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Abstract

It is shown that the solution of the semi-geostrophic equations for shallow water
flow can be found and analysed in spherical geometry by methods similar to those used
in the existing f-plane solutions. Stable states in geostrophic balance are identified as
energy minimisers and a procedure for finding the minimisers is constructed, which is
a form of potential vorticity inversion. This defines a generalisation of the geostrophic
coordinate transformation used in the f-plane theory. The procedure is demonstrated
in computations.

The evolution equations take a simple form in the transformed coordinates, though,
as expected from previous work in the literature, they cannot be expressed exactly as
geostrophic motion. The associated potential vorticity does not obey a Lagrangian
conservation law, but it does obey a flux conservation law, with an associated circu-
lation theorem.

The divergence of the flow in the transformed coordinates is primarily that naturally
associated with geostrophic motion, with additional terms coming from the curvature
of the sphere and extra ’curvature’ resulting from the variable Coriolis parameter in
the generalised coordinate transformation. These terms are estimated, and are found
to be very small for normal data. The estimate is verified in computations, confirming
the accuracy of the local f-plane approximation usually made with semi-geostrophic
theory.

1 Introduction

Quasi-geostrophic theory has for a long time been the most widely used model of large-scale
atmospheric circulations. This is because of its conceptual simplicity, and the possibility of
finding analytic solutions. However, the quasi-geostrophic approximation in its standard
form requires a constant Coriolis parameter and a fixed reference state static stability
that is independent of horizontal position. Neither of these approximations is valid on
large scales in the atmosphere, though that does not prevent the solutions from being
conceptually useful. The geostrophic momentum approximation, originally introduced by
Eliassen (1948), and developed and promoted by Hoskins (1975), allows the use of the
correct variation of the Coriolis parameter and the static stability. In order to retain
energetic consistency in the resulting equations, the geostrophic approximation is only
made in the calculation of the momentum, not in the fluid trajectory. This particular
feature of the approximation is now well understood in terms of hamiltonian mechanics.
The resulting semi-geostrophic equations can describe a number of subsynoptic flows such
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as fronts embedded in cyclones, and interactions of large scale flow with topography and
convection. These were reviewed by Cullen et al. (1987). However, explicit solutions of
the equations have normally been obtained only with a constant Coriolis parameter, where
the geostrophic coordinate transformation of Hoskins reduces the equations to a similar
form to the quasi-geostrophic equations. The geometric solution procedure introduced by
Cullen and Purser (1984) also relies on a constant Coriolis parameter. The solutions have
proved conceptually useful despite this restriction.

The semi-geostrophic equations have, however, been integrated numerically on the
sphere, without using a coordinate transformation. Mawson and Cullen (1992) show that
ageostrophic cross-equatorial lows can be predicted as a response to suitably imposed forc-
ing. Mawson (1996) shows, using a shallow water version of the equations, that the model
supports the same Rossby wave solutions as the full equations, as long as the geostrophic
wind satisfies the inertial stability condition. However, the inertial stability condition
severely constrains the permitted solutions close to the equator. The semi-geostrophic
approximation thus contains the 'weak temperature gradient’ approximation which has
recently become popular in tropical studies, e.g. Polvani and Sobel (2002). Cullen (2000)
verifies that the errors in large-scale semi-geostrophic solutions on the sphere decrease as
the square of (Lr/L), where L is the horizontal length scale and Lp the Rossby deforma-
tion radius. Schubert et al. (1991) show, using a zonally symmetric form of the model,
that many aspects of the observed Hadley circulation can be simulated. These studies
confirm the appropriateness of the semi-geostrophic model for large-scale flows.

The f-plane solution procedure gives several benefits. It allows explicit solution in sim-
ple cases. It also shows that solutions can be obtained by transport of a single scalar, the
potential vorticity, followed by inversion of the potential vorticity to obtain the remainder
of the variables. Hoskins et al. (1985) showed that this is a generic procedure applicable to
a number of balanced models. In the semi-geostrophic case, Benamou and Brenier (1998)
and Cullen and Gangbo (2001) have used this structure to prove that the equations can
always be solved given certain hypotheses. Lagrangian conservation of potential vorticity
also provides a strong dynamical constraint on the system, since the values of the potential
vorticity at any time are bounded by the initial values.

Because of these mathematical and physical properties, a number of attempts have
been made to generalise the semi-geostrophic solution procedure to spherical geometry.
However, this has not yet been achieved without altering the equations in some way.
Salmon (1985) defines a set of equations directly in transformed space which is hamilto-
nian and conserves potential vorticity. He shows that the equivalent equations in physical
space are not the same as the semi-geostrophic equations, but that the change to the
equations is within the error made by using the semi-geostrophic equations as an approxi-
mation to the primitive equations. Magnusdottir and Schubert (1991), and Purser (1999),
both approximate the semi-geostrophic equations in a way that assumes that the flow is
approximately zonal, and then show that the resulting equations can be solved by a coordi-
nate transformation. Shutts (1989) constructs a hamiltonian semi-geostrophic system for
the sphere by regarding the spherical shell as a subset of general three-dimensional space.
This leads to the ”planetary” semi-geostrophic system, which recognises that the axis of
rotation of the Earth is the special direction, rather than the local vertical. However, this
model does not reduce to the local f-plane model on small regions of the Earth’s surface.
In view of the success of local f-plane models, and the belief that the spherical geometry
will not fundamentally alter their results, we seek a version of the solution procedure that



can be applied to the unmodified semi-geostrophic equations in spherical geometry. The
approach adopted in this paper is based on preserving the form of the equations of motion
in physical lagrangian variables — with a variable Coriolis parameter — while generalis-
ing the coordinate transformation in such a way that the f-plane geostrophic momentum
transformation is recoverable in the limit of a constant Coriolis parameter.

Cullen and Purser (1989) showed that the potential vorticity inversion procedure for
f-plane semi-geostrophic theory could be interpreted as a minimisation of the energy un-
der the constraint of given inverse potential vorticity, where the inverse potential vorticity
is defined as the Jacobian of the mapping from geostrophic and isentropic coordinates to
physical coordinates. Henceforward we use the term ’potential density’ for the inverse
potential vorticity. In this paper, we generalise Cullen and Purser’s (1989) result to the
shallow water case on the sphere. The method used was first introduced by Cullen and
Douglas (1998). It consists of finding a coordinate transformation on the sphere that
generalises the geostrophic coordinate transformation. This has the property that the
condition that the energy is stationary under the constraint of given potential density is
equivalent to geostrophic balance. Following Cullen and Purser (1989), we then define the
potential density inversion procedure to be minimising the energy under this constraint.
We show in section 3.3 that this gives a concavity condition on the height field which is
equivalent to a local inertial stability condition. This condition is the same as the ellipticity
condition required in the solution procedure of Mawson (1996). It is also the analogue of
the convexity principle used by Cullen and Purser (1984) for the f-plane case. A theorem
by McCann (2001) can then be used to show that the potential density can be uniquely
inverted, subject to a regularisation of the problem at the equator. We demonstrate the
‘potential density inversion’ in a computation.

In section 4, we derive the time evolution equation in the new coordinates. The po-
tential density is transported by a velocity in the transformed space which is in the same
direction as the geostrophic velocity, but with magnitude modified by terms that result
both from the curvature of the sphere itself and from the variable Coriolis parameter. The
local mass conservation equation in physical space transforms to a circulation theorem, so
that the integral of the potential density within any material circuit in transformed space
is conserved. The divergence of the velocity in transformed space is dominated by the
variations of the Coriolis parameter. As material circuits move towards the equator, they
expand and the potential density decreases.

In section 4.3, we show that the equations can be discretised in time by solving the
energy minimisation problem at each time-step, followed by integration of a pair of explicit
ordinary differential equations. By regularising the transformation at the equator, we can
use the local concavity condition to show that the procedure converges as the time-step
is refined. The limit solution will be the solution of a regularised problem. Because the
height field is very flat near the equator, we can then show that a well-defined solution to
the original problem is obtained as the regularisation is removed.

We illustrate the time-dependent solutions in section 4.4. In particular, we show that
the local f-plane approximation to the potential vorticity is almost conserved, to the ex-
tent that it is not clear whether the non-conservation is analytic or numerical. This is
because the divergence of the transport velocity in transformed space can be almost ex-
actly removed by a rescaling of the transformed sphere. The remaining terms are shown to
be small for realistic velocities, such as those used in the computations. Thus a diagnostic



based on a potential vorticity calculation in real space will still be useful.

2 Basic theory

In this section we introduce the theory on the sphere and review the issues to be resolved.
The kinematics and dynamics of shallow water theory on a plane, and its semi-geostrophic
approximation, are discussed by Roulstone and Sewell (1996, 1997), for example, and we
adopt their notation in quoting some of the equations.

Let r denote the position vector of a generic point, from a fixed origin in 3-dimensional
Euclidean space, on the surface of the sphere of radius a. An increment along the surface
can be written in physical components as dr = acos ¢dAiy + addiy = (acos ¢d, add),
with orthogonal unit vectors iy and iy parallel to the coordinate circles of increasing lon-
gitude A and latitude ¢ respectively.

2.1 The semigeostrophic equations

The motion of a typical particle in shallow water theory on a sphere can be described by
expressing the current eulerian coordinates of the particle on the surface of the sphere

)\:A(Ot,ﬂ,t), ¢:¢(0‘7ﬂat) (1)

as functions, on the right, of the particle labels (or lagrangian coordinates) a, 8 and the
time ¢, such that o = M, 5,0), 8= ¢(a, 3, 0). Incompressibility requires that

h(e, B,0) (A, pcos )

e ) - % 80, B)

where h is the fluid depth at the particle position. We denote cos ¢pd(, ¢ cos¢)/d(a, )
by j and assume 0 < j < oo. This makes available the inverse description o = (A, ¢, 1),
B = B(A, ¢,t) of the motion (1), and allows us to transfer between lagrangian and eulerian
descriptions whenever required. In particular we can express h(w, 3,t) as a different func-
tion h(A, ¢, t). Within the fluid we will assume h > 0, though noting that semi-geostrophic
theory can also describe situations where h = 0 over part of the domain, see Cullen and

(2)

Purser (1989). Unless otherwise stated, we shall use the same letter to denote a function
and its generic values, as just illustrated.

If the coordinates are in a frame of reference rotating with the Earth, the particle accel-
eration (a(cos pA—sin ¢pA), a(d+(X)? sin ¢ cos ¢)) has an additional term (— fad, fa cos dA)
where the Coriolis parameter f = 2Qsin ¢ is the component of the angular velocity vector
normal to the surface and € is the spin of the Earth. The superposed dots signify the
lagrangian time derivatives, following the particle. (Some authors write D"/D¢t" for these
derivatives.) The continuity equation can be written as the time derivative of (2) following
the particle,

h+ hV.E = 0. (3)

where ¥ = (a cos N, an) is the particle velocity.

The shallow water momentum equations on the sphere can then be written, using the
spherical polar eulerian coordinates defined above, as



qug;l 0, a¢+(\)*sinpcosd+ facosdA+ gg—}; =0.

(4)
The constant acceleration due to gravity is denoted g, and the depth at a fluid particle
position has now been written as a function k(X ¢, t). Define the geostrophic wind (ug, vg)
to have local physical components

a(cos pA —sin ppA) — fad —}—

w90 g 0Oh (5)
9 fade’ Y facosp N
The geostrophic momentum approximation to (4) is then
oh . ; . g Oh
iy — \vgsin ¢ — fac + acos¢8)\ =0, vg-l—)\ugsm¢-|—facos¢)\—|——a—¢ 0. (6)

Equations (3), (5) and (6) are the semi-geostrophic system to be solved, but at present
there are no results establishing existence and uniqueness properties for these equations
because the Coriolis parameter is a function of position. We seek to solve the equations
either in a given domain D of the surface of the sphere, or on the whole sphere. In the first
case, it is a basic assumption that particles cannot enter or leave D across the boundary.

2.2 Conservation of energy and potential vorticity

In f-plane semi-geostrophic theories it is easy to show that the total energy, which is the
sum of a geostrophic kinetic energy and a potential energy, is conserved following the mo-
tion of the fluid particles. Furthermore, also in the case of f-plane theories, the potential
vorticity is a lagrangian conserved quantity. These issues are discussed in some detail
in Roulstone and Sewell (1997) and in Mclntyre and Roulstone (2002); the latter paper
also explains in some detail why the geostrophic flow, and not the actual particle motion,
appears in the conserved quantities.

When the Coriolis parameter becomes a function of position as it is in equations (6),
no form of potential vorticity conservation is known to exist (e.g. discussion of shallow
water semi-geostrophic theory in Roulstone and Sewell (1996), §3), save by making the
approximations discussed by Salmon (1985), Shutts (1989), and Magnusdottir and Schu-
bert (1991). These approximations amount to altering the original equations (3), (5), (6).
However, as we shall now demonstrate, one can establish a conservation law for the total
energy on the assumption that the energy remains finite as one approaches the equator
(i.e. when f vanishes).

The total geostrophic kinetic plus potential energy, associated with the geostrophic
wind, is defined by

G = / u + v )+ %ghz) dx, (7)
where dX = a? cos ¢dAd¢ is the area element of the sphere, and the integration is either
over a simply connected domain D of the sphere, or over the whole sphere. In discussing

boundary conditions we now assume that D is a finite closed region of the sphere possessing
a boundary. Then G has the property that

G= —%/gV.(h%")dE = —%}{gfﬂn.fds (8)



where ds is the line element along the boundary of D. The first equality in (8) is a
consequence of equations (6) and continuity (one form of which is that ~AdX is constant),
before any boundary conditions are used. Here n denotes the outward unit normal to the
boundary of D. Thus n is tangential to the sphere. The second equality in (8) depends on
a ‘divergence theorem’ on the sphere. The sphere over which the integration is performed
has to be considered as being imbedded in a three-dimensional space, so that the form
of the divergence theorem we require is subtly different from what is usually found in
standard textbooks and we therefore furnish a proof of this result in the Appendix.

The foregoing equations, and (8) in particular, imply the following result.

Theorem 1 G = 0 when (6) with continuity holds within D, together either with n.r = 0
on the boundary of D, or with integration carried out over the whole sphere whereupon
JV.(h*r)dE = 0. Thus G is conserved as an overall property of the semi-geostrophic flow,
even in spherical geometry.

The remainder of this paper is devoted to the presentation and discussion of a method
for establishing the existence of a set of solutions of the semi-geostrophic equations (3), (5)
and (6) on the sphere for which the conservation of energy and the evolution of potential
vorticity are well defined.

2.3 Identification of geostrophic balance with a stationary energy state

We now show that solutions of the semi-geostrophic equations in spherical geometry are
characterized by being minimum energy states, as in the f-plane case, in a sense to be
made precise as follows. With any shallow motion of local depth A on the sphere, we
can associate a vector field having physical components (u,v) (say). Thus the vector is
uiy+vig. It can be thought of as a velocity, but it does not need to have that interpretation,
which is therefore purely notional, to suggest possible physical consequences. By analogy
with (7) we can then define a notional energy

E = / (%(u2 + 02) + %gh) hdX. (9)

This is a functional of u, v and h, regarded as functions of position over ¥, which has the
following property.

Theorem 2 The conditions for the integral E to be stationary with respect to variations
satisfying continuity 6(hdX) = 0 via

§h = —hV.or (10)
in D, where D is (part of ) the sphere, and

du = fadp+vsin pdA, dv = —facosPpd\ — usin G\ (11)

together with
hn.dr =0 (12)

on the boundary of D as necessary, are that
U=y, U=, (13)

The stationary value of E is G.



Proof The calculation is formally similar to that which delivers (8) above. Using (10)
first, followed by the divergence theorem for (part of) the sphere, we obtain

SE = / (ubu + vév + gér.Vh)AdT — Lg ja{ h*n.drds. (14)

Using (11) and (5), with (12) when required, we obtain

5E = /(fa5¢(u ) — facos $SA(v — vy))hd. (15)

Then, for E to be stationary with respect to arbitrary variations d¢, A, we must re-
quire (13) to hold. O

The substance of the result is that E is stationary when the notional velocity u = (u, v)
is equal to the geostrophic wind within the fluid, and when the boundary conditions are
satisfied. The choice of variations in (11) represents the effect of a notional displacement
in a rotational system where the effect of any pressure perturbation generated by the dis-
placement is neglected, as comparison of (11) with (6) shows. The increments in (11) are
definitions, and in (10) A is deduced from ér using incompressibility.

Shutts and Cullen (1987) analyse the physical significance of E being minimised, rather
than just stationary, for the case of constant f. They show that it corresponds to the
stability of a geostrophic state, viewed as a solution of the full primitive equations, to
perturbations of the form

du= foy, dv=—féx, V-(éz,0y)=0 (16)

which are the analogues of (11) in plane geometry. They also discuss the validity of the
assumption that pressure perturbations can be neglected. They show (pp. 1321-1323)
that it is valid if the basic flow and perturbations both satisfy the assumptions of semi-
geostrophic theory, i.e. that one horizontal length scale is large.

We therefore derive necessary conditions for £ to be minimised under the variations
(11), closely following the method of Shutts and Cullen (1987). Rewrite (15), using ér =
(acos o, adg), as

SE = /51'- (—fa(v—vy), fa(u — ug))hdX. (17)

Then, taking a second variation,

52E:/5(fa5r- (—(v — vg), u — ug)) hdS, (18)
and since u = u, when §E = 0, this reduces to
5°E — /fm (=60 — vy), 8(u — ug))hdE. (19)
Substituting for du from (11) and using u = u, gives
8’E = /fa5r “((facos pdX + ugsin poA, fadp + vgsin poN) + 6(vy, —uy)) hdE.  (20)

Equation (5) gives (vg, —ug) = ¢f~'Vh. Thus &(vg, —ug) = g6(f~'Vh). If we write 0 for
a change at a fixed position in space caused by a displacement, then

98(f~'Vh) = g0(f~'Vh) + gbr - V(fT'Vh) = g0(fT'Vh) + 6r - V(vg, —ug)  (21)



Since df = 0 and (10) implies that dh = —V - (hér), we have
g8(f7IVRh) = —gf7IV(V - (hdr)) 4 01 - V(vy, —1uy). (22)
Substituting (22) into (20) and integrating by parts gives
E = / Fadr - ((facos 8N+ usin g8, fadp+ vsin p6A) + (23)
a(cos p5A, 8¢) - V(vg, —ug))h + ga (V - (hér))* dX.

The second term is positive definite. The necessary condition for the energy to be min-
imised is therefore that the first term is positive definite. Writing it in the form ér-P - dr,
the condition is that the matrix

1 % ugy tan ¢ %
_ acos@ O a 0
P=f 1 ug  vgtang 3 lqb(?ug (24)
acos ¢ OX a a 8—¢

is positive definite.

We can see that this is the standard semi-geostrophic form of the inertial stability
condition found by Shutts and Cullen (1987) using the local value of f and written in
spherical polar coordinates. The derivatives of f do not enter the condition. The change
of sign of f does not cause a problem, but the condition is very restrictive near the equator.

2.4 Solution procedure in physical space

We now describe the method used to solve the semi-geostrophic equations on the sphere in
physical space. The numerical model of Mawson (1996) is based on this procedure. Assume
we are given initial data h defined over the whole sphere or over some bounded subset D
of it. Calculate the geostrophic wind from A using (5), and call the result (u,(0), v4(0)).
Assume that this data are such that the associated geostrophic energy G(0) calculated
using (7) is finite, and calculate P using u,(0) in (24). We can then write equations (3)
and (6), following Schubert (1985), as:

Pr+ %Vh = —fu, (25)
oh
— - (h®) = 0.
5 +V.(ht)=0
These equations can be combined to give
oh 10 _ —1 42

Equation (26) is a Helmholz equation for % provided that the matrix P is definite. If
P is positive definite, the eigenvalues of the principal part of the Helmholz operator will
all be positive, and we can expect (26) to have a unique solution. Positive definiteness of
P is exactly the energy minimisation condition derived in the previous subsection. In the
f-plane case detP is the potential vorticity, and thus a constant of the motion, so that
positive-definiteness will be preserved. We have to prove an equivalent condition in the
spherical case.



We can interpret the solution procedure as follows. Given initial data (0),u,(0) as
above, for some time step §t, calculate a notional velocity u with components

u = u,4(0) cos(fot) — vy(0) sin(fdt) (27)
v = vg(0) cos(fdt) + ug(0) sin( fot).
Calculate a notional energy E by using this velocity in (9). It is easy to see that [u| = |ug]

and thus E = G(0). In general, however, (u,v) will no longer satisfy the geostrophic
relation or the inertial stability condition. Next seek a displacement satisfying (11) and
(10) to minimise the energy in the sense of Theorem 2, thus enforcing the geostrophic
relation and inertial stability. Assuming that this can be found uniquely in the form of
a displacement dr, this determines a new geostrophic wind (uy(dt),v4(dt)) = u+ du to-
gether with a true velocity r = dr/dt. Theorem 2, as it stands, does not give the necessary
information about uniqueness. Equation (26) suggests that there will be a unique solution
if P is positive definite. The main purpose of the paper is to prove this.

2.5 Solution of the energy minimisation problem in the f-plane case

In the f-plane case, Cullen and Purser (1989) showed that the problem of minimising
E subject to the variations (16) could be solved uniquely. They gave an intuitive proof
of this, which has since been made rigorous by Douglas (1998) for the incompressible,
three-dimensional stratified semi-geostrophic flows with rigid boundaries, and by Cullen
and Gangbo (2001) for shallow water semi-geostrophic flow in a bounded region. In both
cases the boundary conditions were that no fluid enters or leaves the region across the
boundaries. We describe the procedure in a region D using cartesian coordinates (z,y).
A key step is to rewrite the notional velocity as

(w,0) = fly-Y', X' - ) (28)

in terms of a new pair of generic cartesian coordinates X', Y. The class of variations (16)
and (10) under which the energy is to be minimised now take the form

§X'=68Y"=0 (29)
dh = —hV.or
These together imply that
do=0 (30)
where o(c.y)
_ Y
o= hi@(X’, Y9 (31)

A state of rest with h equal to a uniform value hqy corresponds to ¢ = hg. Any other choice
of o implies some excess energy above the rest state.

Using (28), the notional kinetic energy term in (9) can be written as
Lo ' 2 ' 2
SF [ (= 2+ (v = )?) hdady, (32)

which may thus be regarded as a weighted integrated distance between the physical posi-
tion x and another associated point X’ = (X', Y”) in the euclidean space. It is therefore



minimised by making the X’ points correspond as closely as possible to the physical po-
sitions. This is the key standpoint from which our generalisations will follow.

If we define a distance d(x, X’) between x and X’ in the f-plane to be such that its
square is

A6, X = f2 (X' =) + (V' = p)?) (33)

the notional energy (9) can be rewritten

E= / ( 2y gh) hdzdy. (34)

Theorem 3 Conditions for E in this form, and with constant f, to be stationary with
respect to variations satisfying (29) within the domain D of the f-plane, and n.dr =0 on
the boundary, are that u = ug.

Proof The proof is just a rephrasing of Theorem 2 in cartesian coordinates, using (15) in
particular, and the definitions of X’ and Y’ in (28). O

If we use (X,Y) to denote the stationary values of (X',Y”), the cartesian version of
the definitions (5) reappear as definitions

. g Oh g Oh
X:. ~ —
.:E—}‘ Y y—l_fzay

f*ox
in the present example of constant f. These X and Y are the geostrophic coordinates of
Hoskins (1975) for shallow water theory. They are called geostrophic coordinates because,
when f is a constant, one can show that the equations for momentum balance in cartesian
coordinates can be re-written in the form X = u,, Y = v,.

(35)

The proof that E can be uniquely minimised is then carried out by showing that, given
o as a function of coordinates (X', Y”’), there is a unique mapping from the coordinates
(X', Y’) to the physical coordinates (z,y) that minimises E and satisfies (31). The condi-
tion that no fluid can enter or leave D across the boundaries is enforced by requiring this
mapping to be from R? into D. In section 3, by writing the class of variations in the form
(30), we will show that there is a unique minimiser of E in the spherical case also.

2.6 Variable Coriolis parameter

The transformation to the coordinates (X,Y) defined in (35) as functions of z and y, is
the starting point for the application of the theory of lift and contact transformations in
semi-geostrophic theory (Sewell and Roulstone 1994; Roulstone and Sewell 1997). This
transformation theory describes the mapping (z,y) — (X,Y), and its inverse, in terms
of Legendre duality (Chynoweth and Sewell 1989). Hoskins (1975) showed that, as a
consequence of the transformation properties of the equations on an f-plane, geoq’rrophlc
motion in the new variables, X = g, Y = vg, can be expressed entirely in terms of a stream
function in the (X,Y)-coordinates and consequently the flow in these new coordinates is
solenoidal. Roulstone and Sewell (1997, §7) broached the issue as to whether the f-plane
semi-geostrophic equations could be generalised to variable-f geometries, while retaining
the transformation properties of the f-plane equations, by modifying the mapping (z, y) —
(X,Y). They showed that the planetary semi-geostrophic equations of Shutts (1989) can

10



be obtained, following such a strategy, by introducing a pair of ‘intermediate’ variables
(21, 29) that are related to (z,y) via

ro= o, 3= [ f(wdu (36)
Yo

where fy and yo are given constant (datum) values of f and y. By considering a mapping

(z1,22,%) = (X1, X2, ) defined by

0 0
_/Y1:$1—|-—U)7 JY2:$2+_¢
2 Oy 2 81’/2 ) (37)
T=ptl (%)+(%> ov _9y 9v _ 9y
2 8$1 (?wz k (9X1 (9.%1’ (9X2 (9.%2’

then, if ¢ (21, x2,t) = gh(z,y,t), it is straightforward to prove that the pseudo-hamiltonian
equations for solenoidal flow in (X, X3)-space

. or v
X = —foa—X27 Xy = foaX1 (38)
transform under (37) to
. . Oh Ty . Oh
iy~ f)i+ g0 =0, LU (L) 4 gy o3 o (39)

which are representations of the zonal and meridional planetary semi-geostrophic equa-
tions. (Note that, in the above, the components of the geostrophic wind, (ug4,v,), are
defined in terms of a variable Coriolis parameter.)

This result prompted an investigation into whether there exists an intermediate pair of
coordinates, similar to those defined above, which would enable equations of the form (38)
to be transformed into semi-geostrophic equations of the type given by (6). It emerged
that the required mapping from (z,y) to (z1,z2) would not be integrable, but it was
suggested that such difficulties might be circumvented by introducing a non-holonomic
transformation that would take the differential form

dzy = f(y)d=. (40)

However, such suggestions were not made explicit.

Later in this paper we introduce a transformation (defined by (62)), subtly different
from (36) and (40), which enables us to explicitly transform the equations (6) into a form
similar to (38), but with non-constant coefficients and therefore representing a compress-
ible flow in the new coordinates. This new transformation is based on interpreting (33) as
a metric, or distance function, on phase space, with a scale factor given by the Coriolis pa-
rameter. Therefore, in a certain sense, a new transformation is to be defined by rescaling
a metric and not by rescaling individual coordinates as in (36) and (40). The general-
isation of this idea to variable-f geometries, and the construction of a new coordinate
transformation, is the subject of the next section.

3 The geostrophic momentum transformation on the sphere

3.1 Calculation of a coordinate transformation by energy minimisation

In this section, we use the model of Mawson (1996) to illustrate that the energy defined
in Theorem 2 can be minimised in the spherical case, subject to the variations (10, 11);
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Figure 1: Initial distribution of the dimensionless quantity o/hg for equation (43). Contour
interval 0.025.

and that the solution can be expressed in the form of a coordinate transformation as in
the f-plane case. This would require that the class of variations (10, 11) can be written
in the form (30) for some choice of notional coordinates analogous to X', Y”, so that there
are functions A’, ®’ of the spherical coordinates A, ¢ and the notional velocity u,v such
that (11) implies A’ = 6@’ = 0 and that

(u,v) =0 (A, @) = (A, ¢). (41)
Under these assumptions, the variations (10, 11) imply that

§o =0, (42)
9(A, @) coso

0 =h——~

O(N, ) cos P

We use this to construct a coordinate transformation on the sphere, which can also be
interpreted as a method of 'potential vorticity inversion’ . Given o(A’, @), set

h(A,®") = ahg
uw=0 (43)
v =
As before, the choice 0/hg = 1 represents a trivial state of balance with no flow. An exam-

ple of a non-trivial choice is shown in Fig. 1. This is designed to reproduce disturbances
typical of a low-level atmospheric pressure field with geostrophic winds of about 15ms~!.
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We now seek a displacement dr so that the energy is minimised under (10, 11). If
the displacement takes each point (A’ ®') to a point (A, ¢), then conservation of mass as
expressed by (10) implies that

d(A, @) cos¢

_p oMo
7 I(A, ') cos ®

(44)

as required. There is an immediate difficulty with this procedure, as shown by Roul-
stone and Sewell (1997), eq. (7.20). Since the displacement is now over a finite distance,
rather than infinitesimal, the variations of f in space mean that the displacements are
non-integrable and the displacement suggested above does not give a well-defined answer.
For instance, given v = v = 0 at (0,0), displace a particle at that position to the point
(r/4,7/4) and calculate the change in u according to (11). If the displacement proceeds
via the point (0,7 /4), the result is (Qa, —Qa(1+ 7/4)). If it is via (7/4,0)), the result is

(Qav/2,0).

To make the procedure well-defined, we must require a specific path for the displace-
ment. The natural choice is a 'steepest descent’ path in energy. Thus we minimise the
energy (9) iteratively by calculating a displacement

br= a(fv— ;o Oh —fu— L2 (45)
= a(f(v—uy),—flu—ug)),

where u, is calculated from A using (5), and using (10) and (11) to update h,u,v. Sub-
stituting the second equation of (45) into (11) gives that

ubu + vév = —af? (uu — uy) +v(v —vy)). (46)

Then using (5), (14) and (45); and assuming no displacements across any boundary, we
obtain

OF = —a/ ((u —uy)? + (v — vg)z) hd% (47)

This is negative definite and vanishes when u = u,. The solution defines the map from
(A, @) to (A, ¢), and hence the coordinate transformation, by summing the displacements
over all the iterations to give (6As, d¢;), and setting A = A+ 0, ¢ = & + d¢;. By con-
struction, this map satisfies (44). However, we cannot guarantee that this procedure will
converge. If it converges, it will be to a stationary point of the energy, because of Theorem
2. However, we cannot guarantee at this stage that it is a minimum, much less a global
minimum. These issues will be addressed in section 3.3.

The result of applying the procedure to the first guess field shown in Fig. 1 is illus-
trated in Fig. 2., 100 iterations were used. The semi-geostrophic shallow water model of
Mawson (1996) was used. The initialisation procedure described there (p.276: initialisa-
tion stage 2) is equivalent to using (45). The ’correction velocity’ Uy defined on p.271
of that paper generates the displacement required by (45), and the updates using (10)
and (11) are equivalent to equations (10) and (9) in Mawson (1996). Fig. 2 shows that
positive anomalies in o /hg become positive anomalies of h. The h field is smoother than
the o field. This is to be expected, since ¢ is related to the potential vorticity, which is
expected to have smaller scales than the depth field.

13
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Figure 2: Distribution of A derived from initial field shown in Figure 1. Contour interval
250m. Bold contours at 10600, 10700, 10800 m.

As a further check, the procedure can be reversed. Given initial data with depth A
and initial winds u = ug4, v = vy, choose dr as minus the value given by (45), and iterate
to a state where v = v = 0. Set ¢ equal to the final value of h. This procedure acts as a
diagnosis of potential density from a given geostrophically balanced state. Since the initial
magnitude of ér given by (45) will be zero, we must use a semi-implicit procedure of the
form

or, = — %a(fv — accl)S(b%’ —fu— é%)n_l (48)
- %Of(f’v— m%a_fu_ é%)Th

where (10) and (11) with dr = dr,, are used to update h, u, v from values at iteration level
n — 1 to values at iteration level n. The final values of A will be equal to the original o,
subject to numerical error. The top panel of Fig. 3 illustrates the final field. It is almost
identical to the original field shown in Fig. 1. The lower panels show values of (A, ®)
calculated from (A, ¢) by summing the displacements defined in (48) over all the itera-
tions. For the data chosen, the displacements are quite small, and the displacement of the
latitude and longitude grid lines is only just visible. (A, ®) can be regarded as the natural
generalisation of geostrophic coordinates on the sphere; the coordinate transformation is
not that far from the identity for these data.

The maximum and minimum values of h are also set out in Table 1. They show that
the calculation of A from o has been reversed to within about 1%. Tests with reducing «
and increasing the number of iterations show convergence of the error to zero. The errors
come both from the early relatively large iteration steps and from accumulated numerical
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error over all the iterations. Finite iteration steps only exactly follow the steepest descent
path in the limit o« — 0.

Table 1: Test of potential density inversion procedure.

Initial ¢ Minimising A Final o
12324 10826 12313
8384 10533 8358

3.2 Generalised definitions of distance on the sphere

The starting point for defining the geostrophic momentum transformation rigorously on
the sphere is to write the kinetic energy in terms of a distance function, as in (34). We
start by considering how to measure the lengths of paths on the surface of the sphere. In
the following we simplify the notation by writing X (in place of the X’ used above) as the
generic second point acting as the end point of a path which starts at the point x on the
sphere. Particular solution values of such X, like (35) above, will be identified in the text
when they are needed without necessarily introducing fresh notation.

Let r be the position vector, from a fixed origin O in three-dimensional euclidean space,
to a generic point on the surface of the sphere. Let a function r(s) of the distance s define
a path r = r(s) on the surface. Confine attention to part of the path of length I, so that
0 < s <, between end points

r(0) =x (say) and r(l) =X (say). (49)

An increment of distance dr along the path can be expressed as an ordered pair of physical
components (i.e. coefficients of local orthogonal unit vectors) which we write as

dr = (ac(r)dq, adT). (50)

where ¢ = XA, 7 = ¢ and the function ¢(7) = cos7. The local unit tangent to a piecewise
smooth path described by functions ¢(s) and 7(s) is the vector

dr dg dr

— = = — . 51

ds “ (cds’ ds) (51)
Again the components on the right are the coefficients of local orthogonal unit vectors.

Equation (33) suggests that we next construct the integral of the Coriolis parameter
along the finite segment of the path r = r(s) defined above, between the end points (49).
This is .

A= [ fir)s (52)
0
between x and X. We shall see in the next section that A has some features in common

with the action integral found in classical mechanics. From (51) we deduce, from our
hypotheses that the local unit vectors are orthogonal, that

ds? = a?(c*d¢® + dr?) (53)
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so that A can be rewritten symbolically as

N =

X
A= (1,/ f(c*dg® +dr?) (54)
X
This symbolic form highlights the presence of the end points (49) in a different way to
(52). We will write L for the integrand of A/a in (54) for use in section 4. It is clear that
L is bounded at each point on the path. In the special case of constant f,

A=1f. (55)

The value of A in (52) clearly depends on the path chosen. We define d(x,X) to be
the minimum value of A(x,X) over geometrically possible paths joining x to X. These
paths are geodesics on the sphere rescaled by the Coriolis parameter, and we will show in
the next subsection that they are the same as the steepest descent paths (45). We will
show that the condition for

M= %/D (d(x, X)? + gh) hdx (56)

to be minimised, under variations which have the properties (10) and o = 0, where
o= hg—;‘(, defines x implicitly as a function of X. D denotes either the whole surface of
the sphere or a bounded region of it; as in section 2.2. We will show that the equation
for the solution value of X in terms of x can be interpreted as a state of geostrophic
balance, with energy equal to the minimising value of M. We will thus have achieved a
generalisation of the geostrophic coordinate transformation.

3.3 Existence of an energy minimiser for the spherical case

In this subsection we assume the existence of a transformed coordinate system (A, ®) as
described in section 3.1, but that its relation to the physical coordinates (A, ¢) is unknown.
Following (44), we define o to be

_,9(\ @) cos¢ -
7= h(‘)(A,<I>) cos P (57)

and assume that o is a given function of (A, ®). We then seek to use this information to
find (X, ¢) as a function of (A, ®). As in sections 2.5 and 3.1, we represent this function as
a mapping s from the surface of the sphere to itself which takes a point X with spherical
coordinates equal to (A, ®) to a point x with coordinates (A, ¢). For this to be useful, we
will need this mapping to be invertible, so that we can write X = s~!(x). The information
given is not sufficient to do this uniquely so, as for the f-plane case in section 2.5, we show
that a unique invertible solution can be obtained by minimising the energy (56) subject
to variations satisfying (10) and do = 0. We can write (56) as an integral over the
transformed coordinates as

M= %/D(d(S(X),X)Q+gh(S(X)))U(X)dV’ (58)

where dv is the area measure

dv = a* cos ®dAdP. (59)

The discussion in section 3.1 shows that variations satisfying §o = 0 will only be equiva-
lent to variations satisfying (11) for displacements along steepest descent paths in energy.
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Since we cannot use (11), it is not immediately clear that our procedure will yield a solu-
tion of the original equations (3), (5), (6). This question is dealt with in section 4.

The constraint do = 0 is difficult to enforce. It can be made mathematically tractable
using the concept of measure-preserving mappings. (See, for instance, Douglas (2002) for
formal definitions). Given a (Borel) set B C &%, define the measures

v(B) :/ dl/:/ a’ cos PAAdP (60)
B B

w(B) :/B(I,thosqbd)\dqb

Thus @ (B) measures the physical mass of fluid contained in B and v(B) measures the
area of B in the transformed coordinates. Calculate the image of each point on the sphere
by setting X = s~!(x). Then, given a (Borel) set B, we can calculate w(x : s~!(x) € B).
The constraint on ¢ becomes the statement that

w(x: s (x) EB):/BU(A,<I>)du (61)

Any map s that satisfies this condition for all (Borel) sets B is called a measure-preserving
mapping from §? (endowed with measure ov) to §? (endowed with measure @). We will
use the concept of the set S of all such mappings to describe our class of variations. We
make the assumption (of non-degeneracy) that o is v-integrable, which means in particular
that @(x : s7!(x) € B) > 0 implies v(B) > 0 for all sets B.

Minimising (58) over the set of measure-preserving mappings S is an example of a
general class of problems called optimal mass transfer problems; one seeks an optimal
measure-preserving strategy which minimises the ”transportation cost”, where optimality
is measured against a cost function. A review of these problems is given by Gangbo and
McCann (1996). The integrand in (58) is an example of a cost function. This problem has
a long history and has found many applications in physics, economics and statistics; the
original problem posed by Gaspard Monge in 1781 was how to transport material between
two locations in the most efficient way. McCann (2001) proves that this problem can be
solved uniquely when the integrand in the cost function takes the form of the square of
a distance function on a riemannian manifold. The form of (58) suggests that the first
term of the integrand could be interpreted in this way. However, we will need to extend
McCann’s results to deal with the whole of (58) and the fact that our constraint set is not
a single set S of measure-preserving mappings.

We mainly discuss the case where D is the whole spherical surface $2. The modifica-
tions to the argument where D is a bounded subset of it are discussed after the proof of
Theorem 5. The next step is therefore to define a manifold M to be the surface of the
sphere 8% endowed with the distance function d(X, x) defined in the previous subsection.
We will assume that d is a twice continuously differentiable function of X and x. To apply
McCann’s theorem, we need M to be a compact, connected manifold without boundary.
Since the Coriolis parameter f defines the distance function in (52), and f goes to zero at
the equator, these assumptions will not be satisfied. We therefore regularise the problem,
so that the assumptions are satisfied. Having solved the regularised problem, we will then
have to show that a solution of the original problem can be recovered in the limit as the
parameter defining the regularisation tends to zero.
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Define the riemannian manifold M, to be the surface of the sphere together with the
metric whose components, g;;, take the form

A Q2 . 52 Ai7S2 . 1752
g =Fo)e, 95 = F @)Y (62)
where gl‘sjz denotes the usual components of the metric on a sphere S? of radius a
2
sz [ a 0
9i; = ( 0 a’cos?o ) . (63)

F(¢) is chosen to be a smooth modification of the function 2|Qsin ¢| which is a twice
differentiable function of ¢, is equal to 2|Qsin ¢| for ¢ > n > 0 for some (small) 7 and has
a minimum value € > 0. The regularisation is equivalent to using f. = F(¢(r)) in (52) to
calculate A, and defining the distance function d by finding the minimum value of A. At
a later stage, when the complete solution has been obtained, we will consider the effect of
letting n, € — 0. The resulting manifold M, is topologically equivalent to the sphere.

We note in passing that the general setting for a treatment of geometries defined by

metrics of the form given in (62) is known as conformal geometry because multiplying
. g2 . . . .

metrics of the type g;; by the functions F(¢) preserves angles and ratios of distances in

the new geometries defined by g;f etc.; see Sewell (2002, §2) for further comment on the
subject of conformal transformations.

Noting that we have assumed that o is v-integrable, McCann (2001, Theorem 8) yields
that

C(s)=1 /Mé &(s(X), X) o (X)dv. (64)

has a unique minimiser t over s € S, where S is as defined following (61), which can be
expressed in the form

t(X) = expx[-V¥(X)], (65)

where ¥ is a scalar function and the gradient is taken with respect to the metric on M..
The operator on the right hand side of (65) is the ezponential map (see, for example,
Schutz 1980 §2.13). The ‘exp’ notation is a shorthand for the differential operator, which
when applied to an analytic function gives the Taylor series of that function expanded
about some datum point. An explicit example is provided by semi-geostrophic theory on
an f-plane. The dual coordinates (35) can be expressed in the form

d
X; = )
; = exp <€ds> Z; (66)

where X; = (X,Y), z; = (z,y), s parametrizes the path between the two end points (X, x),
and € is a distance along the path. For the f-plane case the path is a straight line, with
metric given by (33), and a simple relationship can be derived relating the normal to the
path, Vd, to the tangent vector dz;/ds:

dz; ad

P i g (67)

where ¢;; is the alternating symbol in two dimensions. The derivative d/ds defines a vector

field d/ds = (dz;/ds)d/dz;, and therefore (66) becomes
dz; 0 e (dx; 0O dzp 0O
N T A T A T
( te ds 8$J + 2! (dS 830]) ds Ozp, + T (68)
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Because the path is a straight line the tangent vector dz;/ds is constant along the path
and therefore (68) becomes

dz;
ds
Then, using (67) and (33), (69) becomes
gy 9 Oh
M=t o (70

and if e = d/f, we recover (35).

The existence of the function ¥ characterizes optimality of the mapping t by spec-
ifying the direction, given by V¥, and the distance, given by |V¥|, in which to move
material from X to other locations in M,.. The paths over which one moves material are
the geodesics between points as defined by the metric on M.. ¥ is determined up to an
additive constant.

In order to apply McCann’s result to our problem, we need to use a number of the
arguments he uses to prove the theorem. We summarise these below, referring to his
paper for further detail. He shows that the scalar function ¥ can be characterised in the
following way. First introduce a conjugate or dual function ¥¢ to ¥, defined by

T°(x) = igl(f(%(ﬂ(x, x) — ¥(X)). (71)

Then, in particular, we have

T(X) + ¥°(x) < 1d*(X, x). (72)

for any x, X. ¥¢ can be constructed for any choice of ¥. Next, suppose that the infimum
is attained at X = w(x). Then

T(w(x)) + 2°(x) = 3d° (w(x),x). (73)

Now consider the behaviour of 2d*(X, x) — ¥°(x) as a function of x. Equation (72) applied
at X = w(x) shows that

T(w(x)) < gd*(w(x),y) — T(y). (74)

for any y, with equality at y = x. Thus, assuming any X can be written as w(x) for some
x, we have that

¥(X) = inf (3¢°(X,y) = ¥°(y)). (75)

Since this is just the definition of (¥°)°, we can write (¥¢)¢ = ¥° = ¥. This is an ex-
ample of Theorem 1 of Sewell (2002, p.147): if we define a transformation between x and
X using (73), then if the transformation is invertible, we will have ¥°¢ = ¥. However,
the converse is only true under a non-degeneracy assumption that w does not map sets
of positive size to zero size. Our condition that ¢ is v-integrable is equivalent to this. For
convenience we henceforth call such a function involutive since the property ¥ = ¥ is an
involutive property. For a given distance function %d?, this property is only satisfied for ¥
which satisfy particular geometrical properties. McCann (2001) calls such a function %dz—
concave. This definition is discussed further (for a more general cost function) in Rachev
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and Ruschendorf (1998), section 3.3; McCann has additional results for this particular case.

McCann proves (in his Theorem 7) that, if t is the minimising map (65) with scalar
function ¥, then at every x where ¥ is differentiable the inequality in (72) is strict unless
x = t(X), when it holds with equality. Thus

T(X) + T ((X)) = 3 (X, 6(X)). (76)

He proves that ¥ is involutive and thence, because of the non-degeneracy condition, that
t is invertible almost everywhere. It follows that t~!(x) = expx (—=V¥°(x)). To link with
Theorem 2, we make the identification ¥.(x) = —gh(x).

In euclidean space, where d is euclidean distance, the involutivity requirement will
be satisfied if 1d?(X,x) — ¥(X) is a strictly convex function of X for each x, ensuring
that t(x) is single-valued. Because of the simple analytic form of %d2, it is easy to show
that this condition will be satisfied if £d*(X,0) — ¥(X) is a strictly convex function. In
our case, where we are working on a manifold topologically equivalent to the sphere, the
concept of a globally convex function does not make sense. However, a convex function
in euclidean space may be characterised as the supremum of a family of continuous affine
functionals: the corresponding condition on W is that it is equal to the infimum (over x)
of a family of functions of the form 1d?(X,x) + ¢(x) for some function ¢, as in (75). The
latter property does still make sense on a manifold topologically equivalent to the sphere.
This will be the geometric condition that t is invertible. Using this, McCann proves that
involutive functions satisfy analogous regularity properties to convex functions, which is
crucial in the rest of our arguments.

We now prove that the mapping t minimises the notional energy (58) which includes
the potential energy term, using an argument similar to that in Cullen and Gangbo (2001)
for the f-plane case. The strategy is as follows: we examine the energy functional when
evaluated with the minimizer of (64) and show that perturbations always generate positive
increments to this functional.

We first make some additional definitions. Write p for the area measure in physical
space, so that

w(B) = /B a? cos pdAd¢ (77)

and, for a y—integrable function 1 : M. — IR, write nu for the measure defined by

mn(B) = [ a*y(x,6) cosgdads (78)

for (Borel) sets B C M,. Thus, the measure @ can be written as hy. Similarly define ov
for v—integrable ¢ : M. — IR. We assume that a v—integrable o is given.

We call a pair (,s) admissible if s is an invertible measure-preserving mapping from
(M., ov) to (M, nu). We think of s=' as a (possible) coordinate transformation, and 7
as a (possible) height function. We write & x H for the set of admissible pairs. We will
show that there is a unique pair (t,h) € § X H which minimises

Msm) =1 [ (dls(X),X)? + gn(s(X)r(X)dv. (79)

€
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over (s,n) € & x H. This is equivalent to minimising (58) integrated over M, under the
constraints (10) and do = 0. The desired coordinate transformation will be defined by the
mapping t~!.

The problem of minimising M cannot be rewritten as a standard mass transfer problem
as solved by McCann (2001). However, his theorem can be used in the proof. We begin by
fixing 7, and considering only the first part of the integrand in (79). This allows us to de-
termine a t, that depends on 7. We then show that (79) can be minimised as a function of
n. If h is the choice of 5 that achieves the minimisation, then (tj, h) solves the full problem.

Theorem 4 The integral (79) is uniquely minimised for (s,n) € S x H by (t, h), where
t is the map (65) that minimises (64) and —gh = ¥°. W° is defined by (71) using the ¥
that appears in (65).

Proof Start with any n(x) > 0 such that [, ndu is fixed. Use McCann’s theorem to
construct a map t, which minimises C(s) for s : (Mcov) — (Mnu) as in (64). By
construction, (t,,n) is then an admissible pair. Use (79) to calculate M (t,,n). Following
arguments of Cullen and Gangbo (2001), this will be a strictly convex function of #, (the
second term is clearly strictly convex), and so can be uniquely minimised by some choice
of 7.

For any 7, we can find t, and hence ¥° using (71) and (65). We now make the 'guess’
that the minimiser is characterised by setting —gn = ¢, which is consistent with the
analysis in Theorem 1. For this choice, write h = 1 and t = tj,. We demonstrate that this
characterisation indeed gives a minimiser as follows. Let (s,7) be an arbitrary member of
S X H. The definition (71) with x chosen to be s(X) gives

T(X) + ¥(s(X)) < 3d* (X, 5(X)). (80)
Now integrate (80) with respect to the measure ov to give
/ V(X)odv+ [ W(s(X))odv < / L (X, s(X))odv (81)
€ ME €

The inequality is strict if s # t. Now using the fact that s : (M., ov) = (M., np) is
measure-preserving, and identifying ¥¢ with —gh, we have that

/ U(X)odv — / ghndp < / 1d* (X, s(X))odv (82)
with strict inequality if s # t. A similar calculation replacing s with t and n with h gives
/ U(X)odv — / gh*dy = / 1d* (X, t(X))odv. (83)
€ M M.
Now
M(s,n) — M(t, h) = / LA(X, s(X))ody - / L2 (X, 6(X))odv + (84)
M€ €

/ %gn(S(X))Udv—/M Tgh(t(X))odv
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The first two integrals in (84) are estimated using (82) and (83) respectively. In the second
two integrals we replace odv by ndu and hdp respectively (noting s and t are measure
preserving). This gives

M(s,m) = M(t, h) 2 g/ (h* - nh)dwr/ z9m°dp — / gh*dp (85)
M. Me M
= %g/ (h = n)*dp
M
Thus M(s,n) — M(t,h) > 0 unless (s, 7) is equal to (t, ). The result follows. O

We can then deduce

Theorem 5 The integral (56), with f. as defined following (63), and d defined by the
minimum of A in (52), is minimised with respect to displacements satisfying (10) and
do =0 if X is given as a function of x by the map

X = expy[gVh(x)] (86)

where —gh(x) is an involutive function. The minimising value is

1 *2
. /8 (w3 + gh) hdp (87)
1 8h

acosd N é%). In particular v = uy on those parts of M. where F = f.

where Fuy = (

Proof. The definition of the space of admissible pairs & X H is consistent with o = 0. The
definitions of the measures nu and hy are consistent with (10). The integral (56) takes the
values M (s, n) given the map s(X), and the value M (t,h) given the map t(X). Theorem
(4) shows that M (s,n) — M(t,h) > 0 if (s,n) # (t,h) and that the inverse map t~' takes
the form (86), as required. Since McCann’s theorem proves that ¥ is involutive, so is
—gh . Furthermore, the statement t =1 (x) = exp,[Vgh(x)] implies that the magnitude of
t~'(x) is a ‘distance’ F~'V(gh(x)) along the geodesic starting from x. To see this, we
note that |[gVh| = (gzgij‘qzvihvjh)% = (ng_zvihvih)% (using (62)). The minimising
value of $d?(t~*(x),x) is 3|gVh(x)|* = 5¢?F~2V'hV;h = Ju3? as we require. O

This theorem proves the claim made at the end of section 2.4, subject to the regulari-
sation of the problem made by replacing f with F. If the physical domain is a subset D
of the surface of the sphere, as would arise in oceanographic applications, we can make
the same definitions as above, including the use of the regularised Coriolis parameter F.
The support of ¢ will be some subset of S?, and we seek a mapping from §? into D which
minimises (56) where the integral is taken over D. If the domain is small enough and far
enough removed from the equator (so that all points are geodesically linked), the regular-
isation will not be needed. In that case, Theorem 13 of McCann (2001) can be used to
show that an optimal map can be found.

The characterisation of —gh as involutive is equivalent to the local inertial stability
condition on the matrix (24) derived earlier, as can be seen by substituting for w,v in
terms of h using the geostrophic relation, symmetrizing the matrix, and calculating the
determinant. We obtain a term f2 which represents the local convexity of the distance
function d(x,y) for a fixed y, several terms containing f and its spatial derivative along
with first derivatives of h, and terms with second derivatives of h. The second derivative
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terms measure the convexity of h, giving the condition that gh(x) + d(x,y) is locally
strictly convex as a function of x for each y, which is a necessary condition for it to
have a unique minimiser for every choice of y. Locally, d(x,y) is well approximated by
%f2|x — y|?, and the involutive property of —gh at y is achieved as a result of the strict
convexity of %f2|x —y|? + gh, which is the convexity principle used in the f-plane case.

The procedure described in section 3.1 seeks to minimise the energy subject to the
conditions stated in Theorem 5. Since Theorem 5 guarantees a unique minimiser, any
solution found by the procedure must be the correct one. Consider a fixed X and a
displacement dr of x along the geodesic path connecting x to X. Since the geodesic is
normal to u, at x, and the geodesic distance from x to X is |u,|, we have

for = (=dvg, duy) (88)

This is exactly (11), showing that, for displacements along the geodesic, (11) is equivalent
to 6X = 0. Thus the geodesic must coincide with the energy minimisation path defined
in section 3.1, equation (45).

4 Solution of the evolution equations using the new coordi-
nate transformation

4.1 Differential properties of the distance function on the sphere

We now need to establish certain differential properties of the path integral (54) that
appears in the kinetic energy (56). Given a path r = r(s), of length I, between end points
x and X in (49), and the associated value of A, we wish to allow the path, and in particular
its end points, to vary, and to examine the effect on A.

First, if only the length [ varies, along the local tangent to the end point X, with the
starting point x held fixed, then

dA

X

Y ) (59)
immediately from (52) (and (55) provides special examples). Since

dX dr

from (49) is the unit tangent (and a particular value of (51)) at the end, we can construct
a vector gradient

=T Sy (o1)
dX — di dl dl
of A at the end, for this particular variation, of [ alone.

More generally, we now imagine that the direction of the local tangent at the end X is
allowed to vary, as well as the length [ of the curve. The curve becomes piecewise smooth
there (instead of smooth as just above), but the same construction of the vector gradient
(91) can be repeated, but using the new end tangent vector.

A different proof of this last conclusion can be constructed using hamiltonians as
follows. The vector gradient is first defined by specifying its components with respect to
local orthogonal unit vectors as

dA % (1 0A (’)A) (92)

cdq’ or
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where, on the right, the partial derivatives are with respect to the end values of ¢ and
7. Both of ¢ and T will be available almost everywhere on the curve to act as the local
path parameter, as an alternative to s, and we shall write 7/ = d7/dq and ¢ = d¢/d7 for
brevity, so that 7'¢ = 1. The exceptional points will be where the path is locally parallel
to a g-coordinate curve so that only ¢ is available there (thus avoiding infinite §); and
where the path is locally parallel to a T-coordinate curve so that only 7 is available there
(thus avoiding infinite 7'). The modified Coriolis parameter that appears in (62) is the
function F(r) with 7 = ¢. The integrand of A/a can therefore be written as either of the
functions

L(r',7) = F() (¢ + )2 or L(4,7) = F(r)(1+*¢?)? (93)

when ¢ or 7 is the path parameter, respectively. At each 7, the functions L(7") and L(q)
are strictly convex, being one branch of a hyperbola in each case.

Either of (93) can be used as a lagrangian to define a momentum p = 9L/d7' or
p = 0L/dq¢ and, via the standard Legendre transformation, a hamiltonian H(p, 7) = pr’—L
or H(p,7) = p¢ — L, such that 7/ = gH/0p and ¢ = O0H /0p. Since F # 0 and away from
the poles, so that ¢ > 0 we find that

1
(72 =)
Cc

(eI

H(p,7) = —¢(F*~p*)2 and H(p,7) =~ (94)

The positive square root is chosen throughout these calculations. Then at each 7, the
functions H(p) and H (p) are strictly convex.

We can now write (54) as

é:—/qu—I—/pdT or é:/pdq—/HdT (95)
a a

between limits of integration which are those values of ¢ and 7 corresponding to the end
points x and X, i.e. to s = 0 and s = L. Differentiating with respect to those end values

in (92) gives, at X,
04 [ H P

We can write (51) at X as

x _ F_ . F §
g—f(cﬂ') or f(cq,l) (97)

because Fds = aldq or aLdr respectively, i.e. d¢/ds = F/al or d7/ds = F/aL when ¢
or 7 is taken as the independent variable, respectively.

Equating components, we see that the first of (91) holds if and only if

H Flec aF%r!
in the first case, and if and only if
Feq F?
1—; - ch and  —H="—> (99)

in the second case.
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It is easy to verify that (98) and (99) are satisfied by using the properties p = JL/07/,
H=pr'—L,p=0H/0¢ and H = pg — L with (93).

We can show, using similar techniques, that a similar result holds for 0 A/0x:

J0A (H P
T <?,—p> or <—E,H>. (100)

4.2 The semi-geostrophic equations in transformed coordinates on the
sphere

From (73) et seq. and Theorem 4, we identify ¥°(x,t) = —gh(x,t) and define ¥(w(x),t) =
gH (X, t) so that

GH(X,1) - gh(x,t) = L2(X, x). (101)
By differentiating (101) along fluid trajectories in physical space, we shall derive the
relationship between the equations of motion (6) in physical space coordinates and the

image of those equations in the new transformed variables. Referring to (101), note that
d(X,x) depends on time only through the time dependence of X and x, we have

od 0H Oh
Yo == T

This is a consequence of the passive variable nature of # in the duality expressed by (101).

Adopting 7 as the path parameter, then using (96)2, (100)2, and (99); with A = d, we
have, from (101),

ad OH p F?

da x = ga—X =d (E, T - y (102)
ad B oh p F?

da o = _ga_x = —d (E, T) - (103)

Because the lagrangian L(7, ¢) is independent of ¢, then, by the Euler-Lagrange equation
d (8L> oL 0

dr \ 9q oq '

the momentum p = 0L/0q is constant along the path. Hence we can deduce the following
relationships between the gradients of h and H: from (96)3 and (100); (using the notation
X =(A®),x=(A9))

g OH  dp g Oh  dp
acos® ON  cos®’ acospIN  cos¢

and therefore we have (by cross-multiplication)

OH Oh
and from
yOH _ dF(X)"
ad®  L(X)
and
goh _ dF(x)?
adp  L(x)
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(where the functional dependence of F and L on x and X means that these functions are
evaluated at the respective end points) we have

F(x)20H F(X)?0h
L(x) 0® ~ L(X) ¢

(105)

Note that, when f is a constant and the path is a straight line (which means that L(x) =
L(X))), then in cartesian coordinates (104) and (105) reduce to 0H /90X = 0h/0x, which
is the usual gradient property of the geostrophic momentum transformation.

We now construct an identity involving two components of a vector field and deduce
that in order for the identity to hold for an arbitrary geostrophic flow, the semi-geostrophic
equations in physical space must be satisfied (subject to the replacement of f by F). This
constraint enables us to deduce the form of the equations in the new variables.

Differentiating (101) along fluid trajectories and using Theorem 5, which implies that
d*/2 = |u}|?/2, gives
dug dv;  9H dX  0h dx

* * g _ 20 T
Y97 + a Joxar dox @

(106)

using the passive variable property of . Substituting for the definition of geostrophic flow
(5) into (106) and writing both sets of dependent variables in terms of spherical polar
coordinates, (106) becomes

g Ohduy g Ohdvy
CaF(x)0¢ dt ' acospF(x) 0N dt
9 6_HU+ QO_HV_ g _on _ g@_h (107)

acos® QA a 0P acosqb(?—)\u a 3¢U’

where (U, V) = (acos ®dA/dt, ad®/dt) and (u,v) = (acospdA/dt, ad¢/dt). From (104)
and (105) we substitute in (107) for the derivatives of H with respect to A and @ in terms
of derivatives of h with respect to A and ¢, and group terms with coefficients proportional

to O0h/OX and Oh/0¢:

g Oh (du;  F(X):L(x)
T aF(x) 99 ( & T FRLX) _7(")”)

q oh dv;
(E ~FX)

cos ¢

T acos OF (x) OA

U+ T(x)u) = 0. (108)

cos P

Adding and subtracting a term }\'u;v; sin ¢, (108) becomes

g Oh(dug s . F(X)’L(x)
g Oh (dvy o cos ¢ -
+Wﬂ-‘(x)a_>\ (dtg +A“gsmqﬁ—}"(x)lt—f(x)cosq)U) =0. (109)

If the flow in transformed space is given by

F(x)*L(X
J —
V= vg]:(X)QL(x) (110)
and ®
cos
Ty p— 111



then the identity (109) holds when the semi-geostrophic equations (6) are satisfied in
physical space and F = f.

It is appropriate to say a few words about the calculation leading up to the conclusions
stated at the end of the last paragraph. In differentiating (101) along fluid trajectories,
we have implicitly constructed a vector field

g_@+dxiad_@ dX; od
dt ot dt dz; Ot dt 0X;

(112)

with components dz;/dt (resp. dX;/dt) and with the set of basis vectors {9d/dz;} (resp.
{0d/0X;}). From this point of view, (109) is an identity, derived from (106), satisfied by
a linear combination of the basis vectors

{(=9/(aF))0h/0¢,(g/(acos¢F))On/OA}.

This implies an additional constraint must be satisfied, namely that the coefficients van-
ish, which yields the result we sought to establish. A discussion of ideas related to this
construction can be found in §4.25 of Schutz (1980).

Finally, we may write (110) and (111) in the following way that makes the geometry
explicit. Substituting from (104) and (105) into the definition of the geostrophic wind (5),
we can write (110) as

. g OH F(x)L(X)
" acos¢ ON F(X)2L(x)’

(113)

and (111) becomes
B _g@_Hcos@ L(X)F(x)
U= a 0% cos¢ L(x)F(X)? (114)

Now recall that, from (93), L(x) = F(x)(1 + cos? ¢(d)\/d¢)2)% and we define L(X) =
F(X)(1+ cos? <I>(dA/d<I>)2)%, and therefore we can write the equations above as

N

g 6‘_H(1+c052{>(dA/d{>)2)

- , 115
acos pF(X) OA (14 cos? ¢(dN/d¢)?)z (115)
and 1
g 8_Hcos<I>(1—|—cos2<I>(dA/d<I>)2)5 (116)
= a.’F(X) 0P COS¢ (1 —}-COS2 ¢(d>\/d¢)2)% ’
respectively.

4.3 Solution of the transformed equations

In the previous subsection, we have shown that the semi-geostrophic equations on the
sphere transform into the equations acos®A = U,a® = V, with (U, V) given by (113,
114), under the transformation from physical coordinates to the new coordinates (A, ®);
as long as F = f. Asin the f-plane theory, we regard U = (U, V) as a velocity field in
a phase space with coordinates (A, ®), the space being a copy of the original sphere S?.
Since ¢ is a measure of mass in phase space, standard kinematics yields the conservation
law

do
5= V- (ou). (117)

The continuity equation (2) implies that, within any material circuit defined by fixed
values of the lagrangian coordinates o and 8:
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/h(a,ﬁ,[))dozdﬁ = a/h(a,ﬁ,t)d,u: a/a(a,ﬁ,t)dy (118)

This takes the form of a conservation of ’circulation’ in phase space, though it has noth-
ing to do with the circulation in physical space. It is a semi-geostrophic analogy of the
'impermeability’ result of Haynes and McIntyre (1990).

Equation (117) would imply lagrangian conservation of ¢ if U were non-divergent. If
U were exactly a 'geostrophic’ wind in (A, ®) space, then F(X)U would be non-divergent.
In fact, the divergence of F(X)U is

gVG x VH (119)
where & L(X)F (%)
- cos ¢ L(x)f(X); (120)

and H is defined in equation (101). The function G is the product of three ratios which
tend to 1 as d*(x,X) tends to zero. As written in (120), G appears to have a singularity
when x is at the pole and cos¢ = 0. This is an artefact resulting from the singularity of
the coordinate system. It also appears to have a singularity if the geodesic connecting x
to X is parallel to a line of latitude at X, so that dA/d® is infinite. This is an artefact re-
sulting from the use of 7 = ¢ as the path parameter in section 4.1. The remarks following
(54) show that L is always bounded above and away from zero. The ratios in (120) depart
from 1 because of curvature of the path, and are significantly different from 1 if the angle
in euclidean 3-space between the directions of the path at x and X is significant. This
occurs if x and X are separated by a distance comparable to the radius of the Earth, and
in particular that the latitude is significantly different at the ends. The divergence (119)
is only large if the ratios vary rapidly along contours of H, i.e. along the direction of U.
For the data shown in Fig.1, maximum values of u, are about 15ms~'. Thus d(x, X) has
values up to about 1.5 x 10°m. The ratios that appear in G will then all depart from unity
by about 1%, so overall G will depart from unity by up to 5%. The geostrophic wind u,
varies along % contours on a length scale of about 10°m. Thus VG is of order 5 x 10™%, so
that V. F(X)U is of order 5 x 10~!2U. This has to be compared with a typical gradient of
F(X)U, which is of order 107'°U. The loss of lagrangian conservation of F(X)U, given
by oV« (F(X)U), is only a few percent of the lagrangian transport term FU - Vo. Note
also that, in the special case of zonal geostrophic flow, G # 1 but (119) vanishes because
H and G are both independent of A.

As in Cullen and Gangbo (2001), the solution procedure is now to specify o(A, ®) at
t = 0, to solve the optimal map problem to find x = (A, ¢) as a function of X = (A, ®),
which also determines h and H, and then to calculate U and V from (113) and (114).
The conservation law (117) can then be integrated in time, in principle, to give o at later
times. Formal analysis of this claim is outside the scope of this paper. However, we note
the following facts:
i) U and V are bounded as discussed above.
ii) The difference between h and a locally convex function is the smooth non-oscillatory
function d?(x, X). Thus we can expect that the property that the derivatives of a sequence
of convex functions converge to the derivative of the limit convex function in a weak sense
will also hold for involutive functions.
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In the solution procedure of Cullen and Gangbo (2001), the velocities U,V were re-
placed by smoothed velocity fields U,,V,, so that the equation (117) could be solved,
giving a solution .. They then proved convergence of the sequence of approximations b,
to a limit (which solves the original problem in a generalised sense). In the present case,
we expect the regularity following from the involutive property of —h to be sufficient to
prove convergence.

A similar procedure can then be used to deal with the equator. The regularised
problem that we have discussed has solutions h., with geostrophic winds defined by us-
ing (5) with a positive value of the modified Coriolis parameter F in each hemisphere.
We now let € tend to zero. The involutive condition on —h means, in particular, that
m% (.7:_1%’3\&) > —F and so 7“1% and hence v, must tend to zero at ¢ =0 as €
tends to zero. Since H is also involutive, V must tend to zero at & = 0 as € tends to zero.
The geostrophic winds in the regularised problem are calculated from % by using a positive
modified Coriolis parameter F. The geostrophic winds in the limit solution are thus those
given by setting f = 29| sin ¢|. Since semi-geostrophic solutions are not preserved if f is
replaced by —f, the limit solution will not be correct in the Southern hemisphere, so we
must modify our solution procedure.

Semi-geostrophic solutions are invariant to a transformation which leaves h fixed, re-
verses the signs of f, 0/0¢, v and vy, and leaves u, u, and J/0X fixed. Solutions of
equation (117), along with (113) and (114), are preserved if H and the coordinates are
fixed, but U, V, f and F change sign. Thus we solve (117), but with the U and V in (113)
and (114) multiplied by a factor a(®), such that o = 1 for ® > n, a = —1 for & < —n,
with a smooth variation in between. This will give a solution for A which satisfies the
semi-geostrophic equations on the sphere with the correct definition of f in the limit as
n — 0. Since V = 0 at & = 0 in the limit solution, the limit solution will not have a
singular V- U at & = 0.

We finally demonstrate that the transformed equations (113) and (114) are consistent
with the energetics that can be derived from the original equations (3), (5), (6). Using
the passive variable property 0H/0t = 0h/0t and the fact that, from (113) and (114) it
is easy to show that

(1/(acos®)(OH/ONU + (1/a)(0H/0®)V =0, (121)

it follows that 2 = 21 Using (3), (5), (6), we can derive
D

E(%("’?; + 1)3)) = —u-Vh. (122)
Combining these results shows that

Doy a 2

ﬁ(i('ug—l—vg)—}—h—H):O. (123)

The quantity within the material derivative is, however, identically zero because of (101),
demonstrating the consistency of our derivation.

4.4 Examples of the solution

In this subsection we show an example of the evolution of the semi-geostrophic model using
the initial conditions illustrated in Figure 3. We plot the approximately conserved quan-
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Figure 4: Distribution of o/(hof(®)) derived from data shown in Figure 3. Contour
interval 10%s. Top: Northern hemisphere, bottom: Southern hemisphere.

tity o/(hof(®)). Figure 4 shows the initial data corresponding to Figure 3. Values close
to the equator are not plotted. The Ly norm of o/(fho) is infinite, so instead we calculate
the Ly norm of the determinant of the matrix (24) divided by fh. This is the physical
space form of the semi-geostrophic potential vorticity, calculated using the local value of f.

The fields of 0/hg and o/(fho) are shown in Figures 5 and 6 after 2 and 20 days inte-
gration respectively. The Ly norm of the physical space potential vorticity is increased by
a factor of 1.0006 after 2 days, and by 1.0029 after 20 days. Since the numerical methods
used do not conserve potential vorticity exactly in the f-plane case, it would be difficult to
determine whether potential vorticity is conserved or not from this diagnostic. The worst
case estimate made in the previous subsection is almost certainly an overestimate of the
effect on a global integral. Comparison of Figs 3 and 5 shows that the disturbances prop-
agate faster near the equator, as expected from the dispersion formula for Rossby waves
in spherical semi-geostrophic theory which is identical to that derived from the primitive
shallow water equations, (Mawson (1996), p.280). After 20 days the disturbances have
migrated closer to the equator, thus providing a severe test for the integration scheme.

31



5 Issues for further work

We have shown how the geostrophic coordinate transformation can be extended to the
sphere in a well-defined way. The convexity principle which makes the coordinate trans-
formation well-defined in the f-plane case has a natural generalisation. If a potential
vorticity or density is defined respectively as the mass-weighted Jacobian of the forward
and reverse transformation, we have shown how a potential density inversion procedure
can be implemented. The evolution equations take the form of the transport of potential
density by a 'velocity’ parallel to the geostrophic wind. We have shown formally how the
resulting equations can be solved.

There are several remaining analytic issues to be resolved in order to make the above
solution procedure rigorous. The results of McCann (2001) and Cullen and Gangbo (2001)
have to be extended to 'measure’-valued potential densities. This is because we cannot
guarantee that the divergent part of the velocity in transformed coordinates will not lead
to local concentration of potential density. In addition, we have to prove that the limit of
the regularised semi-geostrophic solutions on the sphere is well-defined as the regularisa-
tion parameters €, 7 tend to zero. Since the proofs that solutions exist rely on convergence
of a sequence of approximations to the depth field, and the depth field is very flat near
the equator, this is likely to be straightforward.

Meteorologically, the constraints on the dynamical system resulting from the conserva-
tion laws need to be explored, in particular to establish which flows are nonlinearly stable
under this type of dynamics. An important issue is the apparent lack of an equivalent to
the absolute vorticity conservation law satisfied by the barotropic vorticity equation on
the sphere. This may be related to the need to enforce inertial stability. Inertial stability
is harmless in the barotropic vorticity equation. The inertial stability condition prevents
the model describing genuinely two-dimensional disturbances to the depth field near the
equator. This may reflect the clearly different dynamics that is observed near the equator,
for instance the inability of tropical cyclones to form close to the equator.
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7 Appendix

Theorem 6 Let S be a curved surface lying in a three-dimensional space, having unit
normal N, and bounded by a closed curve C whose unit normal locally tangent to the
surface is n. Let B be a vector field which, on S, is tangent to S. Then

/ [divB — N.(N.grad)B]dS — j{ n.Bds (124)
S C
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Figure 5: Top: distribution of o/(ho) after 2 day forecast from initial data shown in Fig.3.
Contour interval 0.025. Middle: distribution of ¢/(hof(®)) at the same time (Northern
hemisphere. Contour interval 10%s. Bottom: as middle picture for Southern hemisphere.

33



[ — [ = @f«oc/> py—
[ L S . A e s e S e T il i
EESImES svapr R e —
— Vot i = PR e
)
o
9/
A\
(NS
N
|
N /2\
=
L — —
J |
( \ T
L — | = I S H
/{ N L
[0 L—1—
— T0°= T~ L —
s s R AP — — — — —
o S/ —
760 T —+—1 —  — otey o 1
== | "~ Iy
= i s o 2200 19
] o0 o—— —
——— | E— ]
I~ e =
N— o — = 5
P8 = T 55—
[ —T— 0. 1ed o] — — — e S N —
— — iS4 = ] — |
00 T ] — —
S — [ —— — 7
L [ TJoa2@ ™ ——10.120 10T — ~_]
H -
\\L N [ —F—— [
HC T C

Figure 6: Top: distribution of o/(ho) after 20 day forecast from initial data shown in Fig.3.
Contour interval 0.025. Middle: distribution of ¢/(hof(®)) at the same time (Northern
hemisphere. Contour interval 10%s. Bottom: as middle picture for Southern hemisphere.
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where ds is the measure of distance along C, and div and grad are the vector differential
operators in three-dimensional space.

Proof
This is a corollary of Stokes” Theorem, which states that
/ N.(curlA)dS = ]{ A tds (125)
S c

for any three-dimensional smooth vector field A, where t is the local unit tangent to C
and curl is the vector differential operator in three dimensions.
First choose any smooth vector field B, and construct A =N x B on §. Then on C

t.A =t.(N x B) = (t x N).B = n.B,

?{A.tds = j{ n.Bds
C C

which is the required form of the right hand side of (124). (The application to (8) will
require B to be, on &, B = h?r.) Second invoke the vector analysis identity

by defining n =t x N. Hence

curl(N x B) = (B.grad)N — B(divN) — (N.grad)B 4+ N(divB),
then on §
N.[cur](N x B)] = N.(B.grad)N — N.B(divIN) — N.(N.grad)B + (divB)

because N.N = 1. Now invoke the properties that B is tangential to the surface §, so

that N.B = 0, and

L ON _ ON.N

because N.N = 1 and B.grad = 0/0B is the derivative in the direction of B. Thus
/[divB — N.(N.grad)B]dS = }{ n.Bds (126)
s c

and because the differential operators are defined in three-dimensional space, N(N.grad)
is the gradient in the N-direction, therefore grad — N(N.grad) is the gradient tangential
to the surface. Q.E.D. O

The application of this result to (8) requires B = h?f and then we obtain the required
result

/ [div(h?F) — N.(N.grad)h%]dS = }z{ h2n.ids.
S C
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