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Abstract

A numerical model is presented. The model represents a single shallow wa-
ter layer of constant density. The model is based upon the semi-geostrophic
(SG) equations sometimes called the geostrophic momentum approximation
(GM), an equation set which does not support gravity waves. These equations
are intermediate in accuracy between the quasi-geostrophic (QG) equations
and the shallow water equations. In contrast to the more common QG equa-
tions the SG set is valid for large layer thickness perturbations. The SG set
also has the advantage over many other balanced sets in applying the exact
kinematic boundary condition of no normal flow at solid walls rather than
imposing conditions such as no normal geostrophic flow, which is an error of
order Rossby number.

The model we describe is based around a predictor-corrector approach. It
is first developed and tested for cases with strictly positive layer thickness.
The model is then modified to cope with zero layer thickness (‘outcropping’).
A flux limiting scheme is used to prevent regions of negative mass from being
formed.

Although we emphasize the numerical formulation, we compare our model
results with the analytic outcropping solutions of Parsons(1969) and the nu-
merical solutions of Bogue, Huang and Bryan(1986) and Huang(1986). Good
agreement is observed. Finally the model is used to look at a situation where

both inertia and outcropping are important.



1 Introduction

A major deficiency of many previous idealised ocean models has been their
neglect of non-linearities in either (or both) the momentum equations or the
continuity equation. For example the quasi-geostrophic equations include iner-
tial non-linearity, but ignore much of the non-linearity associated with change
in isopycnal layer thickness. Much recent interest has been shown in intermedi-
ate models (e.g. Gent and McWilliams 1983, Allen et al. 1990). These remedy
this difficulty by choosing a balance intermediate between quasi-geostrophic
equations and the primitive equations while using a better approximation to
the continuity equation.

In this paper the shallow water form of the semi-geostrophic equations
(sometimes called the geostrophic momentum approximation equations (Eliassen
1948) ) is used as a basis for a numerical ocean model. These equations have
the properties of retaining most of the non-linearity in the momentum equa-
tions while including all of the non-linearity in the continuity equation. They
also do not support gravity waves. The shallow water form is a prototype for
a many layer isopycnal model (e.g. Bleck and Boudra 1986). The model is
intended for, though not restricted to, highly idealised studies of a rectangular
ocean on a beta plane. The technique can be applied to many other balanced
equation sets. The model we describe is capable of modelling the outcropping
of density surfaces as occurs when the thickness of the shallow water layer
becomes vanishingly small.

Allen et al.(1990) and Barth et al.(1990) have recently evaluated many in-
termediate models in both analytic and numerical situations. They plotted the
Rossby number against error (the difference between the balanced solution and
the solution to the primitive equations). In the specific cases they studied the
semi-geostrophic equations perform relatively poorly. But they did note that
the accuracy of the semi-geostrophic approximation was mostly unchanged as

layer thickness variations increased, whereas many of the other intermediate
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models performed increasingly badly. The semi-geostrophic equations differ
from most other balanced models studied by Allen at al. and Barth et al. in
relying only on the smallness of the Lagrangian Rossby number. In some cases
this can differ greatly from the Eulerian Rossby number which is required to
be small for other balanced models. This suggests that the Eulerian Rossby
number used in the studies of Allen at al. and Barth et al. is not necessarily
the most important parameter in studying the accuracy of balanced models,
other choices are clearly possible.

We consider the semi-geostrophic equations to be an interesting set to
integrate not least because of the unambiguous way in which the boundary
conditions are applied. Many other sets of intermediate models require the
kinematic boundary condition to be partitioned between either the geostrophic
and ageostrophic flow (e.g. the quasi-geostrophic equations) or between the ro-
tational and divergent flow (e.g. McWilliams et al. 1990). The frequently used
boundary conditions of imposing both streamfunction and velocity potential
to be constant is an order Rossby number error. Much of our ultimate in-
terest is in solutions where the layer thickness varies greatly over the basin.
The boundary conditions are vital in these situations. The semi-geostrophic
approximation formulation used here imposes the exact kinematic boundary
condition of no normal flow at solid walls.

The semi-geostrophic equations have useful analogues of the conservation
laws for energy, vorticity and potential enstrophy on an f-plane. Moreover
existence and uniqueness proofs (Cullen and Purser 1989) and the many prop-
erties of the differential equations on an f plane make the set well posed and
mathematically tractable. In situations where the Coriolis parameter varies
spatially there are several semi-geostrophic options. Salmon (1985), Shutts
(1989) and Magnusdottir and Schubert(1990) have all introduced forms of the
semi-geostrophic equations which all limit to the original set if f is constant.

Here we choose a simpler option. We retain the original semi-geostrophic



momentum equations and allow the Coriolis parameter to vary spatially.

In this paper we present a finite difference numerical model of the ocean
based upon the shallow water form of the semi-geostrophic momentum equa-
tions. The model can cope with the shallow water layer disappearing and is a
one layer version of a multi-layer isopycnal ocean model. The main purpose of
this paper is to demonstrate the numerical techniques and to verify the accu-
racy of the model in some sample steady situations. We will also extend some
of the outcropping results of Bogue et al.(1986) into regimes with greater iner-
tial non-linearity. Future papers will apply this model to study new physical

situations.

1.1 The Semi-Geostrophic Approximation

The semi-geostrophic approximation was first introduced by Eliassen(1948).
Hoskins(1975) derived these equations from a consistent approximation and
applied them in suitably transformed coordinates. These equations are ob-
tained by replacing the full momentum in the horizontal momentum equations

by the geostrophic momentum. In shallow water form, the equations are

Du,
—DT-—f'v+fvg-0,, (1)
Dv
ﬁ-{—fu—fu,:O, (2)
where the pressure gradients have been replaced with geostrophic velocities
given by,
oh
fvg v g'a_z) (3)
6h
-Jy = Q‘Fy'- (4)

where g’ is the reduced gravity and f, the Coriolis parameter, is allowed to

vary. The continuity equation is the shallow water form

Dh
E-*—hV-g:O. (5)



for a layer of constant density and thickness h. Where

D 0 0 0
E—E‘E+u5;+v—a?- (6)

The semi-geostrophic approximation is obtained in the limit where the

Lagrangian Rossby number is small, that is

(38|

o = ol i
g D 11D
ifi% < 1. 8)

see Hoskins (1975)

These conditions are atypical for balanced models, which normally require
small Eulerian Rossby number (e.g. McWilliams and Gent 1980). The accu-
racy of these equations is independent of the stratification. The more common
quasi-geostrophic equations linearise about about a constant layer thickness,
this is not necessary here. These equations are hence capable of representing
isopycnal surfacing and separation processes such as occur in the Gulf Stream.

The equations have the following properties.
e They conserve energy.

e Boundary conditions can be applied at solid boundaries in a natural

manner.

e They have the full continuity equation for a single shallow water layer

of constant density. This allows us to study situations allowing outcrop-
ping.
e They do not support gravity waves.
Although we are interested in integrating these equations forward on a beta

plane, in the special case of an f-plane the equations have the following addi-

tional properties.



e They conserve analogues of potential vorticity and potential enstrophy.

o They have existence and uniqueness proofs (Cullen and Purser 1989).

No diffusion is required to close the equations.
e They can be derived from the Hamiltonian (Salmon 1985).

A consequence of the variable Coriolis parameter is that there is no vor-
ticity conservation law, hence we cannot use the semi-geostrophic coordinate
transform of Hoskins(1975).

We instead choose a predictor-corrector approach similar to that used by
(Cullen 1989a) to integrate the momentum, continuity and geostrophic bal-
ance equations forward in time. Other authors (Salmon 1985, Shutts 1989,
Magnusdottir and Schubert 1990) have introduced semi-geostrophic equations
which in the limit of constant f are the equations (1 — 6) but which maintain
a conservation law for vorticity in the case of a variable Coriolis parameter.
These sets can be integrated forward in time using the coordinate transform
of Hoskins(1975). We were unable to develop a stable numerical scheme using
this approach because solid ocean walls are not stationary in the transformed
coordinate system.

The approach used here can be applied to many other balanced sets with
minimal difficulty. In particular the approach used here to solve our equations
could very simply be modified to solve the Shutts equations. Qur choice of egs.
(1- 6) is motivated by their closer resemblance to the shallow water equations,
than any of these other sets. It is also easy to see how to write these equations
in many layer form or with a different vertical coordinate (e.g. height or o),
and that extensions to a full ocean model with many vertical layers (or levels)

are relatively simple.



2 Integration of the Semi-Geostrophic Equations

The equations are to be solved in a rectangular basin with a prescribed wind
forcing distributed over the thickness of the layer. The momentum sink is of
linear drag form acting upon the geostrophic velocity only. This closes the
energy equation and represents dissipation by vertical shearing of horizontal
velocities. This formulation is used to guarantee that the drag always acts to
reduce the energy (Cullen 1989b).

In this paper we look mostly at a sub-tropical gyre representing the north
Atlantic. Various values of stratification, §vind and the Coriolis parameter are
studied.

Before we describe the solution technique, it is useful to write the equa-
tions in non-dimensional form. The semi-geostrophic equations (1-6) are first
written in mass transport form (i.e. where egs. 1 and 2 are multiplied by A
and the velocity v substituted by the mass transport V. = vh). Our numerical
model is formulated using mass transport as a prognostic variable. Source
terms representing the wind and linear drag friction are then introduced into
the z and y momentum equations respectively as (7, — €uy) and (7, — €vg).
With this form of dissipation only one boundary condition (no flow through
walls) is required at the basin edge. No condition is required on the tangential
flow.

Scales are specified for V,v,,h,t,z and f as (voho),vo,ho,fo 1 L and fo re-

spectively. The semi-geostrophic equations in non-dimensional variables be-

come
h% % ROU% + RV %‘;" — 'V + flogh = Tyt — €y (9)
h% - ROU% + ROV%‘% + f'U = flugh = 77y, — €, (10)
%’;‘+R,(%§+%%)=o (11)
Rof'vg = Bug (12)
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— Rof'ug = Bup- “By (13)
where
R,= =, (14)
fo
is the Rossby number and ;
B %’1’%, (15)

is the Burger number, a measure of the stratification. The number

i — :f?h; (16)

is the non-dimensional coefficient of linear drag, wind forcing is non-dimensionalised

using

TMTL =

o hofz(z '¥) (17)

Ty(2,Y) (18)

]
‘rM‘ry

fov ho

where 7.(z,y) and 7(z, y) are the dimensional wind stresses, 7a is a constant
and 7, and 7, are order one functions of space.

Choosing fo = BL to help the physical interpretation of non-dimensional
parameters gives f' = v + y' where v = frer/BL, a measure of the variation
of f over the basin, 3’ is the non-dimensional latitude and frgr is f where
y' = 0. This choice of fo also leads to R, = (L1/L)?, By = (L,/vL)? and
¢ = L./L where L1, L,, L. and L are the inertial length scale (= (vo/ﬂ)l/z),
the Rossby radius (= v/gho/fREF), the scale of a frictional boundary current
(= €/Bho) and the length of the basin respectively.

We choose to scale the velocity using the maximum Sverdrup transport,

for the wind stress (7, = —7o cos(7y/L), Ty = 0) then

1!'7'0

Pvoho ~ —— (19)

and

1
TMTL = oo cos(ry') (20)



2.1 The Finite Difference Equations

Here we present the finite difference equations to be solved, the grid they are
to be solved upon and the boundary conditions they have.

The variables are arranged on the grid (fig. 1) which has Nx h points
in the z direction and Ny h points in the y direction. The grid lengths in
the z and y direction are Az and Ay respectively such that Az = 1/(Nx)
and Ay = 1/(Ny). The mass transport is calculated on an Arakawa ‘C’ grid
(Arakawa, 1972), and the geostrophic velocities on the Arakawa ‘D’ grid. This
choice has the advantage of representing redistribution of mass accurately
while being a natural grid for the evaluation of geostrophic pressure gradients,
but it has the disadvantage of averaging the pressure gradient terms of the
momentum equations.

The discretised variables will be denoted by A7, which is the value of the
variable A at the ith grid point in the z direction and the jth grid point in the
y direction at the time nAt where At is the time step. We define the usual

delta and bar finite difference operators

R T
6:44 Al ( +1/2.JAm 1/2.]) (21)

and
Air172,5+ Aic1)2,5
2

4= (22)

with the obvious equivalents in the y direction and 6, A being the equivalent
of ;A over 2 grid lengths. Variables with no time labels are assumed to be
at time level n. The time scheme we use is an Euler step for the first time
step followed by a leapfrog scheme for all subsequent steps. An Asselin-Robert
time filter (Asselin 1972,Robert 1966) is used at the end of each step on u,
vy and h to remove the computational modes of the leapfrog scheme. The
non-linear (advection) terms are written in a quadratic conservative form so
that momentum(hu,) is changed by a flux type equation and the friction term

is calculated from values at the new time step. This is to enhance numerical
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stability especially as h approaches zero. The finite difference equations we

solve are
TV untl _ gyn-1 . ' e ' 1 ;
8 _E—E—A—tg_ +R°Uv6’u9 +V (Rob2yug—f')+f"vg = —¢€ u:+ +TMT,
(23)
I M +U(RL6 +f' +R.V6 —_ﬁl—?v?——e'v"“-{--r i
2A¢ (Robravy+ f')+ RV b0, — Fig Vh" = —vl+! 4
(24)
pntl _ pn-1 y ; ; i
(_2At—-) + Ro( :U + yV) = ( )
= Rof""a 4+ B,6:h =0 (26)
Roflug + Bugyh =0 (27)

So that egs. (23) and (27) are evaluated at uy points on the grid, (24) and
(26) are evaluated at v, points and (25) is evaluated at A points.

The boundary conditions are that there is no mass flux through the walls.
This is a significant advantage over many other balanced models which ei-
ther impose conditions on the geostrophic velocity at the boundary (e.g. the
quasi-geostrophic equations impose v,.7 = 0) or false conditions upon the di-
vergent or non-divergent parts of the flow (e.g. McWilliams et al. 1990 who
impose both streamfunction and velocity potential as zero). These alternative
boundary conditions are often in error at order Rossby number. This becomes

especially important as the layer thickness variation increase.

2.2 Solving the Finite Difference Equations

The technique used to solve these equations is somewhat similar to that used
to solve the Navier-Stokes equations, where the pressure is corrected to en-
sure that the velocity divergence is zero at the new time step (Williams 1969).
Here, following Cullen (1989a), we correct the full mass transports to enforce
geostrophic balance between the pressure and geostrophic velocities at the new
time level. The eqgs. (23-27) form a closed set of 3 prognostic and 2 diagnostic

finite difference equations in five variables. The 3 prognostic equations give
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new values of ug, vy and h. But there is no prognostic equation for new values
of the full mass transports U and V. Therefore an implicit equation has to be
solved, at some point in the procedure, for the new values of these variables.
The values of U and V required are those which make the prognostically cal-
culated variables ug, vy and h satisfy the 2 diagnostic definitions of geostrophic
balance, eqs.(26) and (27), at the end of the time step.

This numerical scheme works in two stages, first ensuring that v, and
6-h satisfy eq.(26) by adjusting U, and then by ensuring that u, and 6 h
satisfy eqn. (27) by adjusting V and repeating until satisfactory convergence
is obtained.

The scheme is similar to solving equations (23 -27) by alternating direction
implicit (ADI) methods or by line relaxation in the Gauss-Seidel approach. To
demonstrate the technique we describe one iteration.

Evaluation of U consists of making a guess for v, and h using values from
the previous time steps, and finding the small changes in U which would
enforce geostrophy in these new fields if v, and h were recalculated using
egs.(24 and 25).

At the end of the previous time step (n) all the fields (u7,vy,h",U and
V) are known and the diagnostic relations (26 and 27) have been satisfied by
these geostrophic velocities and layer thickness fields. These variables and the
ones from the previous time step (n — 1) are then used in (24 and 25) to get
trial values of v, and h at the new time level (n + 1). These values will be
denoted here by ‘v# and h#. This trial step can be written

v# B vn—l 1 st
? ( 2Atg ) + U(Ro&Z:vg + fl) + Rovzb.vvg - Wh = '—6,'0’# + TMTL
(28)
AL ) + Ro(6:U +6,V) =0 (29)
At boundaries we do not integrate for the geostrophic flow parallel to the

(h# — k!

wall so that where U = 0 , v, is not calculated and at a wall where V =0, u,

is not calculated. Where boundary values of uy and v, are needed to evaluate

12



the non-linear terms in the momentum eqs. (23 and 24) they are linearly
extrapolated from the interior values. This is equivalent to side differencing.

Since the mass transports (U, V) are from the previous time step (or iter-
ation) it can be seen that in general the values given by (28) and (29) do not
satisfy the geostrophic balance relation (27). Namely

— Rof'v¥ + Bubzh* = Ry #0 (30)

Where R; is known as the residual and is evaluated at vy points on the grid
(fig. 1). The task now is to find the small changes to U so that if this step is
redone R; is zero.

For a given change in the mass transport (6U),the change in the result of
the prognostic steps (28-29) is given by linearisation. This results in

R
(2_& e e') §vg + 6U(Robazvg + f) = 0 (31)
(;ﬁ%) + Ro6,6U = 0 (32)

where évy and 6h are the differences between the # values and the values
obtained if U was changed by §U. We require that this §U should lead to the
removal of the residuals R, in Eq. (30). Hence

— Rof'(v¥ + 6vg) + Bubz(h¥ + 6h) = 0 (33)
Subtracting (30) from this leads to
— R,f'6vy + Byb:(6h) = Ry (34)

The 3 linear equations (31,32 and 34) for the 3 unknowns (6U, 6v, and 6h )
can be solved given the correct boundary conditions (6U = 0 at east and west

walls). These are combined to give

LI [(Rl — Bule(ER)) ( 8 + e')] =0 (35)

2At 7| fI(f' 4 Rob2zvg) \ 2At

13



which is Ny tridiagonal matrix inversions each for the Nx 6h values of a row.
Elimination of §vy between Eq.(31) and (34) gives

ey = BB () 69
which relates §U with 6k and other quantities known after the predictor stage.
The solution 6k from (35) is substituted back into eq.(36) to obtain U which
is then added onto U.

The evaluation of V follows a similar procedure. We solve

6h (Ra— Buby(6R)) [ B | | _
2At +éy [f'(f' i Rozzyug) (2At T )] = (37)

where Ry = — R, fu;bt - Bu6yh# This is Nx tridiagonal matrix inversions each

for the Ny 6h values of a column. The equation relating §h and 6V is

R
A (2At - ‘) (38)

The correction §h from eq.(37) is inserted into eq.(38) to obtain 6V and

hence the new V.

The loop of doing trial steps for v, and h and correcting U to satisfy
geostrophy followed by doing trial steps for uy and h and correcting V to
satisfy geostrophy, is repeated until the residuals R, and R, are sufficiently
small (see fig. 2). If the residuals were exactly zero then we would have
precisely solved the finite difference equations(23-27). We then proceed to
the next step.

The iteration is necessary because updated values of mass transport have
not been included in the perpendicular direction. After evaluating a new V
using eq.(37) and (38) reevaluation of eqs. (28) and (29) will result in the
residual R; in eq.(30) not being zero. After the final iteration, all predictor
steps are redone to include the latest and best values of mass transport. Each

tridiagonal matrix inversions requires only order N calculations for problem

of length N.
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This method of solution can be very cheap although if a high level of
convergence is not obtained, the spin-up process may be slowed down (Cloke
1992). An alternative method that can solve these equations very accurately
is to solve for §U and §V simultaneously using

6h (Ry = Bubo(6h)) (K. ., (Ra— Bubylbh)): [ B, i
281+ [f’(f’ ¥ Rabzavy) (2At L )] - [f’(f’ ~Robagy) (2At i )]
(39)

This requires a variable coefficient elliptic inversion for the §h’s. This is much

more expensive than the tridiagonal inversion approach we use here. One
elliptic inversion takes a minimum of N log N calculations for an N gridpoint
domain, whereas the tridiagonal inversions we require here are accomplished
in order N calculations. In this paper only steady solutions are examined and
so an error in the spin-up scale is unimportant.

The semi-geostrophic equations can be integrated forward in time validly,
only when the vorticity is positive. The equivalent numerical requirement is
that

(f' = Robayug)™ >0 (40)
and
(f' + Robazg)™ > 0 (41)

at all h points. The full algorithm is shown in fig. (2)

3 Model Runs

Here we look at solutions from the model. In the limit of very large mean depth
compared to layer thickness variations, the shallow water continuity equation
tends to the non-divergent equation V.u = 0. For idealised wind forcing, solu-
tions similar to those of Veronis(1966) are expected. Figures (4-5) show some
solutions where the layer thickness varies very little from the mean and the

wind forcing has the dimensional form (7, = —0.57¢sin (72 /L)cos (ry/L), Ty =
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0.57¢ cos (rz/L)sin (ry/L)). We show both the layer thickness and the stream-
function. The streamfunction is derived by noting that the mass transport is
non-divergent in the steady state (from eq. 11). This is true even if the layer
thickness varies greatly.

The geostrophic flow cannot cross layer thickness contours and the mass
transport cannot cross streamlines. Figures (4 and 5) show the layer thickness
and streamfunction in the case of very small Rossby number(table 1, shows
the non-dimensional parameters). In this regime the momentum equations(9
and 10) become linear, and the classic Stommel(1948) gyre is reproduced.
A marked difference between streamlines and layer thickness contours is ob-
tained. The streamlines do not intersect the walls whereas the layer thickness
contours hit the wall. This is because of the different boundary conditions on
these fields. The streamfunction is zero at the walls and the layer thickness
satisfies a balance between the geostrophic flow the Ekman terms and the
friction. On the northern wall, for example, this is

2

since v = 0. The more common quasi-geostrophic equations are typically
integrated, in a closed basin, with the layer thickness fixed on the boundary
(e.g. Marshall et al. 1988)

Figures (6-8) show successively higher Rossby numbers and the purely
western boundary current of figs. (4-5) slowly transforms into a more inertial
current. As the Rossby number gets higher (relative to f’) the iteration scheme
implicit in the correction loops evaluating the new velocities becomes less
rapidly convergent. If locally the relative vorticity becomes larger than f’, the
iteration may diverge and the model will fail. There is also a weak non-linear
numerical instability associated with the terms like V8u,/8y which can also
cause convergence difficulties. A solution to this problem might be to use
a positive definite advection scheme such as flux corrected transport (FCT)

Zalesak(1979).

16



Figure (9) shows a run where the stratification is much weaker (B, is

small). The layer thickness variations are much larger in this case, (the Rossby
number and the frictional coefficient are the same as in fig. 6 ) so that the
ratio of thinnest to thickest values is about three. The boundary current has
a significantly more inertial form than fig. (6 ). Since the layer thickness
in the western boundary current is greater than one, the frictional terms are
less effective and the boundary current travels noticeably further around the
boundary. As the stratification gets weaker then the layer thickness variations
increase. Another important effect is the slowing down of the Rossby waves as
layers get thinner or the Burger number gets smaller. It can be shown (Cloke
1992) that the Rossby wave speed for these equations (for zero meridional

wavenumber) is given by

k By hk? + f'2
When the Burger number or the layer thickness h is small their speed

A (Buh(Rouf’z L 1)) (43)

is —Byh/f'? relative to the mean flow. In quasi-geostrophic models (where
B, should be about 1 for validity) the speed is —1/(k? + (By)™') and in a
barotropic non-divergent model it is —1/k%. Typically, Rossby waves in quasi-
geostrophic and barotropic non-divergent models are more rapid than those
in an isopycnal model with weak stratification or thin layers. The spin-up to
steady state, which depends upon these Rossby waves, may take several years
even without eddies. It is this slow Rossby wave speed which makes isopycnal
models with weak stratification (or thin layers) take much longer to spin-up
to a Sverdrup type balance than their quasi-geostrophic counterparts.

In the extreme case the thickness reaches zero. The formulation of the
model presented in section 2 takes no account of this and will integrate the
equations regardless. In the following section we describe the modifications
required to make this model cope with this ‘outcropping’ without allowing
negative values of layer thickness.

17



4 Outcropping Modifications

Here we describe modifications to our model enabling it to cope with the
drying up of the single shallow water layer. This ‘drying up’ represents the
outcropping of deeper density layers. As far as we are aware, this is the only
balanced model which allows the drying up of isopycnal layers.

Other isopycnal models (e.g. the Bleck and Boudra 1986 model) cope with
surfacing isopycnals by using the flux corrected transport scheme, applied to
the continuity equation, to redistribute mass. Flux corrected transport(FCT)
schemes (Boris and Book 1973, Zalesak 1979) remove the possibility of neg-
ative layer thickness by locally changing the formulation of the mass flux in
the continuity equation, in those places on the grid where negative layer thick-
nesses (and other spurious maxima or minima) are likely to occur. The FCT
scheme uses a combination of a first order accurate upwind formulation, and a
higher order formulation. The combination is chosen so that no new maxima
or minima (of the final fields) are formed that did not already exist at the
previous step or would not be produced by the upwind scheme alone. Since
the upwind formulation has the property of being unable to create negative
values of h (if the CFL criterion is satisfied), and the initial A field is positive
then the FCT scheme maintains h as being positive.

Although flux corrected transport schemes are numerically robust and are
frequently used in numerical modelling, they are not suitable for use with
our model formulation. Where flux limiting occurs the FCT type schemes
change the finite differencing. The difference scheme for each point is not
chosen until the direction and strength of the final velocities are known. The
predictor-corrector scheme we use is based around linearisation of the finite
difference scheme and depends upon knowing the finite differencing before we
can formulate the inversion to evaluate the final velocities. Hence the pure
FCT scheme is not applicable, although some of its concepts can be used to
develop a scheme which allows outcropping.

18



The scheme we describe, evaluates the mass transports required to fully
remove the residuals and adjust as few of these as possible while guaranteeing
that we do not create any negative values of A"*!. The final distribution of
mass is as close as possible to the zero residual solution. Our scheme differs
from the FCT schemes in requiring only that the new fields are non-negative.

The initial predictor stage, is treated somewhat differently from subse-
quently stages, we limit the full mass flux, to ensure no negative values of h
are created. In subsequent stages we need limit only the change in fluxes to

ensure positivity of h. The residual calculation and inversion are left unaltered.

4.1 The Flux limiting scheme

Our scheme evaluates the net flux from a box which would make the box
have zero mass (for the initial predictor step this is A”"~?Az/2At). If the sum
of the fluxes out of this box is greater than this, then the outward fluxes are
limited and this new value is used in the momentum equation. These modified
fluxes must be used in the momentum equation to retain the consistency of
the linearisation technique.

Generally for the initial predictor step we define, for each A gridpoint,
the ratio (between 0 and 1) of outward fluxes that would alone just cause

outcropping. For each h point this ratio o, ; is given by

n—-1 q
oy i max (0, Ui+1,j) — min (0, Ui,j)
sag T ot ( y-ire
2 max (0, V; j+1) — min (O,Va',j)) iog (44)
Ay
(45)
and

@;,; = min (0, 4y ;) (46)

We limit only the outward fluxes, so these are the only fluxes included in this

calculation. Inward fluxes are not adjusted because they might themselves be
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altered by the competing requirement that the box they leave must remain

non-negative. The limited fluxes we use are,

UL = aioq,;max (0, Us j) + @i, min (0, Ui 5) (47)

th; = @&4,j-1max (0’ Vi.j) + @y j min (0: Vi.:i) (48)

where the relevant a is taken from the box the flux is leaving. These limited
fluxes are then used to evaluate h# and v_,’f the predicted values of h"*! and
vgt! using

h# — pn-1

s L Ly 2
AL + Ro(6zU% + 6,V*) =0 (49)

R (L;Avf_—i) + UL (Ro622v5+ ')+ Rom —Frug VR° = —€v¥ + 1y,

(50)
as in the non-outcropping scheme. The residual (30) is then evaluated and §U
calculated using eqs.(35-36)

4.2 Flux Limiting at subsequent Stages

At subsequent stages, after the inversions provide a change in mass fluxes §U
or 6V, only this flux change need be limited. Since we know that the previous
values UL or VX do not produce negative h#, any values of h# < 0 must
result from the U or §V increment.

For a change in mass flux §U h¥ changes according to,

Ah
m’FRo&.JU =0 (51)

where Ah = ( Value after correction —h#). The flux limiting appropriate to
this must ensure that Ah is greater than —h# where h# is the best previously
known h.
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For each trial value of hfj we evaluate the ratio of outward fluxes that

would exactly cause outcropping, this is the a; ; which satisfies

#

-h{; max (0, 6U;41,;) — min (0, 6U; ))
%) i 19 s+1y Yoatid = b2
323+ Ropis - 0 (52)
and
hence the limited (change in) fluxes are evaluated using
5U,-I"j = @;-1,; Max (0, 5U.'_J') + o4 ; min (0,5U,‘,J‘) (54)
and new full fluxes calculated using

where U; ; was used to produce ¥ and is the best known flux from either the
previous time step or iteration. We use these new limited fluxes to evaluate

new values of h# with

# n-1
hi; =

: 3,3 L X
AT + Ro(6:U~ +6,V) =0 (56)

A similar scheme applies for increments §V'.

The same structure of iteration is used as in the non-outcropping model
except for this flux-correction scheme being used to redistribute the mass. The
algorithm is presented in figure (3).

Using this scheme we will not remove all of the residuals at points on the
grid where flux limiting occurs. In classical problems where the equations
cannot be satisfied exactly at discontinuities, adjacent residuals are ignored.
In this case it is unclear before the inversion whether the fluid will outcrop
and whether the equations can be exactly satisfied at each grid box. Hence
we cannot just ignore the residual at outcropping boxes which will outcrop at
the inversion stage. We choose to solve the exact equations in the inversions

and modify the fluxes and residuals afterwards. Since the flux limiting adjusts
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fluxes, some non-zero residuals are inevitable. In practice if we leave these

residuals non-zero they grow and ultimately cause model failure. We circum-
vent this difficulty by making use of our balance condition (v = g'6zh/f)
to evaluate vj*! near flux limited points after the rest of the step has been
completed.

Near flux limited points the geostrophic flow is not obtained by the prog-
nostic integration, of the momentum equations. Although this scheme leads
to the best value of mass transport consistent with non-negative layer thick-
ness, and hence the best possible distribution of mass, the exact balances at
the outcrop edge are not necessarily consistent with the momentum equations.
The exact quadratic momentum flux conservation is lost at the outcrop edge.
A similar problem is discussed by Bleck and Boudra (1986).

Although there is guaranteed to be a unique solution to the continuous
semi-geostrophic equations (on an f-plane) with all non-negative mass (Cullen
and Purser 1989) the unique solution to the finite difference equations can,
at times, involve negative layer thickness. As the Rossby number increases,
the source/sink of momentum implied by the imposition of geostrophy at
outcropped points may have a larger effect on the interior flow. A better

condition upon the geostrophic velocity at the outcrop edge is clearly required.

5 Solutions with Outcropping

In this section we show solutions from our outcropping model. We first repro-
duce a known result. Initially we configure the model to compare solutions
both with the numerical results of Bogue, Huang and Bryan(1986)(hereafter
BHB) and the analytic solutions of Parsons(1969). The wind forcing is purely
zonal (7, = —7gcos(ry/L), 7y = 0), and the non-dimensional parameters are
(3.1x1074,1.64x1074,2.x1072,1.4) respectively for R,, By, € and 7. These
correspond to inertial and frictional length scales of 1/57 and 1/50 of the

basin respectively. There are 80 gridpoints in each direction in each model.
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The BHB model integrates the shallow water equations forward in time,
omitting the non-linear advection terms and the time-derivative term in each
momentum equation. They use a linear drag frictional dissipation. If there is
a unique steady state then in the limit of small Rossby number, solutions to
our model (which includes momentum advection) should coincide with those
of BHB (although in their model friction acts on the full i'elocity and in ours
on the geostrophic velocity).

Fig.(10) shows the (non-dimensional) layer thickness from our model. The
parameters (see table 1) are set up to reproduce figure (1b) of BHB (which we
reproduce as our fig. 11). This solution has a low Rossby number but has a
large outcropped region in the north-west corner of the basin, south of which
is the separated boundary current representing the Gulf stream.

In our solution the minimum layer thickness is exactly zero suggesting that
our flux limiting scheme is accurately maintaining the non-negative nature of
the fields. Over much of the outcropped region the layer thickness is of order
1073 relative to the mean (which is 1 in all figures). The thin lines represent
the analytic solution obtained by finding the Parsons solution with the same
Rossby and Burger numbers (omitting a thin western boundary current).

There is a very good agreement between our solution and BHB’s. The
outcrop line follows a very similar path. The outcrop intersects the northern
boundary at exactly the same gridpoint, and the western boundary slightly
further north in our model, than in BHB. We find our maximum layer thickness
is 1.89 in the centre of the gyre, and in figure (11) it is 1.90. We note a
substantially smaller outcrop area on these numerical solutions compared with
the analytic solution. This is consistent with the analytic solutions’ higher
maximum thickness of 2.36. The layer thickness on the eastern wall (h.) is
0.55 in the analytic solution and varies between about 0.5 and 0.6 in our
model. We note that these numerical solutions have relatively high friction

and so layer thickness contours intersect the eastern wall. The close agreement

23



between our model and that of BHB leads us to believe the model is accurately
reproducing the numerical solution.

Figure(12) is a run with twice the inertial length scale twice the Rossby
radius and half the frictional length scale of figure(10). The analytic solution
depends only on one parameter which Parsons calls A. In our notation this is
R,/7 B, so the analytic solutions corresponding to the parameters in figures
(10) and (12) are the same. In this figure the layer thickness minimum is about
—2x1072 and the maximum is 2.02 times the mean thickness. The analytic
solution is again shown in thin lined contours.

The most noticeable differences are in the overshoot. The separation of
the jet from the western wall is no longer a smooth right hand turn into the
basin. Rather the fluid overshoots the smooth separation latitude, dissipating
vorticity (via friction) until it can smoothly plunge south again to rejoin the
mostly inertialess separated jet. It is interesting to compare the influence of
inertial effects upon this outcropping solution with the inertial but mostly
non-divergent solutions of figs (7 and 8). The character of these almost non-
divergent solutions is completely altered by the inertial effects, as the northern
inertial boundary current is necessary to remove excess relative vorticity.

In the outcropped solutions with small inertia we already have a north-
ern like frictional boundary current (i.e. the seperated jet) which removes the
excess vorticity, not accounted for by the western (also frictional) boundary
current. The increased inertial effects do not substantially change the charac-
ter of the solution since the sink of vorticity is the overshoot which extends the
path of parcels heading for the separated jet. Hence it is difficult to see how
an ‘overspun’ inertial solution such as fig(8) can be obtained in single gyre
situations where outcropping occurs except through the somewhat artificial
mechanism, of the overshoot hitting the northern wall.

In this solution the layer thickness minimum is about —2#10’3 and the

maximum is 2.02 times the mean thickness. The analytic solution is again
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shown in thin lined contours.

We have been unable to obtain solutions with a significantly higher Rossby
number, due to weak non-linear instability in some advection terms. A future
paper will examine solutions with significantly higher inertia where the Parsons
solution is not valid.

Finally we look at some double gyre results with outcropping. These
experiments are in a basin six thousand kilometres square centered at 45°
degrees north corresponding to a value of y of 0.57. The wind forcing is
72 = —cos(27y/L) and 7, = 0. Typically authors who have looked at single
layer double gyre solutions in the ocean have been looking at quasi-geostrophic
or barotropic non-divergent solutions with the purpose of studying eddies, or
parameterisation (e.g. Marshall 1984 ). Since we have been using a model
which does not necessarily have an accurate spin-up (see section 2) we have
chosen to look at pure steady states with outcropping.

To verify the effectiveness of our model we first reproduce fig.(2d) of
Huang(1986). The parameters are such that the inertial and frictional length
scales are 1/129th and 1/33th of the basin respectively, and the Rossby Ra-
dius is 1/236th the basin size. Figures (13 and 14) are our model and Huang’s
results respectively. Clearly these are very similar, they both have maximum
thickness of 2.30 and the outcrop lines are almost identical.

Figure (15) shows where the model has been run with sixteen times the
Rossby number and sixteen times the Burger number hence exactly the same
analytical outcrop line. Again we see the efficient manner in which parcels
remove vorticity by extending their path near the separating jet. Although
inertial effects are important especially near the mid-basin jet, the majority

of the basin is essentially in Sverdrup type linear balance.
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6 Discussion

In this paper we have built an ocean model based upon the semi-geostrophic
equations. We believe this model to be the first balanced model to allow
drying up of shallow water layers. It has been found to be both robust in
its numerical formulation and versatile in its applications and has been able
to reproduce classical results of idealised gyre theory. This balanced model
is able to examine solutions where large layer thickness variations and high
inertial non-linearity are both included.

Our model uses linear drag dissipation. A shallow water model with gravity
waves included would almost certainly need higher (differential) order dissi-
pative forms (such as Laplacian) providing a sink of enstrophy on the grid
scale, to aid numerical stability (Sadourny 1975). Indeed we built a vorticity
conserving ‘B’ grid numerical model with flux corrected transport (of layer
thickness h) and linear drag dissipation. We found that it was able to repro-
duce the solutions with small Rossby number effectively (i.e. fig. 13), but at
higher and higher Rossby number it degenerated into grid-scale noise.

We found that a shallow water model was usually quicker computationally
than our semi-geostrophic balanced model although we made no great effort
to optimise our balanced model. We found that one step of our balanced
model using the tridiagonal inverter technique (with two iterations) described
in section 2 took approximately twice as long as one step of the shallow water
model (on a Cray XMP). Solving the non-constant coefficient elliptic inversion
(eq. 39) took about twice as long as the tridiagonal inversion technique.

The time step in a shallow water model was set by the internal gravity
wave speed (At < Az/,/g’h). The semi-geostrophic model had its time step
set either by advection (At < Az/u) or by Kelvin waves (At < f~!). So the
balanced model was most cost effective when layers were thick or the Burger
number high, and least effective when looking at non-linear solutions, with

high advection velocities and weak stratification. The use of a semi-implicit
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primitive equation model (Kwizak and Robert 1971, Hurlbert and Thompson
1980) is likely to be quicker than either of the above approaches (see, for
example, the timings in Barth et al. 1990) since these models require only the
solution of a constant coefficient Helmholtz type equation (which can be solved
by FFT’s when in rectangular domains) rather than the much more expensive
non-constant coefficient problems that balanced models more advanced than
quasi-geostrophic tend to require. The time step for semi-implicit models is
set by advection and f~! as in our semi-geostrophic model.

It is unlikely that a balanced model (other than quasi-geostrophic ones) will
be significantly more efficient than a semi-implicit primitive equation model.
The advantages of using a balanced numerical model are likely to come from
the lack of gravity waves. Numerical models have sources of gravity waves
from non-physical origins, such as coordinate surfaces intersecting topogra-
phy, poor resolution of bottom topography, poor representation of momentum
advection terms, spurious (and/or unrealistic) forcing terms and parameterisa-
tions. These spurious gravity waves interact and may significantly corrupt the
‘slow’ (geostrophic) flow of physical interest. Balanced models may therefore
represent physical processes more accurately by omitting the poorly repre-
sented gravity waves and just modelling the more interesting ‘slow’ dynamics.

Our semi-geostrophic model supports a Kelvin wave which may propagate
at angular frequencies up to the Coriolis parameter. These Kelvin waves are
not gravity waves in any sense, they are geostrophic in both directions in con-
trast to shallow water and primitive equation Kelvin waves. Kelvin waves are
known to be present in other balanced models, where the boundary condi-
tions allow a normal geostrophic velocity at boundaries(Gent and McWilliams
1983). It is important to note that unless these waves are modelled accurately
that the spin-up process will be severely altered (Anderson and Gill 1975). In
balanced models where the Kelvin wave may propagate at angular frequencies

up to the Coriolis parameter then a requirement of spin-up accuracy suggests
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a practical limit on the time step of f~2.

We feel this model to be useful because of its versatility and extendability.
With the momentum and continuity equation formulation used here we can
easily modify the numerical formulation of each term in the equations, add
different parameterisations and add extra equations (such as salinity in the
ocean or moisture in the atmosphere).

Further enhancements to the model are envisaged with a wider range of
applicability. These include a more robust solution technique involving solv-
ing for 6U and 6V simultaneously, positive definite momentum advection (to
remove the weak non-linear instability mentioned in section 3 and 5), a many
layer version, coastlines and diabatic forcing. Future papers studying outcrop-

ping solutions with large inertial effects are in preparation.
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Parameters
Figure Numbers R, B, ¢
4,5 1.0x107® 100 2.0x1072
6 4.0x10~4 100 2.0x1072
7 1.0x1073 100 1.0x10~2
8 1.0x1073 100 8.0x1073
9 4.0x10~4 | 2.0x10~% | 2.0x10~?2
10,11 3.1x10* | 1.64x10~* | 6.0x1072
12 1.23x10~3 | 6.56x10~* | 3.0x1072
13, 14 6.02x10~% | 1.79x1075 | 3.0x10~?
15 9.63x10~* | 2.86x10~* | 3.0x10~?

Table 1: Table of parameters for figures 4-15.
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Figure 1: Arrangement of Variables on the Grid
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Do a predictor step for
trial valu es of vy and A

I

Evaluate the residuals R |«
|

Do a corrector step to evaluate U
which makes v, and h in balance

Do a predictor step for trial
values of ug and h

l
Evaluate the residual R;

I

Do a corrector step to evaluate V
which makes h and ug in balance

Do a predictor step
for vy and h

I

Loop Until Residuals are small

|

Step forward for u,

I

Do the next time step

Figure 2: Algorithm for non-outcropping code.
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Do a predictor step, for v, and h;
using the flux limiting scheme to obtain A

|
Evaluate the residuals R, e

l

Do a corrector step
to evaluate U

Do a predictor step, for ug and h;
using the flux limiting scheme to obtain h

I
Evaluate the residual R,

l 4

Do a corrector step
to Evaluate V

Do a predictor step, for v, and h;
using the flux limiting scheme to obtain A

Loop until residuals are small >

Step forward for u,

l

Do the next time step

Figure 3: Algorithm for outcropping code.
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Figure 4: Layer thickness perturbation (h — 1) from the semi-geostro phic
model. The contour interval is 2x10~°. The solution is reminiscent of the
Stommel(1948) solution. Note that the contours intersect the boundary. The

parameters are given in table 1
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Figure 5: Streamlines from the semi-geostrophic model. Parameters are the
same as in fig. 4. Here the streamlines do not intersect the walls. The contour
interval is 0.1.
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Figure 6: Layer thickness perturbation from our model. With a higher Rossby
number (4x10~*), hence higher inertia, the purely western boundary current
of figures 4 and 5 is replaced with a flow of significant north-south asymmetry.

The contour interval is 1.0x107°.
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Figure 7: Layer thickness perturbations with yet higher Rossby number
(1x1073). The contour interval is 2.5x107%. The boundary current is both

frictional and inertial here.
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Figure 8: Layer thickness perturbations. Here the friction is decreased relative
to figure 7 and the western boundary current has been almost entirely replaced

by a northern current. The contours are in units of 1.0x107S.
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Figure 9: Layer thickness from a run with large thickness variations. The
contour interval is 0.15. The parameters (see table 1) are the same as for

figure 6 except for the much lower Burger number.
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Figure 10: Layer thickness from the outcropping version of our model. The
parameters are the same as for fig. 1b of BHB (see also table 1). Continuous
lines are from our model, dashed lines are the analytic solution. The contour

interval is 0.3.
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Figure 11: The layer thickness from the model of Bogue et al. (1986,fig. 1b).

The contour interval is 0.3. Parameters are exactly the same as in figure 10
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Figure 12: Layer thickness from the outcropping version of our model. Con-
tinuous lines are from our model, dashed lines are the analytic solution. Here
the inertial length scale is well resolved and the boundary current is clearly
overshooting. The contour interval is 0.2 . Linear theory suggest that the

solution will be the same as in figures 10 and 11.
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Figure 13: Layer thickness from our model, with the parameters of Huang

(1986) fig. 2d. Double gyre forcing is applied. The contour interval is 0.2.
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Figure 14: Layer thickness from the model of Huang (1986) parameters as in
figure 2d of that paper. The contour interval is 0.2 .
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Figure 15: Layer thickness from a double gyre run of our model. We have
increased both the Rossby number and the Burger number, but kept the an-
alytical outcrop line constant. The jet is clearly overshooting. The contour

interval is 0.2 .
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