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THE EFFECTS OF NONLINEARITY ON ANALYSIS AND RETRIEVAL ERRORS
by J R Eyre
Abstract

The error characteristics of an optimal retrieval/analysis are well understood for the linear
problem, and linear theory has also been widely used to assess the approximate error
characteristics of weakly nonlinear problems. However, in the context of preparations for
advanced infra-red sounders, it has become apparent that linear theory will lead to an over-
optimistic assessment of performance, and particularly of the potential contribution of water
vapour channels to the accuracy of temperature retrieval/analysis.

In this paper, the effects of nonlinearities in the radiative transfer on retrieval/analysis errors
are investigated theoretically for the general variational retrieval/assimilation problem. It is
shown that these effects can be treated as an additional source of "forward model" error,
which we call nonlinearity error. The distribution of nonlinearity error is inherently non-
Gaussian and is a potential source of significant bias in the retrieval/analysis. Also, the
magnitudes of analysis error and nonlinearity error are mutually dependent. Strategies for
quantifying this error source are proposed. They are relevant not only to the assessment of
the information content of advanced sounder data but also to the mitigation of nonlinear
effects during retrieval or assimilation.

1. Introduction

When analyzing meteorological fields, it is important to consider sources of significant error,
both in the observations available to the analysis and in the analysis procedure itself. For
mathematically optimal results, it is necessary to account correctly for the error characteristics
of the observations and of any other information used in the analysis. For practical
applications, where sub-optimal results are usually acceptable, it is nevertheless important to
characterize significant error sources approximately; serious deficiencies in the analysis
usually result if an important source of error is overlooked or greatly under-estimated.

Amato et al. (1996) have drawn attention to a particular problem caused by nonlinear
relationships between some observed quantities and those to be analyzed. They have
demonstrated detrimental effects in the case of retrieving atmospheric temperature profiles
from spectra of infra-red radiances. Similar effects are potential sources of significant error
for general problems of this type: when retrieving/analyzing a set of geophysical variables
from a set of observations related to them in a nonlinear way (see Joiner and da Silva 1998;
Stoffelen 1998, section VI.1.2).

This paper examines the errors introduced by these nonlinearities within analysis/retrieval
schemes that are formulated to be optimal in the absence of such effects. In particular, it
explores the theoretical error characteristics of nonlinear variational methods now in use for
analysis of the 3D atmospheric state from global observations (e.g. Andersson et al. 1994) or
the retrieval of atmospheric temperature and humidity profiles from satellite sounding
radiances (e.g. Eyre et al. 1993). It discusses how these errors will tend to manifest



themselves and suggests some approaches to estimating their effects, and to mitigating them.

2. Theory
2.1  Solution of the variational problem

The problem of variational analysis is usually posed as one of minimising a penalty function
containing a number of quadratic terms, each representing a source of information on the
variables to be analyzed (e.g. see Lorenc 1986, Le Dimet and Talagrand 1986). Using the
notation of Ide et al. (1997), the penalty function for a combination of "observed" information
with "background" information is:

Jx) = BE-x")TBLx-xP) + V(y>-H{x} YL(E+F).(y°-H{x}) (¢))

where x a vector representing the state to be analyzed,
x" is an estimate of x obtained from "prior” or "background” information,
B is the error covariance of x°,
y° is a vector of observations,
H{x} is a vector containing equivalent values in the observation space corresponding
to the state x and is calculated through a "forward model" (or "observation operator"),
H{...},
E is the error covariance of the observations, and
F is the error covariance of the forward model.
T and ' denote matrix transpose and inverse respectively.

In general, the retrieval/analysis problem may be nonlinear in several ways. For example, B,
E or F could be a function of the state x or the measurements y°. However, the only potential
nonlinearity represented in eq.(1) is in the observation operator H{x}, and only this aspect of
nonlinearity is considered in this paper.

Eq.(1) is minimised by solving its gradient equation:
BL.(x-x") - H'(x)".(E+F).(y*-H{x}) = 0, 2)
where H’(x) = V,H{x}. We define the solution of this equation as the analysis, x=x*. Then
-x") = H'(x).(E+F).(y-H{x})). (3)

Lorenc (1986) shows that this solution is the most probable solution for x (i.e. the mode of
its probability density function), if the error characteristics of observations and background
are Gaussian, and observation errors are uncorrelated with background errors. There is no
assumption of a linear observation operator in the derivation of the maximum probability
solution; H{x} can be a nonlinear function of x. However, this solution of the problem will
only be truly optimal if the error characteristics of the real problem correspond to those we
assume in the analysis of the data.



Using ' to denote true values, we can re-write €q.(3) as
BL(x*x“x"+x") = H (x)T.(B+F)L(y-y-H{x*}+y). (4

Introducing €*, €* and €’ for the errors in x°, x* and y° respectively, and defining forward
model error, £ = H{x'}-y',

Bl(e-e") = H ) .(B+F)".(e-e-H{x*}+H{x‘}). 5)

2.2 The linear case

For the linear problem, i.e. where H{x} is a linear function of x, and so H’(x) = H’ = a
constant, we can solve eq.(3) analytically to give

x* = x* + K.(y>-H{x"}) (6)
where K = B.H'".(H’.B.H'"+E+F)’! @))
x" is "optimal" in the following respects: if x® and y° are unbiased, then x* is unbiased and
has minimum error variance; additionally, if the errors of x® and y° are Gaussian, x* also
corresponds to the maximum likelihood solution.

It can be shown (see Rodgers 1976) that the covariance of €* is given by

A = B'+HT(E+F'H (8)
or

A = B-KH'B =(KH)B . )]
It can also be shown (from eq.(5), or see Eyre 1987) that

e = AB'le®+ AHT.(E+F).(e-€)
or

g = (I-KH).e® + K.(e-¢).

From this equation for the error in a single retrieval/analysis, an equivalent equation for the
mean error of an ensemble of retrievals/analyses can be obtained in terms of the means of the
various components of error.

<> = (I-LK.H).<e’> + K.(<e">-<e>),

where <...> denotes a mean value.

Clearly, if €°, € and €’ are all unbiased, then €* will also be unbiased; otherwise eq.(11a) gives



us a method for assessing the propagation of biases from different sources into the solution,

Let us denote the mean error and the covariance of error for the linear case, given by
equations (8) and (11a), as <€” > and A, respectively.

2.3 The case of the nonlinear observation operator

When y(x) is nonlinear, two types of problem arise. The first type concerns the practical
problems of finding the solution x*. Minimisation methods for solution of eq.(2) or (3), or
their equivalents, tend to become slower to converge as nonlinearity increases. Also the
nonlinearity may introduce multiple minima, making it more difficult to find the global
minimum. These may, indeed, be real problems in practice but they are not the primary
concern in this paper. We shall assume that x*, corresponding to a suitable minimum of J(x),
can be found and that we are concerned with the second type of problem, namely the error
characteristics of the solution x*.

With the introduction of nonlinearity, the modal solution of eq.(2) or (3) is no longer the
minimum variance solution. However, it is not our intention here to re-examine the various
possible definitions of the "optimal" solution. We accept that the solution of eq.(2) is our
"best" estimate, but we are interested to understand its error characteristics.

Following Amato et al. (1996) we expand the forward model H(x) as a Taylor series (except
that here we do so around the analyzed value x?):

H{x'} = H{x*} + H(x*).(x-x*) + higher order terms in (x-x*)
The higher order terms give rise to a "nonlinearity error" € which we define by:
H{x*} - H{x'} = H'(x*).x*x") +&" = H'(x%.€* + €"
g" arises because H’(x°) differs from H’(x) Figure 1 illustrates a scalar example.
Substituting eq.(13) into eq.(5) gives
Bl.(e-€") = H ) .(E+F)..(e-e-H’ (x%).e-¢").
or
B'+H (x".(E+F) . H’ (x).e* = Bl.e® + H'(x*)".(E+F).(¢-e-¢e"),
or
g = Ax").Ble’ + A (x).H ) .(E+F).(e7-e-¢").

Note that eq.(16) is the analogue of eq.(10) for the linear case, but with the inclusion of &
in the last term, and so can be written:



<e™> = <€’ >+ A (x).H (®T.(E+F) " .<e™>

At this point it is possible simply to absorb the nonlinearity error €” as a component of the
forward model error €. Then equations (8) to (11a) can be applied to the nonlinear case.
However, because the characteristics of the nonlinearity error are different from those of other
sources of forward model error (as will be shown below in section 3.1), it is instructive to
keep €" separate.

The mean error and covariance of error for the nonlinear case can now be expressed in terms
of their linear counterparts as follows:

<e™> = <€\> + K(x*).<e™>
and, assuming that nonlinearity error is uncorrelated with other components of error,
A = A + Kx*.N.K(xHT

where N is the covariance of nonlinearity error. The validity of this assumption is discussed
in section 3.1.

Equations (18) and (19) show how the nonlinearity error (in the measurement space) is
mapped by the retrieval/analysis operator K(x*) into addition terms contributing to the mean
error in the retrieval/analysis and its error covariance respectively. Note that presence of this
new source of error does not (in general) change the expression representing the modal
retrieval/analysis, eq.(3). However, it does change the value of the error in this analysis.

Alternatively, as suggested above, nonlinearity error may be treated as a new component of
forward model error and simply absorbed into F. This is closer to "optimal”, in the sense that
the assumed errors now correspond more closely to the actual errors, but in doing so the
question of "optimality” must be re-examined for the reasons discussed in section 3.2.

3. Discussion
3 Error distributions and the introduction of bias

Equations (12) and (13) show that the nonlinearity error €" represents quadratic and higher
order terms in € in the expansion of H{x'}. If the quadratic term is dominant, then €" will
be quadratic in €. If all other error sources are Gaussian then, in the linear case, €* will also
be Gaussian. Therefore, in the nonlinear case, €" will not have a Gaussian distribution. In
fact, the quadratic relation between €* and €" will give the same sign to values of €" for all
values of €, and thus the mean value of €" will be non-zero.

The effect of non-zero bias in €°, if uncorrected, will cause a bias in the analysis/retrieval
through €q.(18), even if there are no other sources of bias. (i.e. <€%>=0). Such biases have
been observed in practice for the problem of retrieving wind speed and direction from
scatterometer data (see Stoffelen and Anderson 1997). [For the scatterometer retrieval
problem, there is an additional complication: although the forward model errors are close to



Gaussian in the retrieval space, they become highly non-Gaussian when mapped into the

observation space, and so the solution of eq.(2) or (3) no longer represents the most probable
solution.]

3.2 Error covariances and optimality assumptions

If the quadratic dependence of €" on €* is dominant, this will ensure that there is no first order
correlation between €" and €’, and hence between € and other sources of error, thus justifying
the assumptions behind eq.(19), at least approximately.

Because the nonlinearity error will usually have a dominant quadratic term, the magnitude of
the additional analysis error should vary as the square of the analysis error itself, at least
when the effect of nonlinearity is relatively small.

Values of forward model error covariance that are appropriate for the linear case will not be
appropriate to achieve a solution of minimum error variance for the nonlinear case. Even if
the mean bias is corrected (e.g. empirically), the analysis will still have an error covariance
given by eq.(19). This will not only represent error varainces higher than for the linear case
A;, but higher than if the forward model error covariance is increased to account for
nonlinearity error (i.e. where the error covariance is given by eq.(8) in which F is replaced
by F+N). If F is adjusted in this way and the mean bias corrected, then solution accuracy
will be improved. However, because the analysis error and nonlinearity error are mutually
dependent (through equations (13) and (16)), the covariance of the latter cannot now be
estimated analytically (but see section 3.3).

Also, because the distribution of the nonlinearity error is inherently non-Gaussian, eq.(3) will
no longer represent the exact maximum likelihood solution. To achieve this, we would have
to construct a penalty function containing a term appropriate to the particular distribution of
the nonlinearity error (i.e. proportional to the log of its probability density function - see, e.g.,
Lorenc 1986, Ingleby and Lorenc 1993, Andersson and Jarvinen 1999). Therefore, although
eq.(3) may represent an adequate approximation to the maximum likelihood solution, it no
longer represents a formally optimal solution.

3.3  Assessment and mitigation of nonlinear effects

The significance of nonlinearity error will vary greatly from problem to problem. It is
essentially related to the change in the value of H’ for typical values of analysis error. Note
that there is a significant difference here from the problem presented by Amato et al. (1996):
in their linearized one-step retrieval, the nonlinearity error is related to the background error,
whereas in the fully nonlinear variational framework it is related to the analysis/retrieval error,
which can be much smaller. (For example, for a retrieval using climatological background
information, as illustrated by Amato et al., the retrieval error will be much smaller than the
background error.)

When an observation is known to be related nonlinearly to the analysis variables, the
magnitude of the nonlinearity error should be investigated. Significant degradation of



performance may be expected when the nonlinearity error exceeds the combined measurement
and forward model error but is not accounted for in the assumed statistics.

In practice, if forward model error covariance is deduced empirically (e.g. from observation-
background statistics), it is likely to include contributions from nonlinearity error. Similarly,
the biases derived from observation-background statistics will contain contributions from
nonlinearity error, in addition to any caused by measurement, forward model or background
biases. Empirical bias tuning procedures based on observation-background statistics will tend
to compensate for these effects. However, they will not do so exactly, since the magnitudes
of nonlinearity effects associated with background errors will be different from those
associated with analysis errors. It is therefore important to consider in which space (analysis
or measurement) and for which variable (background or analysis) it is most desirbale that the
results be unbiased.

It will be particularly important to assess and allow for the effects of nonlinearity error when
other sources of noise are low, and particularly (as shown by Amato et al.) when background
constraints are non-existent or very weak.

The effects of nonlinearity error may be quantified approximately as follows:

(a) Evaluate analysis error covariance in the linear limit using eq.(8).

(b) Use this value to estimate nonlinearity error through eq.(13), i.e. to obtain an estimate
for a typical case or an ensemble of cases.

© Add the estimate of nonlinearity error to F and re-evaluate the analysis error using
eq.(8).

(d) If significantly different, repeat (b) and (c).

() Evaluate the mean analysis error with eq.(18) using a revised value for K(x*)
consistent with the new value of F.

This procedure for iterative estimation of nonlinearity effects is illustrated in Fig.2. For the
well-behaved functions shown here, it appears to be a convergent process. Fig.2 also suggests
that the process could be initiated at (b), with nonlinearity error estimated from the
background error (in place of analysis error in the linear limit).

4. Conclusions

The presence of nonlinearity in the relationship between observed and analyzed variables is
a source of bias in the analysis and of increased error variance. The potential significance
of these effects will need to be studied case by case, but significant effects are to be expected
when the nonlinearity error is comparable to or greater than other sources of measurement and
forward model error. Moreover the magnitude of the nonlinearity error is related to the
analysis error itself. Section 3.3 suggests a recipe for assessing quantitatively the effects of
nonlinearity error.
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Figures
1 Illustrating the source of nonlinearity error for a scalar case.
2. Iustrating, for a scalar case, the iterative estimation of nonlinearity error N and

analysis error A, starting either from the analysis error in the linear limit A, or from
the background error B.
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