covariance function are very sensitive to the choice of empirical covariogram bins so

a significant advantage of the ML approach is that it does not require this arbitrary

bin selection, using all separation distances within the data.

One of the main objections to using the ML approach is the assumption of mul-

tivariate normality of the data, explicit in the definition of the log-likelihood func-

tion in Eqn (5.3). The data at each location are univariate normally distributed,

which is only a necessary and not su�cient condition for multivariate normality.

Pardo-Igúzquiza (1998) and Lark (2000) noted that the actual multivariate distri-

bution that underlies the data can, in fact, never be verified because the data are

only a realisation from this distribution. Pardo-Igúzquiza (1998) argued that the

multivariate normal distribution is therefore a natural assumption because it is the

distribution of maximum entropy when all that is known is the mean and covari-

ance matrix, which fully explain a multivariate Gaussian process. Pardo-Igúzquiza

(1998) identified how the log-likelihood is made up of two terms that depend on the

covariance parameters:

(1) log|⌃( )|

(2)
N
X

i=1

(yi �W�)T⌃�1( )(yi �W�).
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Term (1) is a general measure of the spatial uncertainty which decreases as the de-

gree of spatial correlation increases. Term (2) is a weighted least-squares criterion

for the fit of the model which increases as the degree of spatial correlation increases.

The parameter selection therefore finds the model with the strongest spatial depen-

dence structure while not incurring an excessive penalty for the squared error term.

This suggests that the set of parameters that maximises Eqn (5.3) is the rational

choice even when the distributional assumption does not hold.

The ML approach is more computationally intensive than the LS approach. The

J ⇥ J covariance matrix in Eqn (5.3) must be inverted at each iteration of the op-

timisation algorithm used to maximise the log-likelihood. This can be infeasible

if J is very large. The computation can be made quicker by using the Cholesky

decomposition of the covariance matrix,

⌃ = LLT ,

where L is a lower triangular matrix. It is quicker to compute the inverse of the

triangular matrix L and L can be used to calculate the inverse of ⌃ as

⌃�1 = (L�1)T (L�1).

It is also quicker to calculate the determinant of the triangular matrix L and

|⌃| = |L|2.

To reduce computational expense further, Stein (1999) identified the possibility of

using spectral methods to approximate the likelihood. Since any joint density can

be written as a product of conditional densities based on some ordering of the ob-

servations, the computation is lessened by conditioning on only some of the nearest

observations when computing the conditional densities. The smaller the number of

neighbouring locations used the quicker the computation but the worse the approx-

imation of the true joint density. Stein (1999) also suggested dividing the spatial

domain into a number of subregions and calculating the likelihood for each subregion

separately and multiplying them together. Again, the smaller these subregions the

quicker the computation but the worse the approximation of the likelihood and a

trade o↵ must be made. It may also be that the correlation scale is larger than these

subregions and will therefore be poorly approximated. For both of these methods

arbitrary neighbourhood choices must be made so the sensitivity to these choices

should also be investigated.

Stein (1999) went on to discuss further computational issues of the ML approach,

noting that the method will not necessarily converge to the global maximum if more
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than one local maxima exists, which may be the case if the likelihood function is

not twice di↵erentiable. Warnes and Ripley (1987) also showed an example of mul-

tiple local maxima when using the exponential covariance function, although these

results are contested by Stein (1999) who claimed to be unaware of any examples of

multiple local maxima in the likelihood for the Matérn model. He did note, however,

that the global maximum may not be within the parameter space and may occur as

the shape parameter ⌫ ! 1. Stein (1999) and Warnes and Ripley (1987) agree that

there can exist long ridges within the parameter space along which the likelihood is

nearly constant. This can lead to numerical problems when using iterative proce-

dures for finding the maximum. Stein (1999) explained how the presence of these

ridges is not a sign of a problem with the likelihood methods, rather an entirely

correct indication that the data provides no information for distinguishing between

parameter values along the ridge. Stein (1999) suggested plotting the likelihood

surface in order to detect these ridges.
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Figure 5.6. The best fit isotropic Matérn model (red line) compared with (a) the
empirical binned covariograms for London, Amsterdam and Berlin paired with all
other locations and (b) the empirical binned covariogram for all pairs of locations
together.

It was shown in Figure 5.2 that, throughout the domain, the empirical mean of the

Gaussian transformed wind gust speeds is approximately constant and equal to zero.

It is therefore concluded that the mean function can be ignored when modelling this

data as a Gaussian process and only the covariance function parameters need to be

estimated. The isotropic Matérn covariance function was fit to the data using the

ML approach where �2 = 1, a reasonable assumption based on Figure 5.2. The set

of parameters to estimate is therefore  = (⌧ 2,�, ⌫) in equation (5.3), estimated

as � = 260.031, ⌫ = 0.776, ⌧ 2 = 0. Figure 5.6 shows the fit of this Matérn model
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to the empirical binned covariogram (Eqn (5.5)). It is clear from Figure 5.6 that

the ML estimate of the best fit Matérn covariance structure fails to represent the

dependence structure of the data, but why is this?

Diggle and Ribeiro (2007) and Stein (1999) explained how, in their experience,

the quadratic approximation of the log-likelihood surface, i.e. estimating � and ⌫

together, is often di�cult because the parameters are poorly identified, leading to

ridges and plateaus in the likelihood surface. Diggle and Ribeiro (2007) advised

choosing a fixed value of ⌫ from a discrete set of values that cover di↵erent degrees

of mean-square di↵erentiability, for example {0.5, 1.5, 2.5}, optimising individually

for �. The best fit is then found by observing which value of ⌫ maximises the

likelihood. This method is known as a profile likelihood approach and avoids the

optimisation algorithm getting trapped at a local maximum rather than the global

maximum in the likelihood surface.

The profile likelihood approach is carried out for ⌫ = {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
1.0, 1.2, 1.5, 2.5} with the resulting models for a selection of these values of ⌫ shown

in Figure 5.7 (a) and the corresponding maximum log-likelihood value for each ⌫

shown in Figure 5.7 (b).

Figure 5.7. (a) The best fit isotropic Matérn model using the profile likelihood
approach of fixing the shape parameters ⌫ with the empirical binned covariogram and
(b) the maximum log-likelihood for a range of fixed values of ⌫, with the maximum
at ⌫ = 0.8 indicated by a solid point.

Figure 5.7 (b) shows that the global maximum of the likelihood surface is at ⌫ ⇡ 0.8

indicating that the original ML optimisation did indeed find the global maximum

and not a local maximum, as may have been the issue, suggesting that the likelihood

surface does not have multiple maxima. The maximum log-likelihood is, however,

relatively similar for ⌫ 2 (0.5, 2.5) suggesting that a plateau or ridge may exist in
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the likelihood surface.
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Figure 5.8. The log-likelihood surface based on the data for isotropic Matérn co-
variance parameters ⌫ and � in (a) 2 dimensions and (b) 3 dimensions. The colour
scale is partitioned into quantiles of the log-likelihood at 0.1 intervals.

As suggested by Stein (1999), any ridges can be identified by plotting the likelihood

surface over a range of values of ⌫ and �, as shown in Figure 5.8. It is clear that there

is a significant ridge in the log-likelihood surface, along which the data provides no

or very little information for distinguishing between best fit parameter values.

Referring to Figure 5.7 (a) it is clear that most of the Matérn models that re-

sult from the parameter estimates along this ridge in the likelihood surface do not

fit the empirical dependence structure for the whole range of separation distances.

An explanation of this is hinted at by Diggle and Ribeiro (2007), in an example

application of the ML approach for fitting the Matérn covariance function to surface

elevation data. Diggle and Ribeiro (2007) pointed out that the likelihood criterion

automatically takes account of the fact that sample covariances become less precise

as the separation distance increases, meaning that more weight is given to pairs of

locations with smaller separation distances within the ML estimate of the covariance

parameters. This explains the bad fit for larger separation distances for most of the

models in Figure 5.7 (a), rather the ML approach is focused on fitting the covariance

structure for locations with smaller separation distances.

The exact weighting for di↵erent separation distances can be investigated by ob-

serving the construction of the likelihood function. The part of the function that
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depends on the data

n
X

i=1

(yi �W�)T⌃�1( )(yi �W�)

is weighted by the inverse of the covariance matrix, ⌃�1( ), also known as the

precision matrix. The precision matrix is a sparse matrix and has an interpretation

in terms of partial correlations and partial variances.

Figure 5.9. (a) The distance matrix for a set of 100 locations on a 10⇥10 grid in the
domain (0, 1)2, (b) the associated Matérn covariance matrix where ⌧ 2 = 0, ⌫ = 0.8
and � = 0.2 (chosen arbitrarily), (c) the associated inverse covariance matrix or
precision matrix, and (d) the precision matrix plotted against the distance matrix
representing the weight given to locations separated by a given distance within the
likelihood function.

A toy example of the precision matrix weights given to a set of locations on a

10 ⇥ 10 grid in the domain (0, 1)2 for a simulated Gaussian process with a Matérn

dependence structure is shown in Figure 5.9. The inverse covariance matrix in Figure

5.9 (c) is very sparse with most entries equalling approximately zero. The highest

weights are on the diagonal of the precision matrix coinciding with a separation
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distance of zero and negative weighting is given to the next smallest separation

distance of 0.1. This is reflected in Figure 5.9 (d) which shows that within the

likelihood function almost no weight is given to locations separated by more than

0.3. Therefore pairs of locations separated by more than 0.3 have e↵ectively no

influence in the likelihood function and the resulting fit of the covariance function,

while pairs of locations separated by less than 0.1 have a very large influence.
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Figure 5.10. (a) As in Figure 5.7 (a) but for separation distance d 2 (0, 100)km
and (b) the precision matrix (inverse of the covariance matrix) weights for binned
separation distances d 2 (0, 100)km with histogram showing the frequency of each
separation distance bin within the data.

For each of the profile likelihood fits shown in Figure 5.7, the precision matrix (in-

verse covariance matrix) weight can be calculated for each pair of locations and

averaged over separation distance bins. These weights are shown in Figure 5.10 (b)
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and the associated fits for separation distance d 2 (0, 100) km shown in Figure 5.10

(a). For all of the fits the precision weights decay to approximately zero at a separa-

tion distance of 50km which is very low considering locations within the domain are

separated by up to 4000km. A histogram of separation distances is added to Figure

5.10 since separation distances with a higher frequency will also have more influence

on the likelihood. It can be concluded that the likelihood function is weighting the

fit of the covariance model to a very small proportion of the dependence structure,

explaining why the maximum likelihood is large for models that fit badly to the

data for higher separation distances (Figure 5.7). For example the model associated

with the ML estimate of ⌫ = 0.8 does indeed fit the empirical binned covariogram

very well for separation distances less than 50km, seen in Figure 5.10.
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Figure 5.11. The precision matrix (inverse covariance matrix) weights for di↵erent
separation distances based on the Matérn covariance function with ⌧ 2 = 0, ⌫ = 0.8
and � = 0.2 for di↵erent numbers of locations in the domain.

This large weighting of small separation distances in the likelihood function is due

to the large number of locations within the domain for the footprint data set. Figure

5.11 shows how the precision matrix weights vary for di↵erent numbers of locations,

J , sampled at random from the domain (0, 1)2. The larger the value of J , the quicker

the precision matrix weights decay to zero with separation distance and therefore

the more relative weight is placed on very small separation distances. In conclu-

sion, the data provides no information for distinguishing between parameter values

along the ridge in the likelihood because a relatively large weight is placed on small
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separation distances in the likelihood function due to the large number of locations

(J = 14872) in the data set.

One way to overcome this issue may be to fit the model to a number of smaller sets

of locations sampled from the original locations. This would increase the weighting

towards larger separation distances, however it would require the arbitrary selection

of an appropriate sample size. Alternatively the model that best fits the dependence

structure for a majority of the separation distance range could be chosen from the

profile likelihood models. From Figure 5.7 (a) it is clear that this is the Matérn

model with shape parameter ⌫ = 0.5. This model fits the data well at small sep-

aration distances as was seen in Figure 5.10 (a), however the fit is not as good for

separation distances greater than 1500km where the covariance in the model does

not decay to zero quickly enough and cannot capture the negative empirical covari-

ances that exist for very large separation distances. Using this shape parameter

in the Matérn covariance model has the additional simplification of being equiva-

lent to the exponential covariance model which has one fewer parameter than the

Matérn covariance model. The parameters of this isotropic exponential model are

estimated as ⌧ 2 = 0 and � = 831.703. The physical interpretation of this best fit

model is that wind gusts are a rough, non-di↵erentiable spatial process, with covari-

ance between Gaussian transformed wind gust speeds reducing exponentially with

separation distance at a rate of 1/� per km.

If the decay in covariance with separation distance was exponential then the re-

lationship between the natural logarithm of the bin averaged empirical covariance

and separation distance should be linear. This relationship is presented in Figure

5.12. The relationship is linear for separation distances 0 � 1500km but the decay

is quicker than exponential for separation distances greater than 1500km, as was

shown in Figure 5.7 (a). In conclusion, this exponential model fits very well for

small and medium separation distances and less well for large separation distances.

The variation in covariances at larger separation distances is greater, as can be seen

in Figure 4.9 (d)-(f), therefore the fit of the model here is less precise and the fit of

the model for smaller separation distances is more representative of the dependence

structure in the domain.

The mean-squared di↵erentiability of the spatial process will remain the same, ir-

respective of whether the process is isotropic or anisotropic. This property was

explored in the isotropic case for simplicity and clear visualisation of the likelihood

surface. Since the spatial dependence within the data is best modelled when ⌫ = 0.5,

the existence of anisotropy is now investigated by fitting the anisotropic exponential
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Figure 5.12. The relationship between separation distance and the natural logarithm
of the empirical covariance. The line x = 1500 indicates where the relationship
becomes non-linear.

covariance model to the data and identifying whether this results in a better fit than

the isotropic model.

The set of parameters in equation (5.3) becomes  = (⌧ 2,�
1

,�
2

, ✓). These are

estimated as ⌧ 2 = 0, �
1

= 869.543, �
2

= 797.802 and ✓ = �0.0179 = �⇡/175.5
degrees. These parameter estimates are inevitably uncertain, however, since the

purpose of the model is to explore the sensitivity of insured loss to changes in the

parameters, their uncertainty range is not important, rather that they produce syn-

thetic footprints that give realistic losses.

The best fit anisotropic exponential covariance model is shown in Figure 5.13. The

separation distances are represented in relation to the transformed spatial coordi-

nates s̃j as in equation 5.4.2, therefore the distances in Figure 5.13 are d̃ij = ks̃i�s̃jk.
The exponential model with unit covariance length scale is then plotted alongside to

assess the fit of this anisotropic exponential model. Similarly to the isotropic model,

the model fits very well for small and medium separation distances, however the co-

variance in the data decays quicker than the exponential model for larger separation

distances.
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Figure 5.13. The empirical binned covariogram for spatial coordinates transformed
using the ML estimated anisotropic covariance parameters (black dots), with the
unit scale exponential covariance model added to assess the fit of the anisotropic
exponential dependence model (blue line).

This anisotropic model has a greater likelihood than the isotropic model. This is to

be expected because it has more parameters, however, since the longitudinal covari-

ance/correlation length scale �
1

is approximately 70km longer than the latitudinal

covariance/correlation length scale, �
2

, this anisotropic model better represents how

windstorms pass over the European region from west to east.

A comparison of the covariance/correlation functions for the isotropic and anisotropic

models is presented in Figure 5.14, illustrating the scale of the spatial dependence

within the domain and how the anisotropic dependence structure better represents

the expected movement of windstorms across Europe. The anisotropic model will

therefore be used to represent the spatial dependence within the windstorm foot-

print model. Including anisotropy parameters within the windstorm footprint model

will also allow for greater variation in the spatial dependence structure of simulated

footprints in the sensitivity study in the next chapter.

142



5. Geostatistical modelling of windstorm footprints

-3000 -2000 -1000 0 1000 2000 3000

-3
00
0

-2
00
0

-1
00
0

0
10
00

20
00

30
00

(a)

Kilometres longitude

K
ilo

m
et

re
s 

la
tit

ud
e

-3000 -2000 -1000 0 1000 2000 3000

-3
00
0

-2
00
0

-1
00
0

0
10
00

20
00

30
00

(b)

Kilometres longitude

K
ilo

m
et

re
s 

la
tit

ud
e

Figure 5.14. Best fit (a) isotropic and (b) anisotropic exponential covariance func-
tions.

Footprint simulation

The windstorm footprint simulation model is specified as

Xj = F�1

j (�(Yj))

Fj(x) =

8

<

:

F̂ (x) x  vj

(1� �j) + �j

⇣

Gj(x)�Gj(vj)

1�Gj(vj)

⌘

x > vj

�j = 1� F̂j(vj)

Gj = GEV (µj, �j, ⇠j), i.e. Gj(x) = exp

(

�


1 + ⇠j

✓

x� µj

�j

◆�

1/⇠j
)

Y = (Y
1

, ..., YJ) ⇠ MVN(0,⌃( )),  = (�
1

,�
2

, ✓)

⌃( ) = exp(�d̃)

d̃ = ks̃j � s̃kk

s̃j = (s̃j1, s̃j2) = (sj1, sj2)

 

cos(✓) �sin(✓)

sin(✓) cos(✓)

! 

1/�
1

0

0 1/�
2

!

A synthetic footprint is therefore produced by unconditional simulation of a Gaus-

sian random field at all locations in the domain based on the exponential anisotropic

covariance model with parameters �
1

,�
2

and ✓. At each location, this Gaussian ran-

dom field is then transformed from standard Gaussian to left truncated GEV using

the marginal distribution fitted at each location, sj, based on parameters µj, �j and

⇠j and assuming F̂j(vj) = 0.6 because the 60% quantile of wind gust speeds at each
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location is used as the left truncation threshold when fitting the marginals (see Sec-

tion 4.3).

Using this statistical framework allows for fast simulation of synthetic footprints.

One thousand footprints are simulated in 3035 seconds, i.e. each footprint takes

approximately 3 seconds to simulate. As discussed in Section 2.2.1, catastrophe

modellers often use numerical weather and climate models to simulate artificial

windstorm footprints. Simulating footprints using numerical models is very compu-

tationally expensive, requiring the use of a super computer. The statistical footprint

simulation model presented above is therefore a much quicker and computationally

cheaper way of producing synthetic footprints.

5.4.4. Dependence model validation

Figure 5.15 shows a comparison of the best fit anisotropic exponential covariance

function and the empirical covariance/correlation for London, Berlin and Bratislava

paired with all other locations over land. Bratislava is included rather than Am-

sterdam to demonstrate the variation in the ability of the covariance function in

representing the empirical dependence.

Figure 5.15 shows that for these particular locations the dependence structure is,

in general, well represented by the anisotropic exponential model, however in the

model, the dependence decays too quickly as separation distance increases, partic-

ularly in the longitudinal direction, for London and Berlin, and too slowly for the

more south-eastern location, Bratislava. Similar comparisons for other locations in

the domain show a variety of consistencies with the exponential covariance model.

This is a very simplistic way of modelling the spatial dependence structure but,

in general the visual comparison is good, particularly in the north-west of Europe,

where the most extreme wind gust speeds and damage occur.

To further validate how well this covariance function, which is the same throughout

the domain, can capture the empirical dependence between locations, the extremal

dependence measures �(u) and �̄(u), for quantile thresholds u 2 (0.6, 1) (Eqns

(4.12)) are calculated for London paired with Amsterdam, Berlin and Paris based

on 6000 simulated footprints and compared to the equivalent using the bivariate

Gaussian copula model from Chapter 4 and the empirically calculated values, as

in Figure 4.12. Figure 5.16 shows this comparison and indicates that, for these 3

pairs of locations, the covariance function slightly underestimates the dependence

144



5. Geostatistical modelling of windstorm footprints

Figure 5.15. A comparison of the empirical covariance (first column) and best
fit anisotropic exponential covariance function (second column) centred on (a)/(b)
London, (c)/(d) Berlin and (e)/(f) Bratislava, included rather than Amsterdam to
demonstrate the variation in the ability of the covariance function to represent the
empirical dependence.

between wind gust speeds in all 3 cases, reflecting the conclusions of Figure 5.15.

The general fit to the empirical extremal dependence is, however, good considering

that the covariance model has been fit to the whole domain rather than a particular

pair of locations as was the case for the bivariate Gaussian copula model.

The anisotropic exponential dependence structure can also be tested using a cross

validation method. The locations at which the footprint data occur are divided

into a training set and a validation set. The model is fit to the footprint data

at the training locations and the resulting model is used to predict the wind gust

speed at the validation locations for individual footprints by an optimal prediction

method called simple kriging (Diggle and Ribeiro, 2007). Simple kriging aims to
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Figure 5.16. Extremal dependence measures evaluated empirically, using the Gaus-
sian bivariate copula model and the anisotropic exponential covariance model. The
measure �(u) is shown in the top row (a)-(c) and �̄(u) in the bottom row (d)-(f),
with 95% parametric bootstrap confidence intervals (see Appendix A.1).

find the value of the random field at unobserved location s
0

, Z(s
0

), given the obser-

vations of the random field and the covariance model. The minimum mean squared

error predictor at s
0

, Ẑ(s
0

) is the function of the data at k training locations,

Y = (Y
1

, ..., Yk) which minimises the quantity E[{Ẑ(s
0

) � Z(s
0

)}2] and therefore

Ẑ(s
0

) = E[Z(s
0

)|Y ] =
Pk

j=1

wj(s0)(Yj), a linear function of the observations, Yj,

and the covariances between each training location and the unobserved location s
0

,

wj(s0) (Diggle and Ribeiro, 2007). The predicted and true wind gusts speeds are

compared to investigate how well the model dependence structure represents the

data.

This comparison is shown in Figure 5.17. The wind gust speeds at the validation lo-

cations are, on the whole, very well predicted by the model, particularly for extreme

wind gust speeds. The error in the prediction is greatest around Longitude 0 and

20, where most of the validation locations are either near to a coast or the end of the

domain and the prediction will therefore be based on fewer surrounding locations.

The error is greater for locations in lower latitudes. This is because the dependence

structure in the south of Europe is more variable and less consistent with the best

fit covariance model which better represents the north-west of Europe.
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5. Geostatistical modelling of windstorm footprints

Figure 5.17. (a) The position of the validation locations, (b) scatter plot of the
predicted and true Gaussian transformed wind gust speeds at the validation loca-
tions for 500 randomly selected footprints, (c) scatter plot of (Empirical-Predicted)
against longitude and (d) against latitude.

5.5. Geostatistical windstorm footprint model

validation

As an initial visual validation of the ability for the model to produce realistic foot-

prints, footprints simulated from the spatial model are compared to randomly se-

lected historical footprints from the data set of 5730, presented in Figures 5.18 and

5.19. Visual observation of these two sets of footprints shows that the synthetic foot-

prints are hard to di↵erentiate from the historical. They have similar smoothness,

peak intensities, spatial dependence scales, and variation in location and intensity.
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Figure 5.18. Nine randomly selected historical footprints from the data set of 5730.

Figure 5.19. Nine synthetic footprints simulated using the statistical spatial model
with an anisotropic exponential covariance structure throughout the domain and
left truncated GEV margins at each location.
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Figure 5.20. Historical footprints (top row) and synthetic footprints with the same
area over land exceeding 25ms�1 (middle row) and the 98th percentile of the cli-
matology wind gust speed (bottom row) for windstorms (a) Daria, (b) Lothar, (c)
Kyrill, (d) the Great Storm of ‘87 and (e) Jeanette. Colour legend as in Figure 5.18.

Another interesting check is to ensure that the statistical model is able to simulate

windstorm footprints as extreme as those experienced in the historical data set.

Figure 5.20 shows the footprints for five of the most extreme historical windstorms;

Daria, Lothar, Kyrill, the Great Storm of ‘87 and Jeanette, and synthetic footprints

taken from a set of 500,000 simulated footprints which have the same area over land

exceeding the loss thresholds of 25ms�1 and the 98th percentile of the climatology

(October-March 1979-2012) wind gust speed. The simulated footprints in Figure

5.20 resemble the historical extreme footprints.

These visual validation results are very promising but the simulated and historical

footprints can be compared in more detail by calculating particular characteristics.

In Chapter 3 of this thesis, it was shown that the area of the footprint over land

that exceeds 25ms�1 and the maximum 925hPa wind speed over land were the best

individual predictors of insured loss. Therefore the area, A, and peak intensity,

represented by the 90th percentile of the wind gusts speed for a given footprint, x
90

(because the simulation model does not produce 925hPa wind speeds) are compared

for historical and synthetic footprints, shown in Figure 5.21. Figure 5.21 shows that

the spatial model has very similar relationship between these two storm severity

measures compared to when calculated empirically from the historical footprints.

In particular, the strong extremal dependence between the measures is captured by
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Figure 5.21. Scatter plot of the logarithm of the area of the footprint exceeding
25ms�1 and the logarithm of the 90th percentile of the footprint wind gusts speeds
for simulated footprints (purple) and historical footprints (black).

the simulated footprints.

As in Chapter 4, the model must also be validated to ensure it can realistically

represent joint losses, and is therefore fit for purpose for the sensitivity analysis ex-

periment in the final chapter. The same two conceptual loss functions, L
25

and L
98

,

defined in Section 4.5, are used to validate this. These conceptual loss functions

characterise the area of the footprint that exceed the corresponding damage thresh-

old. Therefore, L
25

is equivalent to A in Figure 5.21. Rather than being a bivariate

loss distribution where loss equals either 0, 1 or 2, depending on the exceedance of

a loss threshold, the loss associated with a windstorm footprint is now multivariate

and can range from 0 to 14872 (the number of locations/grid cells over land) that is

L(X
1

, ..., XJ) = H(X
1

� t
1

) + · · ·+H(XJ � tJ)

where t
1

,..., tJ are high loss thresholds at each location and H(n) as a Heaviside or

indicator function H(n) = 1 if n > 0 and H(n) = 0 otherwise, as in Section 4.5.

Figure 5.22 shows a comparison of the loss distributions for the 5730 historical

footprints and 500,000 synthetic footprints, where the losses, L
25

and L
98

, are shown

on a logarithmic scale to reduce skewness. For both conceptual loss functions the
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Figure 5.22. The distribution of log base 10 losses according to multivariate concep-
tual loss functions L

25

and L
98

.

synthetic footprints have a slightly higher proportion of footprints causing medium

and higher losses, however the general shapes of the loss distributions are very similar

to the empirical, showing that the model is able to simulate footprints with realistic

joint losses.
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Figure 5.23. The distribution of log base 10 losses according to multivariate con-
ceptual loss functions L

25

and L
98

for (a)/(d) the UK, (b)/(e) France and (c)/(f)
Germany.

It is also important that the losses and the relationship between losses in di↵erent

regions of Europe are well represented by the model. This is because re/insurers

can diversify their portfolio of clients, ensuring that they insure locations that ex-

perience losses at di↵erent times.

As in Figure 5.22, Figure 5.23 shows a comparison of the loss distribution for the

5730 historical footprints and 500,000 synthetic footprints for the UK, France and
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5. Geostatistical modelling of windstorm footprints

Germany, where again the losses, L
25

and L
98

, are shown on a base 10 logarithmic

scale. Some small variations between the historical and simulated footprints ex-

ist, for example, in Germany a smaller proportion of higher L
98

losses occur in the

synthetic footprints compared to historical, while the opposite is true for France.

However, again, in general the distributions are very similar.

5.6. Conclusions

This chapter has presented the specification, fitting and validation of a spatial model

for the simulation of synthetic windstorm footprints. A geostatistical approach is

taken, which uses a function of the separation vector between locations to model

the spatial dependence throughout the domain. This approach is used for simplicity

and to reduce the computational expense of simulation compared to a multivariate

copula approach due to the large number of locations in the data set. Using this

approach also ensures asymptotic extremal independence between locations, as was

identified in Chapter 4.

The Matérn covariance model was initially fitted to the spatial data because the

extra shape parameter allows the data to specify the mean-squared di↵erentiabil-

ity of the process rather than being predetermined by the covariance model choice.

Problems arose initially, when fitting the isotropic Matérn covariance function using

the ML approach. A ridge in the likelihood surface identified a number of possible

parameter combinations with very similar likelihoods. It was found that the data

provided no information for distinguishing between parameter combinations along

this ridge in the likelihood because a relatively large weight was placed on small

separation distances in the likelihood function due to the large number of locations

in the data set.

The ⌫ = 0.5 Matérn covariance model, equivalent to the exponential covariance

model, gave the best fit to the binned empirical covariogram over a large range of

separation distances and was therefore selected over the other parameter combina-

tions along the ridge. The anisotropic exponential covariance function was shown

to be a better representation of the eastward transit of windstorms over Europe and

will therefore be used rather than the isotopic model. Including anisotropy param-

eters within the windstorm footprint model will also allow for greater variation in

the spatial dependence structure of simulated footprints in the sensitivity study in

the next chapter.

The best fit anisotropic exponential covariance model was not able to capture the
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5. Geostatistical modelling of windstorm footprints

dependence perfectly. However, the match with the empirical dependence structure

was generally very good considering the model was fit to the whole domain and not

individual pairs of locations.

This spatial model allows fast simulation of synthetic windstorm footprints. Firstly,

a Gaussian random field with the specified anisotropic exponential covariance model

is simulated. This random field is then transformed to left truncated GEV individu-

ally at each location using the marginal distributions and the empirical distribution

of wind gust speeds at that location. Using this methodology, a windstorm footprint

can be simulated in ⇡3 seconds.

The ability for this statistical model to produce realistic footprints was validated,

based on the 5730 historical footprints. The synthetic and historical footprints are

visually extremely similar and the relationship between the storm severity measures,

A and x
90

, found in the historical footprints are very well represented by the simula-

tion model. The multivariate loss distributions associated with the conceptual loss

functions introduced in Chapter 4, which represent the area that exceeds a dam-

age threshold, show that the synthetic footprints realistically represent joint losses

throughout the domain. The same validation was done for di↵erent regions within

Europe and showed that the model can also realistically represent losses and the

relationship between losses in these di↵erent regions.
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6. Sensitivity analysis of

windstorm footprint

characteristics and insured

losses

6.1. Introduction

The geostatistical windstorm footprint model, presented in Chapter 5, will now be

used in a sensitivity study to explore which of the model parameters, characterising

local intensity and spatial dependence characteristics of a footprint, are most influ-

ential on insured loss. In Chapter 3, it was shown that area of the footprint that

exceeds 25ms�1 over land was the best footprint storm severity measure at repre-

senting insured loss. This measure will therefore be used to approximate insured

loss within this sensitivity study.

Bonazzi et al. (2012) is one of the very few studies that have investigated wind-

storm loss sensitivity. They estimated the loss associated with 135 historical events

using the storm severity measure in Eqn (2.4), for the regions South-UK and West-

Denmark. For this pair of regions, they fitted two bivariate Gumbel extreme value

copula models to the estimated losses; one for events that occurred in a positive

North Atlantic Oscillation (NAO) phase, and one for events that occurred in a neg-

ative NAO phase. They used combinations of the storm frequency, intensity and

spatial dependence parameters from these two bivariate models to simulate losses,

and investigated how these parameter variations influenced the loss return period

curves. They found that the storm frequency parameter had most influence for

shorter return periods, while the spatial dependence parameter had most influence

for longer return periods.

This chapter will present a more thorough Sensitivity Analysis (SA) experiment,

using a formal methodology recently developed as part of the CREDIBLE project,

named PAWN (derived from authors names) (Pianosi and Wagener, 2015). Saltelli
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et al. (2004) defined SA as a method for exploring how the variability in the output

of a model can be apportioned to di↵erent sources of variability in the model input

parameters, i.e. the relative influence of each input on the output. SA techniques

are usually applied to deterministic models, where the output is completely deter-

mined by the input parameters. In other words, the same input produces the same

output when the model is rerun. However, the statistical windstorm footprint model

used in this investigation is stochastic: the same input will produce di↵erent out-

puts because of the inherent randomness due to the use of pseudo-random numbers

(Saltelli et al., 2008). This extra source of intrinsic variation will therefore also be

explored. This application of SA to a stochastic natural hazard model is novel with

no examples found in previously published studies.

This chapter addresses the following questions:

• How does the stochasticity of the windstorm footprint model a↵ect the SA

experiment?

• Are spatial dependence structure characteristics or the local intensity charac-

teristics of a footprint most influential on insured loss?

Firstly, the methodology used within this SA experiment will be introduced. The

above questions will then be addressed and the most influential footprint character-

istics identified.

6.2. Methodology

The parameters of the windstorm footprint model, presented in Chapter 5, can be

thought of in terms of those explaining the local distribution of wind gust speeds

at each location: the left truncated GEV location, µ, scale, � and shape, ⇠, and

those explaining the spatial dependence structure: the angle of rotation, ✓, the

longitudinal correlation scale, �
1

, and the latitudinal correlation scale, �
2

. The

windstorm footprint model f(·) uses a set of these input parameters to simulate a

synthetic footprint X:

f(µ, �, ⇠, ✓,�
1

,�
2

)“ = ”X = (X
1

, X
2

, ..., XJ)

where µ = (µ
1

, ..., µJ), � = (�
1

, ..., �J), ⇠ = (⇠
1

, ..., ⇠J) and J is the number of

simulation locations. Here, the same J = 14872 land locations as in the historical

footprint data set are used for simulation (see Section 2.3.1).

This chapter aims to investigate which input parameters have most relative in-
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6. Sensitivity analysis of windstorm footprint characteristics and insured losses

fluence on insured loss. This loss will be approximated by the area of the simulated

footprint exceeding 25ms�1 over land, shown to be the best footprint based storm

severity measure at classifying extreme insurance loss windstorms (denoted A in

Chapter 3), equivalent to the conceptual loss function L
25

.

loss(X) ⇡ L
25

(X) =
J
X

j=1

H(Xj � 25)

where H(n) is a Heaviside function, i.e. H(n) = 1 if n > 0 and H(n) = 0 if n  0.

The input parameters are varied and their relative influence on the loss is then

quantified. As previously discussed, f(·) is a stochastic model, meaning that the

same set of input parameters will produce di↵erent simulated footprints and result-

ing losses when the model is rerun. Therefore, the loss associated with each set of

input parameters used in the SA experiment is calculated as a summary statistic

of the losses from a sample of simulated footprints. The insurance industry is in-

terested in loss summary statistics such as Average Annual Loss (AAL), i.e. the

expected loss for a given year, and Maximum Annual Loss (MAL), i.e. the most

extreme loss for a given year:

AAL(µ, �, ⇠, ✓,�
1

,�
2

) =
1

M

M
X

m=1

loss(Xm)

MAL(µ, �, ⇠, ✓,�
1

,�
2

) = max
m=1,...,M

loss(Xm)

where M is the number of windstorm events per year. The relative influence of

the input parameters on insured loss will therefore be explored using AAL and

MAL. Including both AAL and MAL will provide an interesting comparison of

the influence of the parameters on di↵erent loss summaries. The historical footprint

data set used in this thesis consists of 5730 events which occurred over 33 winters,

therefore M = 174 ⇡ 5730/33 simulated footprints are used to represent a simulated

year. The values of outputs AAL and MAL may be sensitive to the sample of 174

footprints, or event set, used to represent a year. This source of variation will be

investigated and further discussed in Section 6.3.

Figure 6.1 illustrates the concept of SA by comparing how varying µ and ⇠ in the

footprint simulation model influences AAL. This scatter plot shows how µ has more

influence on AAL than ⇠ because AAL increases with µ but varies in magnitude

over the range of ⇠.

The application of SA in the environmental modeling community has increased
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Figure 6.1. Scatter plot of the change in µ and ⇠ and the resulting value of AAL,
represented by the diameter of the circle symbols. A change of 0.5, for example,
means the parameter is reduced by 50%.

significantly in recent years due to an increasing awareness of the importance of

uncertainty assessment in model-based decision-making, and the accessibility of suf-

ficient computing resources required for computationally demanding SA methods

(Pianosi et al., 2014).

The type of approach, level of complexity and purpose of SA can be very di↵erent

depending on the specific application. Systematic reviews of existing SA methodolo-

gies can be found in Pianosi et al. (2014), Norton (2015) and Saltelli et al. (2008).

SA methods can be classified as either “local” or “global”. Local methods focus

on a region of the input parameters around a point of interest, and hence assess

the model output sensitivity to small variations in the input parameters. Global

methods aim at assessing the overall output sensitivity across the whole credible

range of the input parameters (Norton, 2015). As explained in Pianosi et al. (2014),

global SA is used for a range of very diverse purposes, including: to support model

calibration, verification, diagnostic evaluation or simplification e.g. Wagener et al.

(2001); to prioritise e↵orts for uncertainty reduction e.g. Hamm et al. (2006); to

analyse the dominant controls of a system e.g. Pastres et al. (1999); and to support

robust decision-making e.g. Singh et al. (2014).

SA methods also use di↵erent sampling approaches to estimate the sensitivity in-

dices: either One-At-the-Time (OAT) or All-At-the-Time (AAT). In OAT, input

parameters are varied one at a time while keeping all others fixed; in AAT, all in-
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put factors are let vary simultaneously. AAT methods are therefore able to capture

interactions between input parameters. Anderson et al. (2014) demonstrated the

usefulness of global AAT SA methods in the area of integrated assessment modeling

for climate change economics. They noted that global AAT SA methods allow for

significant interactions to be identified explicitly, rather than simply acknowledged

or speculated upon, and the direction of the interaction e↵ect can be observed. Pi-

anosi et al. (2014), however, identified that AAT methods require more extensive

sampling and hence a higher number of model evaluations to provide robust results

compared to OAT methods.

Di↵erent SA methods are better suited to address di↵erent purposes. Saltelli et al.

(2008) specified 3 key purposes for SA:

• Ranking (or Factor Prioritisation) which aims to rank the model inputs ac-

cording to their relative contribution to the output variability;

• Screening (or Factor Fixing) which aims to identify which (if any) of the inputs

have no influence on the output;

• Mapping which aims to determine the region of the input space that produces

“significant”, for example extreme, model output values.

The primary purpose here is to rank the input parameters, in terms of their relative

influence on the output AAL and MAL, while accounting for possible interactions

between the input parameters. The global AAT SA method known as PAWN (Pi-

anosi and Wagener, 2015) is used within this investigation.

6.2.1. PAWN

PAWN is a density-based SA methodology. This means that the sensitivity of the

model output is investigated in terms of the whole output sample Probability Den-

sity Function (PDF) created when evaluating the model at various input parameter

settings, as appose to variance based approaches which only use moments of the

output sample. This therefore also allows for the selection of a particular part of the

output sample to be analysed, e.g. the upper tail. Density based SA methods are

not commonly used in the literature because they require the estimation of a large

number of empirical PDFs if multiple input values are to be explored, requiring a

great deal of computational expense and the arbitrary selection of kernel density

estimation bandwidths or histogram bin widths (Pianosi and Wagener, 2015).

The recently developed PAWN methodology characterises the model output sample

by its Cumulative Distribution Function (CDF) rather than its PDF. The advantage
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of this is that the empirical CDF (i.e. sorted output values) comes at little com-

putational cost and does not require any density smoothing parameters (Pianosi

and Wagener, 2015). The methodology is therefore very easy to implement and

Pianosi and Wagener (2015) also showed how the intermediate results generated in

the PAWN implementation procedure can be e↵ectively visualised to gain further

insights into the output behaviour.

The PAWN methodology characterises the sensitivity of the model output y to

a given input factor xi, as the distance between the unconditional empirical CDF

of output y across all input values, bFy(y), and the conditional empirical CDF of y

when xi is fixed and all other input parameters are allowed to vary, bFy|xi(y).

The unconditional empirical CDF, bFy(y) is calculated by evaluating the model at

a large number, Nu, of sets of input parameters. The conditional empirical CDF,
bFy|xi(y), is calculated by initially sampling n conditioning values of xi. Then for

each conditioning value of xi, Nc samples of the remaining input parameters x⇠i are

used to evaluate the model. The method used to sample the input parameter space

is discussed in Section 6.2.2.

This method of calculating the conditional empirical CDF requires n ⇥ Nc model

evaluations in addition to the Nu model evaluations used to calculate the uncondi-

tional empirical CDF. To save computational expense, Pianosi and Wagener (2015)

discuss an alternative approach for calculating the conditional empirical CDF which

uses the original sample of Nu input and output values used to calculate the un-

conditional empirical CDF. For this alternative method, which will be used in this

investigation, the conditional empirical CDF for a given input parameter xi is cal-

culated based on conditioning on ‘similar’ values of xi rather than a fixed value of

xi. That is, bFy|xi(y|xi 2 Ik), where Ik (k = 1, ..., n) are n (e.g. 10) equally spaced

intervals over the range of variation of xi, equivalent to conditioning on n values of xi.

Pianosi and Wagener (2015) noted that applying PAWN using this methodology

for calculating the conditional empirical CDFs rather than resampling and condi-

tioning on fixed values of xi is sub-optimal, and discussed their intention to carry

out further research to investigate the loss in accuracy.

For a given input parameter, xi, and conditioning interval Ik, the distance be-

tween the unconditional and conditional empirical CDF is quantified in terms of the

Kolmogorov-Smirnov (KS) statistic:

dKS(xi 2 Ik) = max
y

�

�

�

bFy(y)� bFy|xi(y|xi 2 Ik)
�

�

�
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and the resulting relative influence of input parameter xi on the output y, known as

the sensitivity index Ti, is a summary statistic of dKS(xi 2 Ik), calculated over the

k = 1, 2, ..., n conditioning intervals. The median was used by Pianosi and Wagener

(2015) and will be used in this investigation.
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Figure 6.2. (a) The unconditional empirical CDF (red) and conditional empirical
CDFs for n = 10 conditioning intervals, based on the input parameter xi=� and out-
put AAL for input parameter range 0.2�2.2 relative change (see Section 6.2.2), (b)
the Kolmogorov-Smirno↵ (KS) distance between the unconditional empirical CDF
and each conditional empirical CDF (the grey scale corresponds to the conditional
empirical CDFs in (a)). The blue line shows the median of these 10 KS distances,
representing the sensitivity index, Ti, for that input parameter.

Figure 6.2 (a) presents how these CDFs appear graphically for one input parameter

of the footprint model, xi = �, based on the output AAL. The di↵erent conditional

empirical CDF curves each represent one of the n = 10 conditioning intervals of

xi. The KS distances between the unconditional empirical CDF and each condi-

tional empirical CDF are presented in Figure 6.2 (b), and the median of these 10

KS distances (blue line) represents the sensitivity index Ti, quantifying the relative

influence of � on AAL.

Sensitivity indices Ti, i = 1, ..., r do not depend on the numerical value of the

input parameters. They vary between 0 and 1, with a lower value indicating less

relative influence, allowing for a direct comparison between input parameters.

This PAWN analysis is repeated multiple times for Nb bootstrap samples of the
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Nu input and output samples. The mean and 95% bootstrap confidence intervals

are used to quantify the input parameter space sampling uncertainty of the sensi-

tivity index.

A schematic for this workflow is shown in Figure 6.3.

Figure 6.3. The steps in the numerical implementation of the PAWN analysis.

The PAWN indices can also be calculated over a specific sub-range of the output

sample, e.g. the upper tail y > t, where t is a predefined threshold:

dKS(xi 2 Ik) = max
y>t

�

�

�

bFy(y)� bFy|xi(y|xi 2 Ik)
�

�

�

(6.1)

This calculation requires no new sampling or CDF calculation and is therefore ex-

tremely easy and computationally cheap to apply, a particular benefit of this SA

method. Within this investigation the relative influence of the input parameters on

the upper tail of the output sample of AAL and MAL will also be explored because

the most extreme values of these measures are of particular interest from a damage

point of view.
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6.2.2. Sampling the input parameter space

A Latin Hypercube (LHC) sampling scheme is used to create the Nu sets of in-

put parameters used in the PAWN SA experiment. LHC sampling is a stratified

random sampling technique which ensures all portions of each input parameter is

represented in the sample. As in the LHC sampling method explained by McKay

et al. (2000), the range of each input parameter is divided into Nu strata of equal

marginal probability, 1/Nu, and one value is sampled from each stratum. The Nu

sampled values of each input parameter are then matched at random. The advan-

tage of using the LHC method is that each input parameter range is represented

in a fully stratified manner, giving more reliable SA results. An example of a LHC

sample from a two-dimensional input parameter space, where Nu = 3000, is shown

in Figure 6.4.
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Figure 6.4. An example of a Latin Hypercube (LHC) sample for a two-dimensional
input parameter space where Nu = 3000.

For this investigation, the input parameter space will be sampled by generating

values that represent a relative change from the best fit parameters estimated in

Chapter 5, denoted pµ, p�, p⇠, p✓, p�1 and p�2 . Relative changes are used because

they have a straightforward interpretation and are directly comparable between in-

put parameters e.g. at di↵erent locations. The left truncated GEV parameters are

di↵erent for each grid cell, however the same relative change will be applied at all

grid cells, for example if pµ = 0.9 then all left truncated GEV location parame-
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Table 6.1.. Input parameter ranges used to explore the sensitivity of input parameter
ranking to this specification.
Input Parameter pµ p� p⇠ p✓ p�1 p�2

Parameter range 1 (0.2, 2.2) (0.2, 2.2) (0.2, 2.2) (0.2, 2.2) (0.2, 2.2) (0.2, 2.2)
Parameter range 2 (0.5,1.5) (0.5,1.5) (0.5,1.5) (0.5,1.5) (0.5,1.5) (0.5,1.5)
Parameter range 3 (0.7, 1.3) (0.7, 1.3) (0.7, 1.3) (0.7, 1.3) (0.7, 1.3) (0.7, 1.3)
Parameter range 4 (0.5, 2) (0.5, 2) (-2.2, 2.2) (-10, 10) (0.2, 2.2) (0.2, 2.2)

ters are decreased by 10%, throughout the domain. This means that only 6 input

parameter values need to be generated for each of the Nu samples from the input

parameter space.

The results of the SA experiments will depend on the range of the input parameters

used because the PAWN sensitivity index, T , is calculated as a statistic over the

range of the input parameter, the median (see Figure 6.2). For this reason, four sep-

arate PAWN SA experiments will be carried out, each with a di↵erent set of input

parameter ranges, to explore the sensitivity of the results to this parameter range

choice. Each experiment requires a new sample of Nu sets of input parameters and

therefore Nu model evaluations to calculate the output AAL and MAL. The input

parameter ranges used to test this sensitivity are shown in Table 6.1. Parameter

range 1 represents relative ranges from an 80% decrease and 120% increase. This

large interval is used to ensure that a wide range of possible model behaviour is

captured. The variation in the model parameters based on the relative changes in

Parameter range 1 is presented in Figure 6.5, showing that this range in the input

parameters results in a large variation in both the local wind gust distribution and

the footprint spatial dependence structure.

Parameter ranges 2 and 3 (Table 6.1) explore how the SA results change when

the input parameter ranges are reduced to a 50% and 30% increase or decrease

respectively. Parameter range 4 increases the range of input factors p⇠ and p✓. The

best fit values of ⇠ and ✓ are relatively small compared to the other parameters of

the model, therefore this set of relative change parameter ranges is used to explore

whether these two parameters have a greater relative influence on the model output

when varied more.

The variation in ⇠ and ✓ based on Parameter range 4 is presented in Figure 6.6. The

GEV shape parameter ⇠ varies between high positive values which will produce very

heavy tailed GEV distributions with no upper limit, to low negative values which
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Figure 6.5. Variation in footprint model parameters when input factors (a) pµ, (b)
p�, (c) p⇠ and (d) p✓, p�1 and p�2 apply a decrease of 80% (top row), apply no change
(middle row) and apply an increase of 120% (bottom row). The colour scale in (d)
represents the correlation between locations.

Figure 6.6. Variation in footprint model parameters when input parameters (a) p⇠
applies a change of �120% (top row), applies no change (middle row) and applies
an increase of 90% (bottom row), (b) p�1 and p�2 apply a decrease of 120% (top
row), apply no change (middle row) and apply an increase of 120% (bottom row),
and (c) p✓ applies a decrease of 1000% (top row), applies no change (middle row)
and applies an increase of 1000% (bottom row).
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will produce a GEV distribution with a low upper limit. The spatial dependence

rotation angle, ✓, varies from the longitude axis pointing north-west to south-east

to pointing south-west to north-east, therefore encompassing a much larger range in

spatial dependence angle.

PAWN SA requires the specification of n, Nu and Nb, which were selected by trial

and error in Pianosi and Wagener (2015). The values used in this investigation are

based on those used by Pianosi and Wagener (2015). They used n = 10 conditioning

intervals, Nb = 200 bootstrap samples and, for an example application, showed that

the sensitivity indices start to converge when Nu = 3000.

6.3. Exploring the e↵ect of stochasticity

The sensitivity of insured loss to changes in the footprint model input parameters

will be explored. The insured loss associated with a given set of input parame-

ters will be represented by the Average Annual Loss (AAL) and Maximum Annual

Loss (MAL), calculated based on a sample of 174 simulated footprints (see Section

6.2). AAL and MAL may be sensitive to the particular sample of 174 footprints, or

event set, used. This source of variation will depend on the realisation used, which

is determined by the pseudo-random number generator seed. In a global sensitivity

analysis experiment, Marrel et al. (2012) identified how a slight variation in the

random seed can lead to very di↵erent sensitivity results. To directly quantify the

relative influence of the event set used on the output of the model they treated

the pseudo-random number generator as an additional input parameter of the SA

experiment. Following Marrel et al. (2012), the same will be done here to quantify

the sensitivity of the measures AAL and MAL to the event set used. Since the

random seed can be any positive integer, with each seed setting creating a di↵erent

sequence of pseudo-random numbers, increasing the seed by a particular increment

does not have the same meaning as for the other quantitative input parameters of

the model. The seed will therefore be set as either 1 or 2 within the SA experiment.

The six footprint model input parameters are varied according to parameter range

1 (Table 6.1).
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Figure 6.7. PAWN indices for each of the model parameters pµ, p�, p⇠, p✓, p�1 and
p�2 (input parameters 1-6) and the random seed (input parameter 7) for output (a)
AAL and (b) MAL. The horizontal dashed line represents the Kolmogorov-Smirnov
critical value for a 95% confidence level.

Figure 6.7 shows the resulting PAWN indices, T
1

, ..., T
7

for each of the model pa-

rameters (input parameters 1-6) and the random seed (input parameter 7). The

PAWN index for the random seed is below the Kolmogorov-Smirnov critical value

at a 95% confidence level, meaning that the distance between the unconditional and

conditional empirical CDFs is not statistically significant. The choice of the ran-

dom seed therefore has negligible influence on AAL and MAL, relative to the other

input parameters. Using a di↵erent set of 174 simulated footprints would therefore

give similar SA results. The relative influence of the six model parameters will be

discussed in Section 6.4.

The results of this experiment indicate that only one event set needs to be used

to calculate AAL and MAL, for each input parameter setting, to give representa-

tive SA results. The sensitivity to the event set may, however, increase if a smaller

spatial domain were used due to the reduced a↵ect of the law of large numbers when

spatially summing over fewer locations.
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6. Sensitivity analysis of windstorm footprint characteristics and insured losses

6.4. Exploring the relative influence of footprint

parameters on Average Annual Loss (AAL)

and Maximum Annual Loss (MAL)

The intermediate results generated in the PAWN implementation procedure for AAL

and MAL using parameter range 1 are presented in Figures 6.8 and 6.9 respectively.

Figure 6.8. (a)-(f) for input parameters pµ, p�, p⇠, p✓, p�1 , p�2 respectively, top row:
scatter plot of input parameter against output AAL, with dashed lines showing the
partitions between the n = 10 conditioning intervals, middle row: the unconditional
empirical CDF (red) and conditional empirical CDFs for the n conditioning intervals,
bottom row: the Kolmogorov-Smirnov (KS) distance between the unconditional
empirical CDF and each conditional empirical CDF for the n conditioning intervals.
The blue line represents the median of KS over the n intervals and the dashed line
represents the KS critical value at a 95% confidence level. The grey scale in the
conditioning cluster partitions corresponds to the equivalent conditional empirical
CDF and KS distance.

The intermediate PAWN results are similar for the two model outputs, AAL and

MAL. The top rows of Figures 6.8 and 6.9 (a) show that both AAL and MAL

have a strong dependence on pµ, the relative change in the left truncated GEV

location parameter. This relationship is reflected in the large variation in conditional

empirical CDFs (middle row) and resulting KS statistics (bottom row), particularly

for large increases, pµ � 1.5. The input parameter p� also has some relative influence

on both AAL and MAL, although this relative influence is less than pµ in both
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6. Sensitivity analysis of windstorm footprint characteristics and insured losses

Figure 6.9. As Figure 6.8 but for output MAL.

cases. The input parameter p⇠ has a median KS statistic (blue line) just above/on

the KS critical value (dashed line) for AAL and MAL respectively showing that it

has a relatively small influence on the model outputs. However, these intermediate

results allow for the interpretation of the influence of input parameters for di↵erent

conditioning intervals. Figures 6.8 (c) and 6.9 (c) show that, for output AAL, the

individual KS statistics for each of the conditioning intervals indicate that p⇠ has an

influence on the output when less than 0.7 or greater than 1.5, representing a 30%

decrease and 50% increase in the left truncated GEV shape parameter. Similarly

for MAL, p⇠ has an influence on the output when less that 0.5 or greater then 1.6.

The input parameters p✓, p�1 and p�2 have negligible relative influence on the output

AAL, even for very large values, with median and all individual KS statistics below

the KS critical value. The relative influence of p�1 and p�2 is slightly higher for

MAL, although still almost negligible relative to pµ and p�. The resulting PAWN

indices T
1

, .., T
6

for AAL and MAL are shown in Figure 6.10 (a) and (e) respectively,

reflecting the summary of Figures 6.8 and 6.9.

Figure 6.10 shows that, for all four parameter ranges, the input parameters that de-

termine the local intensity of footprint wind gusts, pµ, p� and p⇠ (input parameters

1-3) have more relative influence on both AAL and MAL than the input param-

eters that determine the spatial structure of the footprints, p✓, p�1 and p�2 (input

parameters 4-6).

For both AAL and MAL the relative influence of p� increases as the parameter

ranges decrease, exceeding the relative influence of pµ for parameter ranges 2 and

168



6. Sensitivity analysis of windstorm footprint characteristics and insured losses

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a)

Input Parameter

T

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b)

Input Parameter

T

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c)

Input Parameter

T

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d)

Input Parameter

T

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(e)

Input Parameter

T

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(f)

Input Parameter

T

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(g)

Input Parameter

T

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(h)

Input Parameter

T

1 2 3 4 5 6

Figure 6.10. PAWN sensitivity indices for AAL (top row) and MAL (bottom row)
for input parameter ranges 1, 2, 3 and 4 in each column (a)/(e), (b)/(f), (c)/(g) and
(d)/(h) respectively. Parameter ranges are defined in Table 6.1. Input parameters
pµ, p�, p⇠, p✓, p�1 , p�2 are labelled 1-6 respectively. Boxes represent bootstrap 95%
confidence intervals and black lines represent the bootstrap mean. The dashed line
is the KS critical value.

3, for MAL and parameter range 3, for AAL. This indicates that both the left-

truncated GEV location and scale have the greatest relative influence on insured

loss. The relative influence of p⇠ remains low for parameter ranges 1-3 but slightly

increases for parameter range 4, for both AAL and MAL. This suggests that the

left-truncated GEV shape parameter, ⇠, has more influence on loss when allowed to

vary within a larger range.

The relative influence of the spatial dependence parameters are consistently neg-

ligible for AAL. This agrees with derivation in Appendix A.3, which shows that for

pairs of locations, irrespective of the loss function used, the expected loss (equivalent

to AAL) does not depend on the relationship between the locations. The spatial

dependence parameters have slightly higher relative influence on MAL and this in-

fluence is significant for parameter range 4, although still smaller than the relative

influence of the local intensity parameters.

Increasing the left-truncated GEV location or scale parameter shifts or extends

the local wind gust speed distribution upwards, increasing the probability of wind

gust speeds exceeding 25ms�1. These parameters therefore directly influence AAL

and MAL. The spatial dependence parameters have a more indirect e↵ect on the

exceedance of the loss threshold, possibly explaining their relatively low influence.
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Figure 6.11. PAWN indices associated with each of the 6 input parameters when
considering AAL (top row) andMAL (bottom row) greater than (a)/(d) 200, (b)/(e)
670 and (c)/(f) 1533. Boxes represent bootstrap 95% confidence intervals and black
lines represent the bootstrap mean.

Figure 6.11 shows the PAWN indices associated with each of the 6 input parameters

varied according to parameter range 1, when considering AAL and MAL greater

than predefined thresholds, as in Eqn 6.1: t = 200, the 90% quantile of historical

footprint areas, t = 670, the 99% quantile of historical footprint areas and t = 1533,

the maximum historical footprint area. The resulting PAWN indices show that as

the threshold increases and the analysis moves further into the upper tail of the

output sample of AAL, the greater the relative influence of pµ and the lesser the

relative influence of p� and p⇠. For MAL, the relative influence of p� remains high

as well as pµ. The left-truncated GEV location parameter is the most important

for determining extreme AALs and the left-truncated GEV scale parameter is also

important for determining extreme MALs.

Figure 3.12 (b) in Chapter 3 showed that the area of the footprint exceeding 25ms�1

over land sharply declined in the mid 1990s. The results of this SA experiment

imply that this decline was due to a change in the local intensity of footprint wind

gust speeds, rather than the spatial dependence structure. This can be validated
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6. Sensitivity analysis of windstorm footprint characteristics and insured losses

by fitting the windstorm footprint model to historical footprints in the two periods

before and after the observed drop, 1979-1996 and 1997-2012.

Figure 6.12. The di↵erence between the left-truncated GEV parameters µ, � and
⇠ in columns (a)/(d), (b)/(e) and (c)/(f) respectively, when fit to all land locations
in the European domain using all 5730 historical footprints and those in 1979-1996
(top row), and 1997-2012 (bottom row).

Figure 6.12 shows the di↵erence between the left-truncated GEV parameters at each

location over land, when fit to all 5730 historical footprints and when fit to those

events that occurred in the period 1979-1996 (top row), and 1997-2012 (bottom

row). The parameters for the period before the 1997 are approximately equal to

those fit to the whole data set for all locations over Europe. In the later period,

however, the location parameter is much smaller than when fitted to the whole data

set, particularly in the UK and north-west Europe, the region in which most extreme

wind gust speeds occur. This decrease in the location parameter is, however, slightly

compensated for by an increase in the scale parameter. The shape parameter is also

lower in this region for the later period, implying that the upper limit of the local

intensity distributions are lower in this period.

Figure 6.13 shows the empirical binned covariogram when the spatial domain is

transformed using the spatial dependence parameters fit to all the 5730 historical

footprints (black circles), those in 1979-1996 (turquoise squares), and 1997-2012

(pink triangles), which should be well modelled by the unit range exponential co-

variance function. The transformed empirical binned covariances are consistent for

the three periods, showing that the spatial dependence parameters have not changed
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6. Sensitivity analysis of windstorm footprint characteristics and insured losses

Figure 6.13. A comparison of the empirical binned covariogram when the spatial
domain is transformed using the spatial dependence parameters, �

1

, �
2

and ✓, fit
to all of the 5730 historical footprints (black circles), those in 1979-1996 (turquoise
squares), and those in 1997-2012 (pink triangles).

in these historical periods.

This comparison of historical time periods has shown that the lull in windstorm

footprint area and insured loss (Mark, 2013) is indeed due to a change in the local

intensity of footprint wind gust speeds and not a change in the spatial dependence

structure of windstorm footprints.

6.5. Conclusions

A formal SA experiment has been carried out to explore which windstorm footprint

model parameters have the greatest influence on insured loss, represented by the

average annual and maximum annual footprint area exceeding 25ms�1, AAL and

MAL. PAWN, a global All-At-the-Time density-based SA methodology, was used

for this investigation.

Both model outputs AAL and MAL, used to represent loss due to the stochastic-

ity of the footprint model, were found to be insensitive to the sample of footprints

used to represent a given year, determined by the pseudo-random number generator

value. This meant that only one event set was needed to calculate AAL and MAL,

for each set of input parameters within the SA experiment to give representative
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6. Sensitivity analysis of windstorm footprint characteristics and insured losses

results.

For all four parameter ranges presented, the input parameters that determine the

local intensity of footprint wind gusts, pµ, p� and p⇠ had more relative influence on

both AAL and MAL than the input parameters that determine the spatial struc-

ture of the footprints, p✓, p�1 and p�2 . This result was consistent for the upper tail

of the output samples of AAL and MAL, suggesting that the left-truncated GEV

parameters are also most important for determining very extreme losses.

The windstorm footprint model was fitted to events before and after the observed

sharp decline in the area of the footprint exceeding 25ms�1 over land in the mid

1990s. The spatial dependence structure remains constant throughout the period,

while the left-truncated GEV location and shape parameters are lower in the later

period, reducing the local intensity of wind gust speeds, particularly in the UK and

North-west Europe. The recent lull in insured losses can therefore be attributed to

a change in the local intensity of footprint wind-gust speeds, rather than a change

in the spatial dependence structure.
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This chapter summarises the main results of this thesis and suggests possible direc-

tions for further development.

7.1. Summary

In Chapter 3, it was shown that the storm severity measure quantifying the area of

damaging wind gust speeds over land (> 25ms�1) was the best footprint classifier

of insured loss. This measure was shown to outperform the spatial 90th percentile

wind gust speed, a measure of the footprint peak intensity, and the loss function

severity measures, most commonly used in previous studies. Including the magni-

tude of the exceedance of the damage threshold and population density, as a proxy

for exposure, within the severity measure was shown to be detrimental to the re-

lationship between the measure and insured loss. In addition, using a relative or

absolute threshold made very little di↵erence when relating the loss function severity

measures to insured loss. A composite severity measure, the product of the foot-

print area and the cube maximum 925hPa wind speed along the track, was shown

to give the best overall representation of insured loss, both using raw footprints

and disaggregated footprints. This composite measure was therefore used to se-

lect the extreme storms for the XWS catalogue. Furthermore, it was shown that

the composite severity measure and footprint area (conceptual loss) experienced a

sharp decline in the mid 1990’s, consistent with the decline experienced in wind-

storm related insured losses (Mark, 2013). This exploration was novel because the

conclusions represent the whole of Europe and were based on a large data set of

5730 high resolution windstorm footprints.

In Chapter 4, the left-truncated GEV was shown to be a reasonable model for the

marginal distribution of footprint wind gust speeds exceeding the 60th percentile

at each location over land in the European domain. Wind gust speeds at pairs of

locations throughout the domain were found to be asymptotically independent. The

Gaussian copula was found to provide a good model for the bivariate dependence

between locations and outperformed the Gumbel copula proposed by Bonazzi et al.
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(2012). The GEV-Gaussian bivariate copula model was able to realistically repre-

sent bivariate conceptual losses for pairs of locations throughout the domain.

In Chapter 5, the dependence between all Gaussian transformed wind gust speeds

were shown to be well captured using a geostatistical covariance function of sepa-

ration distance and direction. Problems arose when fitting the Matérn covariance

function. A ridge in the likelihood surface identified a number of possible param-

eter combinations with very similar likelihoods. It was shown that this ridge was

caused by a relatively large weight being placed on small separation distances in the

likelihood function due to the large number of locations in the footprint data set.

The best fit was shown to be achieved when the Matérn covariance function shape

parameter was 0.5 (equivalent to an exponential covariance function). Windstorm

footprints were therefore modelled as non-di↵erentiable, rough spatial processes.

An anisotropic covariance function was found to better represent the most common

eastward transit of windstorms over Europe. The geostatistical windstorm footprint

model was shown to realistically represent joint conceptual losses for all locations

and individual countries in Europe.

In Chapter 6, it was shown that the left-truncated GEV parameters of the geosta-

tistical model, rather than the geostatistical spatial dependence parameters, have

a greater influence on loss, represented by Average Annual Loss (AAL) and Maxi-

mum Annual Loss (MAL) due to the stochasticity of the footprint. This was true

for all loss values and the most extreme losses. This conclusion was found to be

robust to variations in the input parameter ranges used. As a consequence, when

the windstorm footprint model was fit to historical footprints in the two periods,

before and after the observed decline in conceptual loss in the mid 1990’s, the spatial

dependence structure of footprints was found to remain constant throughout the pe-

riod, while the left-truncated GEV location and shape parameters were lower in the

later period, particularly in the UK and north-west Europe, leading to the observed

decrease in storm severity. This was a novel application of sensitivity analysis to a

stochastic natural hazards model.

7.2. Directions for further development

The exploration of the relationship between storm severity measures and insured loss

in this thesis was based on how successful each severity measure was at classifying

notable storms that caused large insured losses. This investigation could possibly

be improved by using quantitative insured loss values. However, insured loss data

is hard to acquire, for example Klawa and Ulbrich (2003) were only able to obtain
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losses for Germany for 11 extreme windstorms. A fully rigorous validation would

necessitate the availability of a European wide insured loss values for each of the

5730 windstorm events in the data set, however any available loss data could be

used to further validate the conclusions of the investigation.

As discussed in Section 2.3.1, the model generated windstorm footprint data used

throughout this thesis underestimate wind gust speeds in excess of 25ms�1 and in

locations above 500m altitude. These biases occur because the footprints are created

by dynamically downscaling reanalysis data which is created by combining atmo-

spheric observations with a climate model which represents sub grid cell scale wind

gust speeds using a gust parameterisation scheme. This bias in the footprint data

used could influence the results of this investigation. For example, if the wind gust

speeds exceeding 25ms�1 were correctly modelled, increasing the footprint intensity

in places, the spatial variation in the footprint wind gusts would increase and the

excess gust speed and population density could therefore be more important within

the storm severity measures in Chapter 3. The biases in model generated wind

gust speed data are also often largest along the coasts (Della-Marta et al., 2009),

where a large proportion of the population live i.e. along the south coast of the UK

and north coast of mainland Europe (Figure 2.3). Again, this suggests that more

realistic wind gust speeds could increase the influence of population density. This

could potentially be explored in a sensitivity analysis study, by increasing the local

marginal distribution parameters around the coast and observing the change in the

population density a↵ected by simulated footprints. Alternatively, the footprints

could be bias corrected using the method developed in Roberts et al. (2014), and

the storm severity measure exploration repeated based on these corrected footprints.

Further research is also required to understand how the analysis is e↵ected by the

uncertainty in the model generated footprints. These uncertainties arise from the

various models and algorithms used to produce the footprints. The footprints may

be di↵erent if an alternative reanalysis data set were used; if the reanalysis were

initialised using slightly di↵erent initial conditions; if a di↵erent downscaling tech-

nique were used; if a di↵erent storm tracking algorithm were used; or if a di↵erent

windstorm duration were specified, for example. The sensitivity of the analysis to

these sources of uncertainty could be explored by varying these factors and observ-

ing the change in the results of the investigation. This exploration would require

collaboration with the scientists that produced the windstorm footprint data but

could provide vital information about the uncertainty in the conclusions of the in-

vestigation.

In some of the storm severity measures explored in Chapter 3, a spatially varying
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damage threshold was used to represent the adaptation to local wind gust speed cli-

matology. It could also be thought that this damage threshold may vary with time,

depending on how the wind gust speed climatology varies throughout the period.

Incorporating this within the storm severity measures, may, however be challenging

since it requires the identification of a time window for which it takes a location to

adapt to the local conditions. In addition, this period may even be longer than the 35

year period used here since buildings are not often updated. A time varying damage

threshold may therefore be more appropriate when a much longer period is explored.

Within the windstorm footprint model, the marginal left truncated GEV distri-

butions are fit above a spatially varying threshold. Again, a temporally varying

threshold could be useful here to represent the non-stationarity in wind gust speeds

at each location over the period, evident in the decline in storm severity since 1996.

This would ensure that all temporally local extremes are modelled, rather than just

the overall extremes from the period, which may be biased towards the earlier half

of the period. This would add an additional level of complexity to the model, how-

ever, since the GEV parameters would vary in time as well as space. Alternatively

a preprocessing method, such as in Eastoe (2009), could be used to transform the

non-stationary wind gust speed time series at each location to stationary, allowing

them to be modelled as such.

Footprint wind gust speeds were found to be asymptotically independent through-

out the domain. The Gaussian copula was therefore used to model the dependence

between pairs of locations based on its simplicity and extendability to a spatial Gaus-

sian process. An alternative approach would be to test the more complex conditional

dependence model proposed by He↵ernan and Tawn (2004), which incorporates both

classes of extremal dependence and is extendable to multiple dimensions. Extending

the He↵ernan and Tawn (2004) model to represent all 14872 locations in the data

set would be a challenge since a very large number of parameters would need to be

estimated (four parameters for each pair of locations). This would make the model

more computationally expensive for simulation. Max-stable processes, much like

Gaussian processes, represent the multivariate dependence using a spatial process

with only a few parameters for the whole domain. Currently, however, max-stable

models are too coarse to accurately describe tails of multivariate distributions with

asymptotic independence and can therefore only be used to model asymptotic de-

pendence or complete independence. Ongoing research aims to develop max-stable

models that are able to represent both classes of asymptotic dependence (Wadsworth

et al., 2015). Once these types of models have been developed, they could form a

preferable and more flexible basis for modelling windstorm footprints.
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The results of the sensitivity study could be further validated using additional sen-

sitivity analysis methods, i.e. methods discussed in Pianosi et al. (2014). The local

wind gust speed marginal parameters were shown to have more influence on loss

than the spatial dependence parameters. This conclusion may be sensitive to the

way in which loss is represented. Here the footprint damage area is used because it

is shown to be the best footprint based representation of insured loss in Chapter 3,

however it would be of interest to explore the sensitivity using other storm severity

measures e.g. x
90

or the Klawa and Ulbrich (2003) loss function.

There are therefore a number of ways that the investigation presented in this the-

sis could be developed in the future. In particular, there are still many interesting

opportunities for the statistical modelling of windstorm footprints.
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A. Extremal dependence measure

calculations and properties

A.1. Calculating the extremal dependence

measures using the GEV-Gaussian and

GPD-Gumbel bivariate copula models

A simulation method is used to calculate the extremal dependence measures and

their confidence intervals for the GEV-Gaussian bivariate model. For a given pair

of locations, with estimated dependence parameter ⇢, 6000 data points are simu-

lated from the corresponding bivariate Gaussian distribution 1000 times. One such

simulation will produce a set of bivariate Gaussian data:
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Where I(a) is an indicator function that takes the value 1 if a is true and 0 other-

wise. For each u 2 (0.6, 1), the 95% parametric bootstrap interval is evaluated as

the 2.5% and 97.5% quantiles of the extremal dependence measures calculated from

the 1000 simulations from the bivariate Gaussian distribution.
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For the Gumbel copula, �(u) and �̄(u) are evaluated using the joint survivor function

for the Gumbel copula for u > H�1
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Where C is the Gumbel copula, defined in section 4.4.1.

A.2. Showing that the extremal dependence

measures are independent of the marginal

distributions

Let �X(u) and �̄X(u) be the measures of extremal dependence in the raw wind gusts:
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A. Extremal dependence measure calculations and properties

A.3. Showing how the bivariate expected loss

does not depend on the relationship between

locations

Interestingly, it can be shown that for two locations s
1

and s
2

the expected loss,

irrespective of the conceptual loss function used, does not depend on the relationship

between the locations. Let

p
1

= Pr(X
1

> t
1

) =
a+ c

n

p
2

= Pr(X
2

> t
1

) =
a+ b

n

� = Pr(X
2

> t
2

|X
1

> t
1

) =
a

a+ c

where a, b, c are defined as in Figure 3.9 and n is the total number of events. Then,

shortening L(s
1

, s
2

) to L, for any loss function,

Pr(L = 1) =
c+ b

n
= p

1

+ p
2

� 2�p
1

Pr(L = 2) =
a

n
= �p

1

Then,

(L) = 1Pr(L = 1) + 2Pr(L = 2)

= p
1

+ p
2

� 2�p
1

+ 2�p
1

= p
1

+ p
2

= Pr(X
1

> t
1

) + Pr(X
2

> t
2

),

so the expected joint loss only depends on the probability of a loss occurring in each

location and does not depend on the dependence relationship between the locations.
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B. Covariance model properties

B.1. Mean-square Properties

Definition taken from Diggle and Ribeiro (2007): a stochastic process Z(s) is mean-

square continuous if E[(Z(s+d)�Z(s))2] ! 0 as d ! 0. Also, Z(s) is mean-square

di↵erential, with mean-square derivative Z 0(s), if

E

"

✓

Z(s+ d)� Z(s)

d
� Z 0(s)

◆

2

#

! 0

as d ! 0. Higher-order mean-square di↵erentiability is then defined sequentially,

i.e. Z(s) is twice mean-square di↵erentiable is Z 0(s) is mean-square di↵erentiable,

and so on.
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Pardo-Igúzquiza, E., 1998: Maximum likelihood estimation of spatial covariance

parameters. Mathematical Geology, 30 (1), 95–108.

Pastres, R., K. Chan, C. Solidoro, and C. Dejak, 1999: Global sensitivity analysis

of a shallow-water 3D eutrophication model. Computer Physics Communications,

117, 62–74.
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