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Abstract

The significance for convection modelling of systematic feedbacks between con-
vection and larger-scale dynamics is increasingly recognized. Here we consider the
representation of such feedbacks in idealized process studies, such as comparisons
of convection parametrizations with cloud-resolving models. We seek to formulate
a testbed which can include a large-scale response, thus allowing convection greater
freedom to change the precipitation than in conventional single-column studies.

Various authors have proposed simple convective-dynamical feedback models,
but there remains a need to benchmark these models more thoroughly against spe-
cific dynamical problems. Here therefore we review the dynamical solutions to a
number of dynamical test problems, and evaluate (i) the fraction of diabatic heating
compensated by large-scale advection and (ii) the effective timescale for dynamical
relaxation of buoyancy anomalies.

Dynamical feedback parametrizations can be formulated based on either of these
quantities. Which one is more nearly constant depends on whether the problem is
balanced or unbalanced, and whether it is two- or three-dimensional.

As applications of this theory, we consider some specific process-issues in convec-
tion where allowance for large-scale feedback gives additional insight. These issues
include the sensitivity of convection to humidity, the development of convection over
tropical islands and the application of latent-heat nudging in operational mesoscale
data assimilation. We offer a theoretical explanation for the problem of gridpoint
storms in large-scale models, and why it matters whether convection is resolved or
parametrized.
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1 Introduction

This note concerns the feedbacks between moist atmospheric convection and large-scale
flows, and their significance for atmospheric modelling on small or large scales.

Convective cloud systems interact strongly with many other processes (including sur-
face, boundary layer, upper-air and large-scale phenomena). Such systems and their sta-
tistical parametrization are now being studied in increasing detail using finescale process-
research models. E.g. Swann (2001) shows how cloud-resolving models (CRMs) can be
used to look in detail at the assumptions of a mass-flux convection scheme. In other stud-



ies, cloud- resolving models are compared with single-column versions of NWP or GCM
models as a test of the physical parametrizations.

Single-column (SCM) studies have become a standard tool for assessment of parametriza-
tions (Randall, Xu, Somerville & Iacobellis 1996), but a SCM inherently lacks the dy-
namical response of a full GCM or NWP.

Even with current supercomputers, no single model can fully capture all the scales
which are relevant to convection and its dynamical issues. Although it is now sometimes
possible with massively-parallel computation to run coarse cloud-resolving resolution (e.g.
2km) on a planetary scale, Grabowski (2001), many current process issues in convection
call for resolution refinement towards 100m (Petch & Gray 2001). Motivated by the
wide scale separation, our aim here is to develop a method which allows computational
resources to be targeted at the small-scale process issues, but still captures some of the
essential large-scale dynamical context, insofar as it affects those process issues.

James (1994), p.93, states that the aim of scientific modelling is to distinguish be-
tween ‘crucial’ and ‘incidental’ mechanisms. Convective-dynamical feedback is potentially
a crucial mechanism, even in idealized modelling, in regimes where the feedback can fun-
damentally change the behaviour of the system. More specifically, such feedback allows
various physical effects to have long-term impact on convective precipitation, whereas if
large-scale temperature forcing is prescribed then convective precipitation is effectively
controlled through the latent heat equation. So the presence of feedback can test aspects
of the convection scheme’s behaviour which are not fully tested in conventional SCM
process studies.

In the present note we seek therefore to outline a convective-dynamical testbed suitable
for convective process modelling and idealized SCM/CRM comparisons, taking account
of the existing convective-dynamical literature and looking critically at the underlying
assumptions. We shall also comment on some points arising directly in NWP. First,
though, we describe what we mean by process studies and why the issue of dynamical
feedback arises.



2 Process studies and ‘forcing’ specification

Here a process study is defined as an investigation (by observation, theory and/or mod-
elling) of atmospheric processes which are subgrid relative to a large-scale model, of
resolution O(100km). For example the ARM-SGP site (Zhang, Lin, Cederwall, Yio & Xie
2001) has an intensive array giving cloud and other information surrounded by other sites
which give information required for lateral BCs on the O(100km) scale. A process study
may include SCMs or CRMs, and indeed may involve explicit intercomparison of SCMs
and CRMs under the same setup. We shall assume further that in such process studies
the results from the CRMs are to be interpreted statistically rather than deterministically.

Process modelling studies may be either idealized (tackling the simplest, most generic
problems) or ‘case studies’. The case studies provide a ‘reality check’ on the process
models, whilst the idealized studies can evaluate specific parameter dependences. In
practice there are also intermediate possibilities, such as ‘semi-idealized’ case studies in
which a case study is progressively idealized and /or perturbed in order to test sensitivities.

As already hinted, such process studies require boundary conditions (BCs), both sur-
face and lateral. There is a choice not only of the values but of the type of BC, i.e. which
variables are prescribed, and which variables may adjust during the run.

Consider first, for illustration, the specification of surface BCs. Surface BCs may be
specified either via prescribed surface scalar-values (SSV), or via prescribed surface scalar
fluxes (SSF). With suitable choice of those values or fluxes, the two specifications might
be considered almost equivalent. Nevertheless any model-model or model-observational
comparisons will in general show different sensitivities because different quantities are held
fixed. E.g. if a model is sensitive to a quantity A (say, surface heat flux) then running
a process model with fixed A may fail to anticipate behaviour in a more complete model
where A can change. Idealizations are legitimate but need to be complemented by running
alternative scenarios.

Turning now to the choice of lateral BC for process studies, similar general consid-
erations apply. In convective process studies the lateral BCs are commonly idealized as
horizontally cyclic with the addition of horizontally averaged forcing terms derived from
a large-scale budget. This approach (which may be called a pseudo-lateral BC) fits nat-
urally with a parametrization of the convective process as a statistical ensemble. (There
are other approaches, based on open BC or nesting, but these seem more relevant for
deterministic prediction of a convective system.)



The limitation of ‘prescribed temperature forcing’ as a pseudo-lateral BC for convective
process studies is simply that it forces the convective heating (closely linked to other
measures of convective activity, such as mass flux) to balance the temperature forcing,
and thus makes quasi-steady convection insensitive to other mechanisms. The role of
those other mechanisms can then only be inferred in a very indirect and limited way,
leading to a risk that their importance to large-scale modelling may be hidden by our
methodology.

2.1 Forcing or feedback in large-scale and process models

Convective-dynamical forcing or feedback is handled in a variety of ways in the existing
literature, e.g.:

(i) Dynamical methods for computing the response to prescribed ‘convective forcing’
using linear analysis or idealized GCMs. E.g. Rodwell & Hoskins (1996) show that
latent heating in the South Asian monsoon drives a very broad-scale circulation
(including significant compensating descent over the Mediterranean and the Sahara
desert), and that a linearized model can capture much of this effect.

(ii) A further literature where simple convection parametrization is incorporated into
an essentially dynamical model of large-scale waves or instabilities, e.g. the model
of the El Nino-Southern Oscillation phenomenon due to Zebiak & Cane (1987).

(iii) Process studies which usually treat ‘large-scale forcing’ as fixed for comparing parametriza-
tions, process models and observations. E.g. Guichard, Redelsperger & Lafore
(1996) show significant impacts of large-scale forcing on cloud-resolving model, but
do not attempt to model interactively the response of large-scale ascent to convec-
tion.

(iv) An increasing literature on ‘two-column’ or related methods which assume some
simple feedback between local convection and its environment (e.g. Raymond &
Zeng (2000), Sobel & Bretherton (2000))

Here we wish to strengthen the connections between different approaches by selecting
appropriate feedback methods for process studies and tracing their connection with the
underlying dynamical equations using benchmark problems.



3 Benchmark problems

3.1 Scalar advection

We consider scalar advection, principally to establish to what extent it can be approxi-
mated using vertical motion and vertical gradients. In particular we consider the impli-
cations for (i) buoyancy (ii) humidity and (iii) hydrometeors.

Without loss of generality we restrict the analysis in this section to a 2-D problem,
suppressing one of the horizontal dimensions (the generalization to 3-D is trivial). We
also use the incompressible Boussinesq equations (rather than pressure coordinates as
elsewhere in this note), as the scaling is slightly easier to understand when vertical scales
are expressed in the same units as horizontal scales, and the scaling results in fact carry
over straightforwardly.

We therefore write the advective term for a general scalar ¢ as
u.Vo = udy¢ + wo,o (1)

and evaluate the relative contributions of the two terms.

Note first the special case of cancellation when 0,¢/0,¢ = —w/u, i.e. when isolines
of ¢ are parallel to streamlines. It is easily seen then that the ‘vertical gradient term’
wd,¢ will dominate when streamlines are steeper than scalar isolines (or more generally
isosurfaces).

We refer to wo,¢ as ‘vertical gradient term’ rather than ‘vertical advection’ because
(at least in its impact on the column budget) it may be related to horizontal convergence
via

/wangdz:—/gbazwdz:/qbazudz (2)

assuming w = 0 at the top and bottom of the integration.

Whatever the nomenclature, it is very useful in process studies to be able to approxi-
mate the large-scale advection (or at least that part of it which participates in feedback
with the local convection) by wd,¢ since we then need to know only one ‘large-scale’
variable w (averaged over some appropriate scale), which we can then estimate using
buoyancy arguments.



3.1.1 Cases with horizontal symmetry

A special case of scalar advection with horizontal symmetry is worth considering sepa-
rately, e.g. as a model for dynamical response to localized convection around (say) z = 0.
This case is not straightforwardly covered by the above, because both u and 0,¢ are small.

Consider e.g. a streamfunction ¢y = sinmzsin kx so that © = —m cos mz sin kx and

w = ksinmzcos kx (over a layer from z = 0 to 7/m) and suppose that near x = 0 we can
approximate

¢ ~ az + b’ (3)

Then (for small kx)
(u0,0)/(wd,¢) ~ (mbz®/ka) cot mz tan kx ~ (mbz?/a) cot mz (4)

whence if we treat cot mz = O(1) we see that the ratio of the horizontal gradient term to
the vertical gradient term scales with the ratio of the variation in ¢ over the characteristic
vertical scale m™! to the variation in ¢ over the characteristic horizontal scale for z.

The factor cot mz indicates that horizontal terms will become relatively more impor-
tant at the top and bottom of the convecting layer. This may alert us to the possibility
of special treatment for the boundary layer. In fact the horizontal terms are not formally
large there, but the vertical terms are small.

3.1.2 Buoyancy, humidity and hydrometeors

Let us now assume further that the horizontal variation arises from a convective source
in a region of horizontal dimensions L., with a vertical scale m/m ~10km. We estimate
the ratio of vertical to horizontal terms for three important scalars. For present scaling
purposes we may regard buoyancy as measured by potential temperature 6, although
strictly we should look at 6,, with correction terms due to water vapour and hydrometeors.
For convenience we again use the model with horizontal symmetry.

For 6, the vertical variation scale a/m ~10K, a value which is very large by the
standards of horizontal temperature variation in the tropics. We shall show later in
§3 that the large-scale dynamics strongly resist #-variation on scales less than an outer
dynamical scale (k, !, for future reference). So for current purposes we can assume that
the vertical gradient term dominates for 6.



For humidity ¢ the calculation is slightly more complicated because g profiles have
a more nonlinear shape. Typically (at least in the lower troposphere, say from 1-5km,
including most of the column vapour) there is a quasi-exponential decay with height over
a vertical scale L, ~3km. This implies that a/m =~ ¢ and so the ratio of horizontal to
vertical gradient terms will scale simply on the horizontal fractional variation in ¢ over
the scale L,. Here the dynamics do not significantly resist g-variation and so substantial
variations are possible.

For hydrometeors e.g. cloud ice ¢;, the picture is different again. We may expect
cloud ice in particular (or that part of it which persists for long enough to interact with
large-scale advection) to be concentrated in relatively thin layers, say 1km thick. We may
then have a/m > 1, in which case the vertical term will dominate even if there is O(1)
variation in ¢; over the scale L.

3.1.3 Significance of scalar advection

In summary, for present purposes we can relate buoyancy advection straightforwardly to
vertical velocity (a very useful simplification).

For humidity the horizontal term may be significant quantitatively, but in many prob-
lems this corresponds to a ‘nonlinear stage’ in which the convecting region has greatly
distorted the initial basic state. It may still be acceptable to neglect this term in pro-
cess model comparisons, provided that the neglect is carried consistently through the
comparison (e.g. for both CRMs and SCMs).

For hydrometeors in thin layers the vertical term is again likely to dominate. But in
fact the net hydrometeor removal (implied outflow) is best computed from the convergence
form of the budget shown above, from which the characteristic removal rate is dw/0z.
In effect the hydrometeors are ventilated by horizontal outflow on the same timescale on
which the column is ‘vertically ventilated’ by upward motion (e.g. for w = 0.1ms™! over
10km depth this gives a timescale 10%s), because continuity requires the mass transport
timescales to match. As discussed above, this ventilation can be represented via the
vertical term.

These arguments show that the inclusion of hydrometeor advection in process study

setups is formally desirable, and that it can be done relatively straightforwardly without
additional adjustable parameters. The significance of such hydrometeor advection de-

10



pends on their characteristic lifetimes within the cloud system. Probably only cloud ice
lives long enough for such advection to be significant. Support for the significance of such
terms may be drawn from the tendency of some 1D climate models of tropical convection
to generate excessive cirrus in a manner that is unrepresentative of the 3D climate model
(J.Mitchell, personal communication).

In fact the ‘symmetric’ (self-generated) ventilation discussed here is not the only type.
There may be additional horizontal advection by the background wind (if any), i.e. by
modes superimposed on any self-generated component. These background winds may
not couple dynamically but may lead to further exchange with the background at a rate
scaling on U/L,.

That the vertical gradient term follows directly from knowledge of w (without further
dependence on L;) is perhaps initially surprising, but a consequence of continuity. Of
course the dynamics which determine w will be influenced by L,, as we now discuss.

3.2 Dynamical benchmarks

Our main task now is to determine large-scale w from quantities which we can evaluate
in a process study. Dynamical studies such as Rodwell & Hoskins (1996) broadly support
the treatment of dynamical response as a linear function of convective forcing, at least
to the level of accuracy needed for our purposes. We can therefore characterize the key
feedback on the buoyancy equation using either a dynamical adjustment timescale t4yy,
or an effective fractional area r. Either of these quantities could potentially be used to
parametrize w.

The variable 0,®" (where @' is the deviation of ® from some constant reference state)
is a measure of negative buoyancy anomaly or negative thickness anomaly. Using the
notation and derivations of the Annex we have the following equation:

0,0, = —s’w — B (5)
whence we may define a dynamical timescale for buoyancy adjustment as
tagn = 0,9 /s*w (6)
and an effective fractional area for the convecting region as

r=(B+ s°w)/B (7)
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i.e. the fraction of the convective heating which is not compensated by the dynamical
feedback. For if the dynamics acted effectively to distribute convective heating evenly
over a box, from a convective source with fractional area r, then the net warming in the
source-region would be a fraction r of the source.

The parameters r and t4,, are related by the equation
tagn = (=B/s*w — 1) /o =r]o(1 —T) (8)

where 0! is the forcing timescale. Although we have written this in terms of an e-folding
timescale, a general relationship of this kind follows directly from time-integration of (5)
without any assumptions about either the convection or the dynamics.

Note that for long timescales 0!, either 7 must become small or t4yn must become
large. The case where r tends to a nonzero limiting value as ¢ — 0 may be referred to
as the ‘balanced’ case, as it is consistent with the existence of an asymptotically quasi-
steady spatial structure. In contrast, problems where r — 0 as ¢ — 0 may be described
as ‘unbalanced’, as this suggests that on long timescales the influence of a given region of
convection is propagating without limit.

In fact a number of forcing timescales are of interest here, including the diurnal de-
velopment of convection and also the quasi-steady limit which corresponds to the ‘DC
component’. E.g. the essentially single-signed nature of convective heating might be
modelled by a dependence of the form (1 + sinvt)(1 + sinkz). The component which
is homogeneous in space does not, however, drive any large-scale circulation and may
therefore be assumed to have been removed from our problem.

We now seek to evaluate the timescale parameter ¢4, and the fractional-area param-
eter r in some simplified dynamical test problems.

3.3 Prescribed sinusoidal buoyancy forcing

This test is based on our f-plane w—equation (79). Suppose forcing is sinusoidal in space,
and sinusoidal or exponential in time with the complex form exp(ikxz + imp + ot). Then
from (79) we have

1 —r=—s’w/B=sK/[(f* + oc®)m* + s°k? 9)
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Let us define a characteristic wavenumber k, = (f2+02)/?2m/s. In the steady rotating
case k, is an inverse Rossby radius corresponding to the prescribed vertical scale. However
in the unsteady case k, is affected by effects related to the time taken for gravity waves
to propagate.

We then have
1 —r=—5w/B=Fk/(k+E?) (10)

or
tagn = (—B/s*w — 1) /o = o k2 /K (11)

The assumed sinusoidal time-dependence implies that o2 is real, but more generally o
itself could be real or (pure) imaginary.

It can also be shown that if Rayleigh damping at a rate cg is applied to all fluctuating
variables (represented collectively by a fluctuating state vector X) then a transformed
variable X* = X exp(cgt) obeys the same equations as X obeys in the undamped problem.
In this sense a damped problem is formally equivalent to an undamped problem with
exponentially growing forcing (i.e. real, positive o).

(i) In the balanced (strongly rotating or slowly-evolving) limit with real positive o
(K |f)s tayn 1s real, positive and varies as o 'k~ 2

(ii) In the unbalanced (weakly rotating or rapidly-evolving) limit ¢4, ~ o(m/sk)?.
Note that tgw = m/sk corresponds to the timescale for gravity-waves to travel
one horizontal wavelength. Note also that the dependence on ¢ is opposite to the
dependence found in the balanced case.

(iii) There is a resonance at 0 = +if (e.g. diurnal forcing at 30° latitude), which formally
gives tqyn, = 0, i.e. very strong dynamical response.

(iv) If o is imaginary then t4,, is also imaginary, i.e. the dynamical feedback is out
of phase with the buoyancy anomaly. It may then be more difficult to base a ¢4y,
parametrization strictly on the benchmark problem, although for some purposes use
of the timescale might still be legitimate.

As noted above, time-varying convection usually contains a steady component, so both
‘slow’ and ‘fast’ limits are relevant.
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Note finally that our equations for r and {4y, in the sinusoidally forced problem can
be written more compactly using a modified Burger number Bu;

r=1/(1+ Bu?) (13)
tdyn = O'_IBul_2 (14)

For forcing at wavelengths small compared to the modified Rossby radius k' we have
high values of Bu;, small area parameter r and small ¢4, i.e. the large-scale dynamics
respond strongly and rapidly to oppose the forcing. Conversely, for forcing at wavelengths
large compared to k! we have low Bu; and r — 1 whilst tayn — 00, so the large-scale
dynamical feedback can be neglected.

3.4 Localized buoyancy forcing

We now consider the case when convection is forced over a finite region, but dynamical
response occurs within a large domain. The relevant forcing might come from a local
sea-surface temperature anomaly or island. Localized forcing might also arise from a
gridpoint storm in a large-scale model.

It might be thought that the localized problem is essentially the same as the previous
case, only with the wavelength k& replaced by the reciprocal linear dimension of the forcing
region. However the localized non-sinusoidal problem differs in containing a range of
wavelengths and an asymmetry between ascent and descent.

We specify the 2D problem as follows. The inner forcing region extends between
x = =41, with buoyancy effectively prescribed at the boundaries. The outer domain
is unbounded. At the inner boundaries u and p, and therefore b are continuous (from
continuity and the momentum equation). The anomalies of u and b are again assumed to
vary sinusoidally or exponentially in time, and sinusoidally in pressure. Furthermore the
inner region is assumed to be horizontally homogeneous.

Outside the forcing region we therefore assume a dependence exp(ik|z| + imp + ot)
which satisfies the w-equation

[(f? + 0282 + s*°V]w = 0 (15)
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if
(f* +0*)m* + s*k* = 0 (16)
ie. k= [—(f?+0?)]"?m/s. For admissible solutions (bounded as |z| — o), Re(ik) < 0.

Averaging the continuity equation 0,u + 0w = 0 horizontally across the inner domain
(average denoted by ()) gives

Op(w) = —u(z = 1) /21 = Opw(z = zT) [ika, (17)

so that
(W) = w(z = =) Jikz, (18)

We use the notation (z = i) to denote the one-sided limit because w is not in general
continuous at the inner boundaries and may change suddenly to compensate for sudden
changes in B. Thus using continuity of buoyancy at |z| = z; we obtain

0%  —w(z =uz7)

i = oy = ol = 0 ik (19)

since 00,® = —s?w in the unforced outer region.

Thus

(i) In the balanced (slowly-varying or rapidly rotating) limit |o| < |f| we have ik ~
—|flm/s and tayn ~ (|f|/0)(mz1/s) so that ts, exceeds the timescale mx;/s for
gravity-waves to cross the inner domain.

(ii) In the unbalanced limit (|o| > |f|) we have ik ~ —om/s s0 tgyn ~ mz1/s (scaling
on the gravity-wave crossing time). In this case parametrization based on tg, is
straightforward because g4, is real, positive and independent of o.

(iii) Forcing at the frequency o = +if again induces a strong resonant response with
formally ¢4y, = 0

In §3.5 we will check this ad hoc derivation against a more formal solution for localized
forcing.

15



3.4.1 Comparison between localized and non-localized forcing

There is an obvious difference in scaling of ¢4, between the localized and the spatially
sinusoidal forcing cases. For instance in the nonrotating (unbalanced) problem:

e in the localized case tqy, ~ mzi/s (the gravity-wave travel-time across the inner
region)

e in the sinusoidal case tg4y, ~ o(m/sk)?

Since the forcing timescale o~! is independent of the gravity-wave timescales, these are

quite different scalings, suggesting that t4,, becomes particularly short (i.e. dynamical
feedback particularly strong) for quasi-steady sinusoidal forcing.

The difference between the scalings for the localized and sinusoidal problems re-
spectively can be explained by considering the horizontal length-scale of the buoyancy
anomaly. In the sinusoidal case this length-scale is forced to match the forcing length-
scale, but in the localized case the buoyancy anomaly (and hence the pressure anomaly)
decays (or varies) away from the inner region on the natural length-scale of free oscilla-
tions.

In the localized forcing case the horizontal momentum balance

can be represented rather simply by the relation v’ = +®’/c for gravity waves propagating
at speed +c. Applying this at the inner-region boundaries we obtain ¢4, ~ z1/c.

Another (equivalent) explanation is by interpreting the localized forcing as a spectrum
of sinusoidal modes, in which the small wavelengths dominate the response.

Both localized and sinusoidal problems are valid in some sense but localized forcing is
arguably more relevant to most issues in convection parametrization.

Our characterization (on timescales < |f|™!) of the localized forcing problem in terms
of the relatively fast timescale tgy might suggest that f and the outer-region response
are unimportant for our purposes. However, as noted above, in practice the buoyancy-
forcing will normally contain a quasi-steady (or time-mean) component. As shown in the

16



dispersion relation above, in the limit of slow forcing ¢4, becomes large and the ‘area’
parametrization based on /(1 —7) = ot4yn21(|f|m/s) becomes potentially more relevant.
For instance, this limit may be viewed as providing model for the behaviour of convection
within the Hadley circulation (discussed further below).

The ‘area’ parametrization can be implemented in a two-column modelling procedure,
where the two columns have areas in the ratios r : (1 — ) and we force the dynamical
circulation to remove a fraction 1 — r of the difference in diabatic heating between the
two columns. In the limit r — 0 we recover the model of Sobel & Bretherton (2000).
Note that the implied vertical velocity should be applied to all scalar fields, and not just
to buoyancy.

3.5 Case with top-hat forcing

Our specification of localized forcing assumed that the buoyancy in the inner region
was essentially homogeneous. However one might expect in reality the core of the inner
region to be somewhat more buoyant than the periphery. To show that this does not
fundamentally change the answers we now solve a problem where the buoyancy forcing is
homogeneous but the buoyancy distribution is not.

We therefore solve (again in 2D)
[—(f* + 0®)m® + s*0%w = —0>B (21)
B = x{Jz| < 71} (22)
where the indicator function y takes the value 1 if its argument is true, and 0 otherwise.
This equation becomes easier to manipulate if we define the residual buoyancy forcing
(after allowing for dynamical compensation)
Rp = B + s*w (23)
since then
(0, — |k[*)Rp = —|k’B (24)
where, as before, |k|> = (f? + 0?)m?/s®. Since the right-hand side of (24) is finite, we
know that Rp and 0, Rp must be continuous even at the inner boundary.

The solutions are

{ 1+ ¢y cosh |kz| (inner region)
Ry =

coexp(—|kz|)  (outer region) (25)
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where continuity of 0, Rp requires

¢y sinh |kxi| = —co exp(—|kz1|) (26)
and then continuity of Rp requires

1+ ¢y cosh |kz1| = —cy sinh | kx| (27)

so that ¢; = —(cosh |kx| + sinh |kz,|)~".

The area parameter is then given simply by
r/(1—r) = Rg/B =1— cosh |kz|/(cosh |kxi| + sinh |kz1|) ~ |kz1| as kx; — 0 (28)

where, as normal, this evaluation is conducted within the convecting region. This is
the same result as we obtained before, and confirms our previous ad hoc solution of the
localized-forcing problem.

3.6 Extension to 3D and illustration with gridpoint storms

We now sketch the extension of these 2D arguments to 3D, in order to indicate the nature
of the mathematical solutions and the scales which emerge.

In 3D the governing equation becomes
[=(f* +0%)m* + s*Vi]w = =V}, B (29)

so we have to solve a Helmholtz equation with circular symmetry. Away from sources B
we have

(V4 —kHw =0 (30)
where k? = (f? + 0?)m?/s* . Imposing circular symmetry gives
10, (ro,w) — k*w =0 (31)

which is a modified Bessel equation of degree 0. The relevant solution, decaying at infinity,
is w = Ky(kr) in the notation of Abramowitz & Stegun (1970), up to an arbitrary factor
which we shall define via a constant ¢ such that

Opw = cKy(kr) (32)
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since we have already assumed that the problem is separable in p.

The asymptotic properties are
Ko(z) ~ (m/22)"%e™* (33)
for large positive real z, and
Ko(z) ~—Inz—vy+1In2+ ... (34)

for small positive real z, where v ~ 0.577 is Euler’s constant.

The expression for large z is accurate to 10% at z = 1 and to about 30% at z = 0.1.
Roughly speaking the solutions remain exponentially decaying on the same scale as for
2D.

Following the approach given at the beginning of §3.4, we use this solution for w
to compute the inflow to an inner region of radius r. associated with a given buoyancy
anomaly. In this circularly symmetric geometry the continuity equation is

rOpw + Oy (ru) =0 (35)

where u is taken as the radial velocity, we have
o
reu(re) = / ' Opw (r')dr'! (36)
Te
from which, on using the outer approximation (33) we estimate

reu(r,) =~ c(m/2)Y? /Oo (k') Y 2e R dp! (37)

Te

The use of this approximation is reasonable because the weighting of the integrand with 7’
prevents substantial contributions to this integral from regions where k7’ is small. Hence
for our estimates it suffices (assuming 7. < k') to evaluate just the complete integral.
By transforming to a variable & where kr' = €2, and using [*°_ £2¢ € = 71/2/2 we obtain

reu(re) ~ c(m/2%%k?) (38)
as k'r’ — 0, where ¢ = Opw(r})/Ko(kr.).
The equation for {(w), i.e. the horizontal-mean w over the inner disc, is then
Tr20,(w) = —2mr.u(r.) (39)
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whence

Oplw) = =27 tu(re) ~ —(m/2'2) (kre) 20pw(ry) / Ko (kre) (40)
from (38), and on further using 09,9’ = —s%w(r]) as above, we obtain
(w) ~ (w/2"2) (k) 2[o/s* Ko(kr.)]0,@' (41)
and finally
tayn = 0@ /53 (w) ~ 2% (1a) 7 (kre)? Ko (kr.) (42)

with the slight caveat that here ¢4, is based on the value of 0,®" at the boundary. We
can also write from (8)

r/(1—r) = otgyn ~ 21/2(krc)27r_1K0(krc) (43)

We see then that the effective subsidence area scales on k=2/Ky(kr.). This represents
primarily a horizontal scale set (as in the 2D problem) by the gravity-wave travel distance,
modified slightly by a weak logarithmic dependence via Ky(kr.) (e.g. Ko(0.1) =~ 2.4).

Whilst in terms of the effective fractional area r the 3D scaling seems a straightforward
generalization of the 2D problem, the scaling for ¢4y, is less obvious. Eq. (43) implies
for instance that in the non-rotating case tqyn ~ om?r2s?, which is smaller by a factor
omr./s than its 2D counterpart, and shorter than the gravity-wave crossing time for the

inner domain (if kr. is small).

With hindsight one can see that the 3D problem cannot be expected to scale in the
same way as 2D. If the horizontal lengthscale of influence (and compensating subsidence)
is essentially the same as in 2D, as follows straightforwardly from the Helmholtz equation
for both balanced and unbalanced cases, then (for small kr.) the fractional area parameter
must be much smaller in 3D. Consequently the large-scale dynamics constrain the inner-
region buoyancy much more strongly and so (for given J; in the inner region) the buoyancy
anomaly in 3D will be much weaker, whereas the inner-region w (balancing @) will be
about the same. Hence t4y, in 3D must be much smaller than in 2D and cannot scale
similarly. In 3D it is much easier for a ‘point source’ to attain small values of r, i.e. the
situation where the convective heating (); is almost entirely compensated by large-scale
advection, consistent with the assumptions of Sobel & Bretherton (2000).

These results are consistent with the initial-value problem solutions of Bretherton
(1993). Bretherton considers the time-development of convection after a convective point
source of buoyancy is switched on at time ¢ = 0, whereas here we have concentrated on
normal-mode solutions, whose scaling is in some sense independent of time.
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For the 3D problem, in contrast to the 2D problem, Bretherton finds that the local
buoyancy anomaly at the source decreases with time (like ¢7!), despite the steady buoy-
ancy forcing (after ¢ = 0). This is consistent with our arguments, which suggest this
buoyancy anomaly should be governed by the total time-integrated heat-input (growing
as t) divided by the effective area (growing as ¢?). This again implies small values of ¢4y,
on long timescales in the 3D problem.

3.6.1 ‘Gridpoint’ (column) storms

As an illustration of the 3D problem, consider the following simple description of a grid-
point storm (GPS), which may occur in large-scale models. The GPS in a column of
horizontal dimensions 100km may grow roughly at a rate o ~ 10 *s~ !, often at locations
within a few degrees latitude of the Equator, so that |f| ~ 10°s~!. With these values the
Coriolis effect will be negligible in determining k. Assuming further a vertical structure
of the form w ~ sin7p/p,, we then obtain k ~ om/s ~ (300km)~'. For an approximate
comparison, let r. = 56km, which gives a disc of the same area as a 100km x 100km square.

For these values, using the above approximations, and using K,(56/300 ~ 0.19) ~ 1.7,
we derive r ~ 0.03 and ¢4y, ~ 300s. These small values suggests that the Sobel-Bretherton
model might be well suited to describe GPS behaviour.

A full analysis of the gridpoint storms problem is obviously beyond the scope of this
note. Clearly one would need to consider the discretizations in space and time, and the
parametrization of subgrid convection, as well as the convective-dynamical feedback. But
an understanding of relevant scales, and of the extent to which dynamics compensate for
local physical increments, should contribute to such an analysis.

3.7 The Gill tropical heating problem

We now evaluate our dynamical adjustment-time ¢4, within the analytic solutions of Gill
(1980) for idealized tropical heating on a S-plane.

Gill (1980), following earlier work by Matsuno, presents a linear analytical solution of

an idealized quasi-steady representation of heating over Indonesia. He uses the linearized
shallow-water equations, which are isomorphic to our linearized hydrostatic equations for

21



given vertical wavenumber m, except that he retains the § term and introduces a small
damping coefficient e. He nondimensionalizes his equations with the lengthscale (c/23)'/2
and the timescale (1/28¢)'/2, where the characteristic gravity-wave speed ¢ (= s/m in
our set) becomes 1 in the nondimensional set.

In Gill’s set pressure corresponds to negative buoyancy in our set, and obeys a nondi-
mensional equation

op=w—Q (44)
where () is the nondimensional heating. We may therefore write

tayn = —p'Jw (45)

within the same nondimensionalization.

We concentrate here on Gill’s ‘symmetric case’, where forcing is symmetric about the
equator. In this case he sets

Q(z,y) = F(z) exp(~/ay?) (46)

where F'(z) = cos kz for |kxz| < w/2 and 0 otherwise. This latitude dependence is chosen
to correspond to the zeroth parabolic cylinder function.

For the symmetrically forced case Gill identifies two components of the response,
namely a ‘Kelvin-wave’ part and a ‘planetary-wave’ (or Rossby-wave) part.

(a) For the Kelvin-wave part, which Gill interprets as representing the Walker circu-
lation over the Pacific, his solutions give (as € — 0)

tayn = —p'/w ~ qo(z)/F(z) (47)

where
qo(x) ~ —k~'(1 + sin kx) (48)

so that (as nondimensionalized)

tayn ~ (1 +sinkx)/k coskx (49)

Taking into account the normalization, this result implies that the dynamical buoyancy-
adjustment time scales (as above) on the gravity-wave ‘crossing time’ ¢/k. Note also that
tayn is independent of latitude, although there is some variation with z.
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(b) For the Rossby-wave component (again as € — 0)
tayn = —p' Jw' ~ —qa(x)/F(x) ~ —sinkz/k cos kz (50)

The scaling is again consistent with the ‘crossing-time’ ¢/k but with the significant dif-
ference that the dynamical timescale for this component is negative. This can be traced
to the property that, despite positive prescribed heating and a positive w component, the
pressure anomaly of this component is positive in the heated region.

Note that the overall solution involves both components. Since both satisfy the
crossing-time scaling separately, so does their sum. Gill shows that despite some positive
contributions, the total pressure anomaly is everywhere negative (at least with € = 0.1).
In other words, the net effect of prescribed heating plus dynamical response acts as ex-
pected to warm all parts of the domain, albeit in a more complex spatial pattern than
seen in our simple f-plane test problems.

In summary, even though Gill’s problem is dominated by g effects which are neglected
in our other dynamical test problems, it obeys the same t4,, scaling and in most respects
the same qualitative behaviour as before. The indirect meridional circulation in the forcing
region (this can be interpreted as a Sverdrup PV response, see Annex) is one significant
difference, but the net dynamical feedback on the buoyancy anomaly is negative and
reasonably well described by a t4,, parametrization.

The Gill problem can be viewed as a stepping stone from our highly idealized bench-
mark problems to convective-dynamical interactions as they occur in current global mod-
els. Jin & Hoskins (1995) use an idealized configuration of a GCM, to compare the
Gill-Matsuno predictions with a range of more realistic time-integrations. Depending on
location and flow-field, localized heating can set off a pattern of Rossby waves affecting
remote parts of the globe. However our present concern is only the feedback loop from
convection to dynamics and then back to convection at the original location, rather than
with remote one-way impacts which can be handled via other methodologies.

3.8 Summary of benchmark dynamical tests

We have shown that parametrizations of the dynamical buoyancy-adjustment timescale
tayn Or alternatively of the fractional-area parameter r emerge naturally from our dynam-
ical test problems. These parameters are related through (8), but because this relation
explicitly involves the forcing timescale o~! they cannot both be independent of o. In

23



particular, in the limit of slow forcing (which approaches the quasi-steady problem as
o — 0) we must have either ¢4, — 0o or r — 0.

If we want the same dynamical feedback model to be valid over a range of timescales
o !, then we need to consider two possible types of behaviour in the slow limit:

(i) balanced cases where buoyancy anomaly can be balanced by rotational dynamics
without vertical acceleration: r parameter may be independent of o.

(ii) uwnbalanced cases where any buoyancy anomaly implies vertical acceleration: tg4,
parameter may be independent of o

In case (i) only changes in the buoyancy anomaly can induce vertical circulation, so w
becomes linked to the convective heating (), whereas in (ii) the dynamics ‘drives towards’
a state of flat isentropes. Our tests with idealized sinusoidal forcing encompass both cases,
according to whether or not f is negligible.

The Hadley problem, although centred on the Equator, includes significant rotational
forces so that thermal wind balance is a key ingredient in the Held-Hou model of the
Hadley circulation. In contrast the Gill problem, also centred on the Equator, involves
a significant zonal flow component. Because equatorial buoyancy anomalies cannot be
sustained without vertical circulation (e.g. Walker cells), this is essentially a type-(ii)
problem consistent with our derivation of a finite ¢4, value for the slow limit.

3.9 Interpretation of published schemes

Woolnough (2001) discusses published dynamical-feedback schemes due respectively to
Nilsson & Emanuel (1999), Raymond and Zeng (2000) and Sobel and Bretherton (2000).
In the light of our benchmark dynamical problems we now briefly revisit that discussion.

For all these schemes the momentum balance is key, as the scalar tendency due to
advection by known wind over a prescribed length-scale is straightforward to estimate.

The Nilsson-Emanuel scheme is based on an equation

O = —0,® + pdiu (51)
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for the large-scale flow, where p is an artificial diffusion coefficient. In the ‘unbalanced’
limit of small timescales or small y, this reduces to simple gravity-wave propagation.
On longer timescales, where one might expect some kind of balance to be attained, the
physical interpretation is much less clear. Presumably an essentially artificial boundary
layer will be set up, governed by p and the other parameters.

The Raymond-Zeng model is also difficult to interpret literally. It uses an equation
pu = —Trz Ap/Ax (52)

where Tgz is a timescale, and Ap/Ax approximates the large-scale pressure gradient. This
might be viewed as approximating a fundamentally unbalanced system starting from rest
and running for a time 7gz.

Owing to their limitations in relation to quasi-steady dynamics, it seems unlikely that
either the Nilsson-Emanuel or Raymond-Zeng schemes can shed great light on, say, the
Gill-Matsuno or Jin-Hoskins problems.

The Sobel-Bretherton model is perhaps conceptually the clearest of the published
schemes, although it is also extreme in the strength of the assumed large-scale feedback.
Essentially this model assumes that the convective heating (), is entirely compensated for
by vertical motion, and that vertical motion is then used to advect the moisture variable.
In terms of our dynamical feedback analysis, Sobel and Bretherton set both r and t4, to
zZero.

The scheme developed by Woolnough (2001) may be viewed as an extension of the
Sobel-Bretherton model in the light of the present arguments, and with implementation
in a Cloud-Resolving Model. In particular the feedback parameters r and t4,, are not
assumed to vanish. Tests are shown with values e.g. r = 0.1 and %4y, = 6 hrs in the
CRM coupled to the dynamical feedback scheme. A ‘test column’ for CRM simulation
is set up based on a sea surface temperature elevated by 1K relative to the background.
With these values, significant nontrivial feedbacks on convection are found. The vertical
velocity profiles derived are considered broadly realistic.

These ambiguities in some of the existing literature illustrate the need to make stronger
connections with specific benchmark problems. As noted above, the feedback models for
present purposes do not need to be precise, but should be capable of a steady state which
can be realistically interpreted.
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4 Coupling to simple representations of convection

From general considerations (§2) we expect large-scale dynamical feedback to have impli-
cations for process studies if such coupling substantially changes the sensitivities of the
problem to process issues. We show first how coupling can affect sensitivities using a
highly simplified representation of convection, parametrized simply with an adjustment
timescale. The sensitivity to this timescale under dynamical coupling will illustrate how
other process-sensitivities may be affected.

Consider the case of convection over a sea of prescribed surface temperature which
varies horizontally over a lengthscale of order 1000km. The equilibrium state of this
system will depend on both vertical transport (primarily by convection) and horizontal
transport (primarily by large-scale dynamics). If there were no vertical transport then
a horizontally uniform atmospheric state could exist irrespective of the SST boundary
condition. On the other hand, if there were no horizontal transport then the problem
would decompose into separate columns. In general, though, the equilibrium state is
influenced by both vertical and horizontal transport.

4.1 An electrical analogy

It is convenient to express this problem in terms of an electrical analogy widely used in
boundary-layer hydrology, e.g. Blyth, Dolman & Wood (1993). A conventional electrical
circuit diagram specifies the ratio of potential difference to current as a resistance between
one node and another. Here, by analogy, we may generically define the resistance to be
the spatial differences in temperature (or some temperature-like variable) divided by the
associated total flux of that quantity across the relevant surface (or by a term playing the
role of such a flux). The dimensions of such resistance are then s kg™'.

To analyze this problem in the simplest terms, let us consider only two columns of
the atmosphere, each tending to adjust to its own characteristic equilibrium with the
local surface. Following our analysis above, we assume these columns are dynamically
coupled using a specified t4y,. We further simplify the columns so that each contains
only one atmospheric gridpoint, and simplify the physics such that the single-column
response (including convection, radiation and cloud-radiative feedbacks) adjusts the col-
umn temperature towards a prescribed value Tsgr (a function of the underlying sea surface
temperature) on some prescribed timescale.
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Figure 1: Sketch of electrical resistance analogy, for the problem of convective and dy-
namical equilibrium of two atmospheric columns over different sea surface temperatures.
Here 7] and T3 are bulk measures of the respective atmospheric temperature anomalies,
and Tggp, and Tggp, the corresponding values which would be in vertical equilibrium
with the underlying sea surfaces. As discussed in the text, Ry, Ry, R3 denote ‘resistances’
which describe the change in temperature difference needed to induce a given change in
flux.
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It is convenient to prescribe each temperature as an ‘anomaly’ relative to a full equi-
librium state with uniform SST and each column in equilibrium with its SST. These
anomalies will be denoted by primes, and we shall assume that we can linearize the pro-
cesses. In effect we thus construct a tangent linear model.

Specifically we set

atTll = (TéST,l - Tll)/tphysl + (T2I - Tll)/tdynl (53)
0Ty = (Tssrp — 1) [tonys2 + (11 — T3) [tayn2 (54)

Heat conservation requires that M/ Laynm1 = My / Layn2, where M, M, are the masses asso-
ciated with each column. Together these equations imply that in equilibrium

(TSIST,I =T17): (1] = Ty) : (T35 - TSIST,2) =Ri:Ry: Rs (55)

where the resistances R; have the values

Rl = physl/Ml (56)
Ry, = tdynl/Ml = tdynQ/MZ (57)
R3 = phys2/M2 (58)

The ‘current’ (i.e. heat-flux) through this circuit is then (Tggy ,—T5sr,1)/(R1+Ra+R3).
The vertical current (Tggy; —7T7)/tpnys1 corresponds then to an integrated @, +Qr (in the
usual convective notation) rather than to a flux of either dry or moist static energy. The
non-radiative part corresponds to the surface sensible-heat flux plus the surface latent-
heat flux multiplied by the precipitation efficiency.

The electrical analogy shows immediately how (in this simple problem) the convection
in column 1 would change if any of the parametrized terms were changed. Essentially
the current is controlled by the largest resistance, so that (cf. the three methodological
approaches listed in §2)

(i) if Ry > Ry + R3 then vertical transport in column 1 is the rate-limiting process,
and convective heating may be regarded as a ‘prescribed forcing’ to the large-scale
dynamics.

(ii) if if Ry < Re + R3 then the convection in column 1 may be viewed as a response to
‘prescribed large-scale forcing’
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(iii) if the resistances are comparable then neither large-scale forcing nor local convection
can be independently prescribed.

Both cases (i) and (iii) imply that changes to convection parametrization affecting R,
will systematically change the amount of precipitation in column 1. Only in case (ii) can
precipitation be viewed as straightforwardly controlled by the large scales.

We should be able (at least in principle) to estimate these resistances within a large-
scale model, or indeed in the real atmosphere. The greatest difficulty may lie in assigning
appropriate values for the single-column equilibrium temperatures Tggr 1, Tggr o O the
physical adjustment timescales. Within a given model, such parameters can be estimated
by applying forcings of different magnitudes and comparing the mean buoyancy pertur-
bations resulting from those forcings.

4.2 Evaluation of physical adjustment timescales

Convective adjustment timescales of 1-2 hours are often used in NWP, and may perhaps
be used as an estimate for t,,,; during active convection. However note that convection
even in the ITCZ will not be continuously active and is influenced by diurnal cycles,
intra-seasonal oscillations and geographical effects, so that an effective overall adjustment
timescale might be somewhat longer. Also, as seen in §5, we are not only concerned with
intense deep convection but potentially with convection of shallow or moderate depth,
whose adjustment timescales might be longer.

If we base the dynamical timescale on the gravity-wave crossing-time then we may
assume that gravity-waves cross 100km (cf. a typical CRM domain size, approximately
1 degree of latitude) in about 1 hour. James (1994) estimates the meridional scale of the
ITCZ as only 100km, in which case its dynamical adjustment should be governed by a
1-hour timescale.

If column 2 is not convecting then its adjustment timescale may be much longer,
and determined essentially by radiative adjustment. But this does not necessarily mean
that radiation controls the overall ‘current’, because the vertical resistance of a column
depends inversely on its mass. Hence the process issues have greater freedom to affect
the intensity of convection in a small column than in a large column. For instance, in
the descending branch of the Hadley circulation, slow radiative adjustment can effectively
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Figure 2: Equilibrium temperature profiles for radiative-convective equilibrium simula-
tions from Cohen (2001). The radiative temperature-forcing varies between -4K/day
(dot-dashed) and -16K/day (dashed). These forcing values are applied up to 7.5km, then
tapered linearly to zero over the layer 7.5-12.5km. Figure courtesy of Brenda Cohen.

remove temperature increments transported from convection in the ITCZ, owing to the
larger spatial scale of the descending region.

Fig. 2 is taken from the statistical-equilibrium radiatively forced Cloud-Resolving
Model studies of Cohen (2001). This shows the impact on profiles of temperature and
moist static energy of changing the magnitude of a prescribed radiative forcing.

Two changes in the #-profile are evident as the radiative cooling is increased. First, the
temperature profile appears to cool right down to the surface, or as close to the surface as
the model can resolve. Under standard boundary layer theory, this finding is consistent
with an increasing sensible heat-flux. Secondly, the lapse rate also increases significantly,
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so the temperature change in the upper troposphere is much greater than in the boundary
layer.

For present purposes it is not essential to distinguish how much of the change in lapse
rate is an adiabatic consequence of the change in boundary layer values (rather than a
non-adiabatic effect). We need only to evaluate the ratio of forcing to equilibrium impacts,
which here suggests that the ‘physical adjustment’ t,,,, reaches values around 10 hours
in the upper troposphere.

James (1994), discussing the Held-Hou model of the Hadley circulation, comments
that ‘..the basic mechanism in the Held-Hou model, namely angular momentum mixing
and thermal wind balance, gives a general form of Hadley circulation which is insensitive
to the details of how the heat enters the system. The actual location of the ITCZ and
its strength will depend upon details of the tropical boundary layer, and the fluxes of
moisture out of the surface...”. In a large-scale model, one might add the parametrization
of convection (which cannot really be incorporated in the Held-Hou model) as another
detailed factor affecting the I'TCZ.

We may summarize the impact of coupling on process-sensitivities as follows. Where
the transfer-resistance to convection is low compared to the dynamical transfer-resistance,
then the amount of convection may be relatively insensitive to process-issues, being effec-
tively constrained to balance an independent forcing. But in many weather and climate
problems, the transfer-resistance to convection is significant relative to the dynamical
transfer-resistance. In those situations, we expect convective process issues to be able to
change fluxes and precipitation distributions.

4.3 Other convection schemes in the ‘resistance’ problem

We now briefly comment on the generalization of our simple convection scheme based on
temperature-adjustment to schemes based either on a more complex combination of local
parameters or alternatively on direct link to large-scale forcing.

In most convection schemes the convective heating depends not only on temperature
but also on humidity ¢, and in many cases there is also an explicit dependence on large

scale w (via moisture convergence, trigger functions or other assumptions).

Within our resistance model we can include a dependence of ¢, on ¢ and/or w, or
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indeed T'. Such dependences would make the circuit nonlinear, but still fairly straight-
forward to solve numerically. A case of particular note is where convection is assigned
a sharp ‘threshold’ dependence on some combination of these variables. In that case
(depending on the numerical coefficients) the possibility arises that convection regulates
itself to lie at the threshold. For example, a sufficiently strong dependence on relative
humidity might in principle override other forms of regulation.

Another class of schemes is based on a direct attempt to balance large-scale forcing of
moisture or instability, associated with the names of Kuo and Arakawa-Schubert respec-
tively. Such attempts have often proved controversial, especially in regard to the conflict
(at least on short timescales) between balancing moisture and balancing instability.

Raymond & Emanuel (1993) give a critique of the moisture-convergence approach,
noting in particular its unconvincing properties under Galilean transformation, implying
a largely spurious response to uniform horizontal advection. It is not absolutely clear
that ‘instability’-balancing closures entirely avoid such advection problems, but on short
timescales the instability balance may be more relevant. One possibility is that the
usefulness of the moisture-convergence approach stems largely from qualitative ‘triggering’
effects in confining deep convection to regions of ascent.

However we can show with our resistance model that any parametrization based on
‘balancing large-scale forcing’ has fundamental limitations. The reason is that any quasi-
steady state with any parametrization (including all versions of our ‘convective adjust-
ment’) must satisfy this condition. Balance (whether of moisture or instability) therefore
fails to constrain our convective adjustment timescale.

The problem is perhaps even worse if the balance condition is evaluated only approxi-
mately for purposes of the convective closure. For example if (as in the most basic version
of the Kuo scheme) we set convective precipitation to some fraction ¢, (say 70%) of the
moisture convergence, then such a scheme may have no quasi-steady non-zero solution to
our problem of the response to prescribed SST anomalies.

If we allow time-dependence in our test problem, relaxing the steady state assumption,
allowing unbalanced effects, but retaining the prescribed SST anomalies, we obtain
t
M(t) = / Gt — tYM(¢)dt (59)

—0oQ

where the Green’s function G(t—t') accounts for the convergence caused by a given amount
of convection, translated back (via the balance assumption) into current convection. This
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argument suggests that in our problem a scheme based on ‘balancing large-scale forcing’
acts fundamentally as a persistence-based forecast resembling certain types of nowcasting.
The scheme may be saved from grossly excessive convection by an overriding switch which
prevents convection if the profile is overstabilized and limits sustained convective heating
to (Tssr.2 — T4s7,1)/M> (essentially the rate at which the heating can be compensated by
the dynamics), but is not saved from grossly under-responding in other cases.

As discussed by Raymond & Emanuel (1993), a ‘moisture-balancing’ closure can also
be ‘tweaked’ by making the precipitation efficiency depend on the actual relative humidity.
Although not unreasonable in itself, this adaptation does not solve all the problems, and
shows the need to consider the ‘actual state’ as well as the ‘forcing’.

Our conclusion is that whilst acknowledgment of profile balances is useful theoreti-
cally, and may also be useful numerically (if the equilibration is fast relative to a model
timestep), any ‘hardwiring’ of such a balance in the convective closure is unreliable. We
need to recognize the component of the flow which is driven by convective response to
process-issues (including SST anomalies and various forms of convective inhibition), and
is not controlled in any simple way by large scale dynamics.

5 Relationship to other systematic feedbacks

We now set our account of convective-dynamical feedback through buoyancy adjustment
in the context of other systematic feedback loops which could affect the regulation of
convection. Strong systematic positive or negative feedbacks may have implications for
process studies, whereas e.g. a tendency for phase propagation may be regarded as a
matter for the large-scale model.

The feedbacks discussed involve water vapour and moist-static-energy (from either hor-
izontal transport or surface fluxes), radiative feedback and convective momentum trans-
port. We shall see that although some of these are quantitatively significant, they do not
destroy our basic picture, or the rationale for such a ‘buoyancy-feedback’ parametrization.
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5.1 Water vapour and moist-static-energy feedbacks

In analyzing the temperature loop via resistance formulation earlier in §5 we ignored the
corresponding loop for g. Actually the moisture loop does not invalidate the temperature
loop if the physics timescale ¢,y is known, but any changes to column moisture are likely
to affect t,pys.

There are two key questions about moisture:

(i) how does moisture change in response to the combination of convection and dynam-
ical feedback?

(ii) how do any moisture changes affect convection (or other moist physics)?

Question (ii) will be considered in §6. Insight into question (i) may be gained by thinking
about moist static energy.

Moist static energy h is defined by
h=cT+ A+ gz (60)

Loosely, h is a measure of ‘sensible plus latent heat’ and is especially relevant in situations
of high precipitation efficiency, where added latent heat can be assumed to convert into
sensible heat, rather than being stored in the vapour phase. Approximately related to the
equivalent potential temperature 6., h is essentially conserved by advection, condensation
and evaporation with source terms only from radiation or boundary fluxes.

A schematic plot of typical h-profiles is given in Fig. 3. Note that h varies with height
more strongly than its saturated counterpart hgy (defined as for A but with g replaced by
gsat)- The latter quantity is more closely related to adiabatic moist stability arguments.

Neelin (1997) gives a theoretical analysis of feedbacks via h. He defines a ‘gross moist
stability’ (GMS), essentially the change in total column A for a given vertical motion
(roughly analogous to a bulk N? but measuring the impact on h rather than buoyancy).
He concludes that GMS is small but positive, leading to the conclusion that sustained
convective systems must draw their A from the surface, not from the ambient atmosphere.

Neelin’s GMS is a measure of the ‘vertical’ integral [ w(9h/0dp)dp, normalized by w. Its
value depends on the relative shape of the w and A profiles. In particular, the conclusion
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Figure 3: Schematic profiles of moist static energy h and saturated moist static energy
hsat = cT 4+ g2 + Asat- The minimum in the Ay, curve contributes to conditional
instability, whereas the much larger dip in the h curve has no direct significance for
adiabatic parcel theory. Basic parcel theory can be expressed as a comparison between
the (adiabatically conserved) parcel value of h and the ‘environmental’ hg,; profile.
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that GMS is normally positive depends on the expectation that (roughly speaking) |w]|
peaks higher in the troposphere (say at 5km) than the level of minimum A (say 2-3 km).
It is easily seen that this finding is not completely universal without qualification. E.g.
on the cloud scale, parcel ascent of high-A from the boundary layer may lead, at least
temporarily, to an increase in column A as the cloud grows. In this case the ‘normal GMS’
argument fails because w peaks in the layer of high A. However we may assume that GMS
is positive for ‘normal’ large-scale atmospheric motions.

A particularly simple interpretation of GMS can be made in the Sobel-Bretherton
limit, as we derived for » — 0, in which vertical motion exactly compensates for temper-
ature increments. For if temperature is fixed, then changes in h correspond to changes
in q. Hence if gross moist stability is positive then S-B dynamics implies that convection
plus dynamical feedback should give a net drying to the column.

5.1.1 Implications of moist static energy for gridpoint storms

Gridpoint storms (better called ‘column storms’) may be regarded essentially as a form of
undesirable ‘resolved convection’ in a large-scale model, when the resolved dynamics and
large-scale condensation and precipitation schemes take over from subgrid convection in
a manner that is damaging and unphysical. The column moistens dramatically from the
top of the boundary layer upwards, in a manner resembling a spurious large-scale parcel
ascent.

We have seen that ‘gross moist stability’ arguments do not usefully apply to cloud
parcel ascents because the assumptions about ‘normal’ shapes of w-profiles are violated.

Surface fluxes may also play a role but no clear evidence has yet been found that they
drive GPSs.

However moist static energy thinking can also be applied to some extent locally, and
without using GMS. Let us again apply S-B dynamics to a GPS (for which we argued
earlier that the relevant r value is indeed small). This implies that the temperature profile
is pegged to that of the large-scale environment, and hence that changes in h correspond
to changes in q. The moistening is then controlled by the tendency terms for h:

(i) parametrized convection (vertical transport only)

(ii) large-scale dynamics —w(0h/0p)
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(iii) large-scale condensation and precipitation: no effect on h

(iv) surface terms (thought not to be crucial; e.g. surface incoming radiation becomes
blocked by thick large-scale cloud)

Consider first the resolved-only case where parametrized convection is not used. We see
then that (in this S-B limit) any upward motion in a layer where h decreases with height
will moisten the layer. If there is even partial condensation of this moisture increment (e.g.
via a partial cloud scheme) then we have a positive feedback. This property may recall
the concept of ‘potential instability’, whose relevance to real atmospheric convection may
be questioned (Emanuel 1994). It is however clear from our analysis that on scales where
Sobel-Bretherton dynamics apply, condensation is counter-productive where dh/dz < 0.
That is, the net effect of condensation after dynamical compensation for the latent heating
is actually to increase water vapour. This scenario is obviously unstable if increased ¢
implies larger condensation. We have then not ‘gross moist stability’ but local moist
instability.

If the T-profile (fixed, by the S-B assumption) is conditionally stable (the usual cri-
terion, equivalent to dhsy/dz < 0) then this instability is probably self-limiting: if the
h profile reaches hyq(T') then the instability will stop because dhsq/dz < 0. If however
the T-profile is conditionally unstable, then the instability may not stop at saturation. In
fact conditional instability may not be necessary for a disturbance to become a gridpoint
storm. For an increase in h in layers where dh/dz < 0 will lead to layers of negative
dh/dz developing higher up. If our dynamical scenario is maintained, we predict that the
moistening will gradually progress from below until the whole convecting layer reaches
the boundary-layer value of h. Based on typically observed h-profiles, e.g. those of Riehl
& Malkus (1958), this would imply essentially the whole troposphere (up to say 15km)
approaching large-scale saturation in the GPS column. The latent heat released would
be so large as to damage severely the integrity of the large-scale model.

Can parametrized convection help the model escape from this moist instability, given
that it uses the same basic thermodynamics of latent heat? Indeed there is at least
one very significant difference, namely the vertical transport property of parametrized
(or indeed real) convection. In particular a mass flux scheme will normally allow some
penetration into more stable regions where 0h/dp is unfavourable for positive feedback.
In this way the build-up of A (and hence ¢) in the lower troposphere can be relieved,
whilst the greater moist stability aloft controls the impact at higher levels.

So in summary a partial cloud scheme can tap into potential instability if dh/dz <
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0, and progress to full-scale resolved convection if there is conditional instability, i.e.
dhset/dz < 0. The Sobel-Bretherton limit in which this may happen is extreme, but
relevant to gridpoint storms by arguments of §3. Some localized trigger is probably also
required so that the resolved convection can occur at very small area fraction r (as con-
vection over a large area would stabilize the profiles too much to allow this phenomenon).

Parametrized convection is predicted to suppress or reduce GPSs even though it obeys
the same fundamental thermodynamics and certainly contributes to latent heating. The
key difference between parametrized and resolved convection lies in the nature of vertical
transport of h. Parametrized convection using mass-flux or other nonlocal scheme, like real
convection, can transport h penetratively to levels where it is less ‘damaging’. This theo-
retical prediction is consistent with the finding in practice that speeding up parametrized
convection can suppress the GPSs. It also suggests that ‘the more penetrative the better’
in such circumstances.

Of course GPSs will be affected by various other model issues, including the accuracy
of the advection of h, details of the timestepping, and the possible need for horizon-
tal diffusion (perhaps viewed as ‘horizontally penetrating convection’). However these
moist static energy arguments combined with strong dynamical feedback give a plausible
explanation of their basic dynamics and thermodynamics.

5.1.2 Resistance formulation for » — a radiative-convective equilibrium?

We note here briefly that a resistance loop can be written for moist static energy h,
analogous to that written earlier for 7. Neelin’s argument however implies an important
difference, i.e. that the horizontal coupling (the counterpart for h of t4y,) is much weaker
than for temperature. (In fact one might use the assumption of negligible horizontal h-flux
to extend our simple coupling model of §4, but we do not pursue that exercise here.)

In bulk column terms h is much closer to being in radiative-convective equilibrium
than either 7" or ¢ separately. At this point though ‘moist static energy thinking’ risks
misleading us. Convection is not determined by h alone — for the same h we could have a
mid-troposphere that was cold and moist (and hence unstable relative to the surface) or
warm and dry (and hence much more stable).

Even if surface h-fluxes are constrained to balance radiative cooling, this does not
necessarily regulate the convective mass flux. Raymond (1995) shows that w’h’ scales on
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M,Ah but Shutts & Gray (1999) show that Ah is an elastic quantity, which can change
in response to other convective parameters. As with other tracer quantities, one expects
vigorous convection to drive tropospheric h towards the surface value.

5.2 Wind-induced surface heat exchange (WISHE)

The feedback on convection via wind-induced surface heat-exchange (WISHE) can be
estimated as follows, using moist static energy h as a measure of heat.

First we note two simple flow patterns satisfying continuity, (i) barotropic circulations
essentially in the (z,y) plane and (ii) baroclinic circulations essentially in the (z, z) plane.
Although in time mixed modes are likely to develop, these geometries may be treated as
initial conditions for purposes of scaling estimates.

In the baroclinic geometry the gravest tropospheric modes, spanning the troposphere
depth H, scale as u ~ w(L,/H). The extra ‘wind-induced’ flux of A may be estimated as

peru(Ah)s_pr, ~ pcyw(Ah)L,/H (61)

where ¢, is the surface-to-BL exchange coefficient and (Ah)s_g;, the surface-to-BL differ-
ence in h. We take typical values for scaling to be ¢;, = 1073, H ~ 10km.

If we compare the flux of A into the boundary layer by WISHE and out of the boundary
layer by convection (cf. Raymond (1995)), and scale the latter on pM (Ah)gr,_rr (where
(Ah)pL_rE is the difference in h between boundary layer and free atmosphere) then the
relative magnitude of the WISHE term is ¢, (L, /H)(pw/M)(Ah)s_pr/(Ah)BL-_FE-

For convection on short horizontal scales (e.g. as discussed in §4) we expect pw/M =
O(1) to satisfy buoyancy compensation. The importance of the WISHE term is then seen
to be linear in L,. If further (Ah)s pr/(Ah)pL_re = O(1) then we can expect WISHE
term to become dominant for lengthscales > H /¢, ~ 1000km.

For a number of reasons we do not recommend incorporating WISHE in our convective-
dynamical model for process-modelling applications. First, the scales where WISHE be-
comes dominant are somewhat larger than arising in buoyancy compensation scaling.
On those larger scales, moreover, the dynamics of planetary waves come into their own.
WISHE effects may well interact significantly with flow components on the planetary scale,
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but those are beyond the scope of the present study (e.g. we have generally neglected
effects).

Secondly the surface transfer processes will normally form an integral component of a
conventional process model and it would be questionable to couple such a process model
to a large-scale feedback parametrization that made specific assumptions about surface
transfer.

Thirdly, the WISHE effects depend very much on detailed geometry and location,
and do not suggest simple systematic feedbacks that could be used in process models. If
rotation can be neglected, the WISHE term has the effect of spatial propagation rather
than amplifying or damping. For a small baroclinic zonal perturbation to a zonal basic
flow, the WISHE effect will enhance moistening, convection and low-level convergence
upwind of the initial convergence point, leading to upwind propagation. For an initially
barotropic mode, the WISHE effect will tend to promote convection and ascent in the
region of strongest surface wind, tending to introduce a baroclinic element to the mode.

Different behaviour could arise in a system with strong rotation. In an initially
barotropic mode, convection could induce convergence in the cross-wind direction, which
through Coriolis forces could be converted into a long-wind component. Such an atmo-
spheric mode would then develop a mixed barotropic-baroclinic character. Some WISHE-
convection-convergence-rotational feedback appears to play a role in the development of
tropical cyclones. Indeed after significant cyclonic circulation develops, the rotational
feedback is enhanced by the positive relative vorticity (in addition to planetary vorticity).
However tropical cyclones are a special case in their geometry, intensity and other respects,
and we do not advocate here any extension of the present methodology to ‘convection in
hurricanes’.

More detailed analysis of tropical cyclone intensification is given in Craig & Gray
(1996), who find in their numerical study a strong positive dependence on heat and
moisture transfer coefficients, but little sensitivity to frictional drag.

We conclude that WISHE is a significant feedback process in the large-scale atmo-
sphere, but that from a process modelling standpoint it cannot be treated as systematic
in the same way as the buoyancy feedback of §3 and is not appropriate for inclusion in
convective-scale process studies as a parametrization of large-scale feedback.
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5.3 Cloud-radiative feedbacks on convection

We now give a basic scaling for the impact of cloud-radiative feedbacks on convection,
again focusing on the regulation of convection in process models. The nature of the
underlying surface is important to this evaluation. We discuss two limiting cases (i) a
surface of small heat capacity (e.g. land) and (ii) a surface of high heat capacity, e.g.
the ocean. We focus here on short-wave radiation; the argument can be extended to
long-wave. Furthermore we do not consider radiative interactions with individual clouds,
regarding that as a detailed ‘process study’ issue rather than a question about convective
regulation in the sense of the current study. (Petch & Gray 2001) give a detailed evaluation
of interactive radiative impacts in a CRM case-study.

As the simplest relevant calculation (and probably the greatest possible impact) sup-
pose that a thick cloud-shield reflects almost all of the incoming solar radiation S|, of
order 1000Wm~2 to space. This component of cloud radiative forcing tends to lower the
temperature of the atmosphere or surface or both. (We do not claim that short-wave ra-
diative effects dominate over long-wave effects, but merely that this calculation indicates
in principle how radiative effects may be scaled.)

Compare this with the column impact of the non-radiative convective heating @,
which can be approximated as the total latent heat of the precipitation P. We find
then that the non-radiative component of the total heat budget exceeds the radiative
component if P > S| /A ~ 0.7mm/hr (a value reported as ‘light rain’ if observed locally).
For this comparison the computation of P should be carried out over the area of optically
thick cloud (or equivalent if there is a substantial radiative contribution from large-scale
diffuse cirrus etc.).

In the land case (i) the surface S| can be assumed to translate into boundary layer
sensible heat-flux and the above ratio AP/S| gives a measure of the relative contributions
to convection via the atmospheric heat budget.

In the oceanic case (ii) however the surface is well buffered against temperature changes
and only the atmospheric absorption matters. The relevant parameter then becomes

AP/eS| where € is a measure of bulk short-wave absorptivity for the atmosphere.

We suggest therefore that on process modelling timescales cloud-radiation is significant
as a feedback over land, but not over ocean.
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The argument changes of course on climate timescales, where the ocean no longer
functions as a heat sink, but instead recycles heat to the atmosphere. The relevant
timescale for recycling is then the time for surface fluxes to change ocean temperature
sufficiently to feedback significantly on surface fluxes (via convection or otherwise). E.g.
a surface flux of 105Wm 2 would take about 4days to change the temperature of a 100m
ocean ‘mixed layer’ by 1K.

5.4 Feedbacks via convective momentum transport

The last feedback we consider between convection and large-scale flow is that of convective
momentum transport.

Our estimates for convective momentum transport (CMT) are based on Gregory, Ker-
shaw & Inness (1997). This scheme is an extension to the UM mass-flux convection
scheme.

First of all we choose a typical value of cloud-base mass-flux M over a grid square of
side 100km to be ~ 0.1kg m~2s~2. Taking a typical boundary-layer humidity ¢gz, around
~ 10g/kg, and the density of liquid water p,, = 103%kg m~=3, this implies that the moisture
extraction from the boundary layer corresponds in rough scaling terms to a rain-rate
Mggr/pw ~ 3.6mm/hr.

The Gregory et al. (1997) scheme treats CMT in a similar manner to convective scalar
transport, except for a term describing the environmental pressure-reaction on the cloudy
updraughts. The pressure-reaction is characterized by a nondimensional coefficient C* ~
0.7 (as evaluated using a Cloud-Resolving Model). Roughly speaking we can approximate

the momentum flux 7 by
T~ MAU(1 -C") (62)

where AU is the velocity difference across the relevant layer. Taking AU = 10ms ™! and
the other numbers as above, gives the estimate 7 ~ 0.3Nm 2, a value comparable with
typical boundary-layer stresses.

The response to given convective or boundary-layer stresses may be estimated from

(82). The estimate is simplest on the largest scales (Ly > Lg) where the static stability
does not significantly resist the ‘Ekman-pumped’ vertical motion wg.
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In this large-scale regime
WEKk ~Y Tp/ch (63)

where 7, is the radius of curvature of the synoptic flow. For scaling purposes a Boussinesq
or anelastic approximation suffices, whence we can replace the pressure-coordinate form
by its near-equivalent form

pwak ~ T/ fre (64)

Substituting 7 ~ MAU(1 — C*) as above gives
pwgk ~ Ro(1 — C*)M (65)

Here Ro = AU/ fr. is essentially a standard synoptic Rossby-number, but with a velocity
scale based on vertical differences across the convective layer. It follows from (65 that
in the low-Ro regime which governs most midlatitude weather systems, the Ekman mass
flux will be small compared to the convective mass flux.

On smaller scales Ly < Lg, i.e. Bu= Lgr/Lyg > O(1), the static stability will reduce
the Ekman-pumping from the simple rotational balance of (83). Hence we can use the
large-scale approximation (65) as a general upper bound to the Ekman impact of CMT.
In fact from our analysis in the Annex, the Ekman-pumping is strongly reduced at high
Bu, owing to a static-stability correction factor ~ Bu 2 in that limit.

Finally we consider the case of high Rossby-number, e.g. in the deep tropics where f
is small. Here we can use the algebraic relation

Ro = BuRi™'/? (66)

where the bulk Richardson-number Ri = N2H?/(AU)?. We can assume Ri > O(1) ,
otherwise (if nothing else) shear turbulence would act to raise Ri. The high-Bu case
can be discounted owing to the static-stability correction factor. Hence, for our present
purposes in setting upper limits to CMT impact via Ekman pumping, we can effectively
discount the high-Ro case. Even in a tropical cyclone, where low Ro may occur, this
argument predicts that convection feeds back on the dynamics primarily via buoyancy
compensation rather than by Ekman pumping. This prediction is consistent with the
detailed numerical study of Craig & Gray (1996), who find little sensitivity of tropical
cyclone intensification to frictional drag.

Taking into account the factor (1 — C") in (65), this implies that in all relevant
atmospheric regimes the Ekman mass flux pumped by CMT will be significantly smaller
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than the convective mass flux, and will play only a minor role in the type of feedback
discussed in this paper. This finding does not contradict the importance of CMT in
large-scale modelling, but suggests that we do not need to model explicitly the large-scale
feedback via CMT in process models. Sensitivity tests in Met Office global models confirm
that the impact of CMT is subtle and does not dramatically change circulation patterns
(S.Milton, personal communication).

6 Application to further process-modelling issues

Having shown that dynamical feedback can make convection more sensitive to adjustment
timescales, we now consider some more complex process issues. Specifically we discuss the
impact of mid-tropospheric humidity on convection, the convective diurnal development
over tropical islands and the impact of latent heat assimilation in NWP models.

6.1 Impact of mid-tropospheric humidity

There is observational evidence, e.g. Johnson (1997), for associations between mid-
tropospheric humidity and convection. In the TOGA-COARE tropical experiment, com-
posite humidity profiles for the stronger, more organized systems are systematically
moister than for the weaker convection cases.

However in order to develop parametrizations based on such associations, we need to
understand the causal mechanisms. The observations could be interpreted in terms of the
suppression of convection by entrainment of dry air, but clear-air radiation may also play
a role and in some cases moistening could be seen as a consequence of convection.

Full analysis of these mechanisms may require an idealized cloud-resolving model
study. However the most idealized model, that of radiative-convective equilibrium, does
not allow us to control the moisture profiles. Instead the equilibrium profiles emerge
diagnostically from the balance between radiation and convection. In the real tropical
atmosphere, however, as argued above, the large scale dynamics play a key role and the
mean 7', q profiles of a convecting column may be controlled not by the local convection
but by the larger-scale atmosphere.

Motivated by these considerations, a group within the international EUROCS project
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Figure 4: Profiles of quasi-steady buoyant moist updraught mass-flux for Met Office
Cloud-Resolving Model (for four prescribed values of the target relative humidity RHt).

(see http://www.cnrm.meteo.fr/gess/ EUROCS/EUROCS.html) is currently studying the
response of convection to mid-tropospheric humidity. The methodology of this ‘idealized
humidity’ project is based on a simple representation of large-scale feedback via nudging of
mean temperature and humidity on a 1-hour timescale. Four quasi-steady runs were made
with target profiles based respectively on relative humidity values (RHt) of 25%,50%,70%
and 90% at heights above 2km.

This prescribed nudging does not of course constitute a complete dynamical feedback
model, as outlined in the present paper, since the large-scale moisture forcing is not
derived from a model of vertical motion. Nevertheless the impacts shown in Fig. 4 show
that even a partial version of dynamical feedback can enable a quasi-steady convecting
ensemble to show sensitivities that do not otherwise appear.
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6.2 Convection over tropical islands

From §4, we can expect dynamical feedback to play an important role in determining the
amplitude of convection over sea surface temperature anomalies, whenever the horizontal
scale of the anomaly is small compared to a Rossby radius. In particular such feedback
enables convective activity to circumvent the limit set by ‘external’ forcing in the local
column.

Similar arguments carry over to the problem of convection over tropical islands. How-
ever the island problem involves stronger time dependence, being driven by diurnal surface
heating. In the inner tropics the diurnal insolation cycle is a faster process than inertial
oscillations, and the intrinsic dynamical lengthscale for diurnal convection then becomes
the distance which gravity waves can travel over the diurnal timescale.

Consider for instance the island of New Guinea, with horizontal dimensions of order
1000km x 500km (comparable in fact to the British Isles). The New Guinea orography
(rising up to 2km above sea level) is known to be able to generate spurious ‘gridpoint
storms’ in some large-scale model formulations. Whatever physical, dynamical or numer-
ical model weaknesses contribute to this phenomenon, one may perhaps interpret such
gridpoint storms as tapping into the capacity of tropical dynamics to support sustained
convective events.

Close to the Equator the appropriate dynamical scale for response to steady forcing
would be several thousand kilometres. This scale is comparable to the Hadley and Walker

circulations, and also to the range of influence of the S.Asian monsoon heating (Rodwell
and Hoskins).

From our analysis in §3 it can be seen that the impact of unsteady forcing is effectively
to change the Coriolis parameter to an equivalent value (f2 + 0?)'/2. Here o may be
imaginary (sinusoidal forcing) but using real o in the same equations we can also compute
the far field of exponentially growing localized disturbances.

The primary component of diurnal forcing corresponds to o = 27i/24hr, although
there will also be higher frequencies (harmonics) and an important steady component. In
fact the f-plane dynamical analysis shows a resonance at latitude 30°, which in principle
would give a particularly large dynamical feedback to diurnal forcing. However a more
complete dynamical model, with latitude variation of f, is likely to show less strong
resonance, as there is then no unique inertial resonant frequency and Rossby wave effects
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will also complicate the problem.

At low latitudes, if rotating effects can be neglected, the diurnal value of o allows
gravity-waves to propagate a distance of order 500km, comparable with the linear dimen-
sions New Guinea. In fact many gridpoint storms seem to grow with an e-folding time of
the same magnitude (i.e. 0 ~ 10 %s™!) so their domain of significant dynamical influence
may also be of order 500km.

In summary, over tropical islands we can expect large-scale dynamical feedback to
play a key role both in real convection and in any spurious convection present in a model.
Some of the gridpoint storms seen in models can give local precipitation accumulations
far greater than the local column moisture, showing that they have drawn in moisture
from many columns. Our simple feedback model obviously cannot capture in detail the
subtleties of sea-breeze triggering and other detailed interactions between topography
and convection, but it can simulate the basic ability of large-scale ascent to overcome
single-column stabilization.

6.3 Impact of latent heat assimilation

Jones & Macpherson (1997) show that estimates of latent heating from weather-radar
observations can be assimilated usefully into a mesoscale NWP model, whilst Pullen &
Butterworth (2001) have sought to extend this approach to assimilate satellite estimates
of tropical convective rainfall. In each case ‘usefully assimilated’ implies that such latent
heating can at least help maintain precipitation in a location where it is observed.

Whilst detailed consideration of these techniques lies outside the scope of the present
note, some aspects of the principle are highly relevant to our argument. For traditional
SCM thinking would suggest that assimilation of latent heating would act purely to sup-
press model convective precipitation. This is because in a classical SCM scenario such
precipitation and latent heating respond passively to profile destabilization controlled
by larger-scale dynamics. In such a scenario latent heat assimilation could not work as
intended.

Our resistance model offers some pointers to what is happening in the NWP imple-
mentation of latent heat nudging (LHN), as opposed to a SCM test. We assume that
latent heat nudging is applied to the bulk atmospheric temperature in ‘column 1’ in the
terminology of §4.
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First, in the simple case of prescribed resistances (including fixed temperature adjust-
ment timescales) the electrical analogy predicts that the additional ‘input current’ from
LHN is partitioned in the ratio Ry + R3 : R; between vertical:horizontal transfer. Thus

(i) if Ry is small we recover the SCM case where convective Q1 should adjust negatively
to compensate (the opposite of what is desired)

(ii) if Re + R3 is small or O(1) then the impact on local (), is reduced but still positive

So the simple electrical analogy model still predicts that LHN should not work.

However we can understand why the simple (fixed-resistance) model does not fully
capture the behaviour in NWP. In §4.3 we noted that convective ‘resistance’ could depend
on w or q, indeed perhaps triggering quite sharply at threshold values. The dynamical
compensation for positive LHN will imply positive w and positive g-forcing and shows
that LHN could work via a triggering effect if (Ry + R3)/R; is sufficiently small, i.e. if
column 1 is small compared to the area of dynamical compensation.

So our theoretical analysis predicts that the usefulness of LHN depends on at least
two conditions. First, the nudging should be on relatively small scales. Secondly the
convection scheme should be susceptible to triggering, either directly by w or by ¢q. A
third condition may be added, namely that the scales assimilated should not be too small
for model numerics and dynamics to cope at least qualitatively (e.g. there is little point
in inserting detail which merely contributes to gridscale noise or gridpoint storms).

This analysis seems to help explain the findings of Pullen & Butterworth (2001). In
assimilating tropical measurements, they found that whilst nudging seemed to be helpful
for the location of convection, it led to an overall reduction of model convective activity
in the assimilation region. Based on our analysis, some band-pass filter should ideally be
applied to LHN so that it acts only on scales which are small compared to the dynamical
scales, but also avoids forcing the gridscale.

Clearly there are other physical questions about LHN which are beyond the scope of
this note.
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7 Conclusions

Systematic buoyancy feedbacks between convection and larger-scale dynamics, as dis-
cussed in this note, can significantly affect our approach to convective-scale process stud-
ies, whether these involve idealized problems or observed cases.

Such process studies normally involve choices about how to specify boundary condi-
tions and related quantities. Here we are concerned with lateral boundary conditions, or
the domain-averaged representations of their gross effects (large-scale forcings as ‘pseudo-
BCs’) which are applied in convective process studies. In observed cases model specifica-
tion may be influenced by an assessment of measurement accuracy, but such specification
also has important implications for the nature and sensitivity of model behaviour.

The conventional specification of large-scale forcing via prescribed large-scale tempera-
ture and other tendencies can force the convection over time to balance that forcing. Such
a prescription systematically diminishes the sensitivity of the process model to certain pro-
cess issues (including various forms of convective inhibition), relative to the behaviour in
a large-scale model. Conventional ‘large-scale forcing’ strategy therefore should be com-
plemented by an alternative strategy for including in process studies some measure of
large-scale feedback, insofar as this is systematic and predictable from the most basic
parameters.

The importance of convective-dynamical feedback depends on the numerical magni-
tudes of these effects. We showed that the feedback could be conveniently described
either by an effective area-fraction r (the fraction of convective heating not compensated
by the large scales) or by a buoyancy-relaxation timescale t4,,. We showed further that
tayn ~ o 'r/(1 —r), where 07! is the characteristic overall timescale. So for instance on
long timescales o~! we will have large t4y, unless r is correspondingly small.

In §3 we discussed both balanced and unbalanced problems. The balanced problems
can approach a quasi-steady state, in which pressure forces are balanced by Coriolis
terms, leading to a range of dynamical influence scaling on the Rossby radius Lg. This
type of problem can yield non-zero values of 7 and %4y,. A scenario in which friction
balances the pressure terms is also conceivable, although less realistic. In an unbalanced
type of problem the time-development continues without approaching steadiness, typically
through long-range propagation of gravity-waves.

We solved test problems in both 2D and 3D to determine the feedback parameters
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r and t4y,. In both cases r is determined by the ratio of the area of convective forcing
to the area associated with the dynamical response range Lp. Taking into account the
relationship between r and %4,, we found that in 2D the feedback timescale t4,, scales
with the gravity-wave crossing time but in 3D it does not (being significantly smaller).

We showed further that when ¢4, is small compared to the timescale governing the
strength of feedbacks by vertical transport, or when these timescales are of the same
order, the feedback can significantly affect the physical behaviour in ways not captured
by conventional SCM forcing.

The recognition of dynamical feedback as systematic has conceptual implications for
process modelling. It may be better to regard a SCM (despite the well established name)
as fundamentally a 1D version of the large-scale model rather than strictly a ‘single
column’ of the latter at some specified horizontal resolution. We make this subtle, perhaps
pedantic distinction because SCMs (as normally run) cannot capture this systematic
interaction with the larger scales. Numerical details of discretization in the large-scale
model also militate against precise identification of the SCM with a large-scale ‘single
column’.

Our arguments do not invalidate observational case comparisons between SCMs, CRMs
and observations based on prescribed measured forcings. Assuming the measurement is
sufficiently accurate, these comparisons remain a valid and important check on our mod-
els. However we should note that systematic dynamical feedback may lead to systematic
differences in the sensitivity to physics between the SCM and the parent GCM. The sen-
sitivity of a given testbed is important especially if we go beyond ‘validating’ the physics
against observed cases to comparing different schemes in more idealized problems.

Conventional prescribed forcing in SCMs is most applicable to a convective ensemble
that is coherent over at least the length-scale of dynamical response. When buoyancy
adjustment is balanced by Coriolis terms, this scale is given by a Rossby radius Lg, of
order 1000km in midlatitudes and larger in the tropics. In the unbalanced case the scale is
given by the gravity-wave propagation distance. On scales shorter than this, feedback can
play a significant role depending on the values of t4,,. Separately we may also stipulate
that some of the physics (e.g. convection) are deemed to represent averages over certain
scales (e.g. some cloud-system scale) and cannot be sensibly compared on shorter scales.

Similarly a CRM process study cannot be precisely identified with a gridbox-average

of the large-scale model. Instead, we argue that process studies justifiably make idealiza-
tions, which are valid when carried through consistently, but sometimes require alterna-
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tive assumptions to be tested. We suggest that a simple parametrization of dynamical
feedback is a useful alternative to the neglect of feedback, such neglect being itself an
idealization. Woolnough (2001) shows how this parametrization can be implemented in a
CRM and how it affects convection.

We gave further illustrations in §6 of how consideration of large-scale feedback can
bridge the gap between convective process studies and the behaviour within an NWP
model. For instance a pragmatic procedure to assimilate convective latent heating into a
large-scale model has been developed and used in a large-scale model. Under conventional
SCM thinking this is paradoxical: would not such assimilated heating act to suppress
convection, rather than enhancing it as desired? But here our feedback analysis gives us
an outline explanation of how, and on what scales, this assimilation procedure can work.

In §3 and §5 we discussed gridpoint storms (or rather column storms) as found in
many large-scale models, and gave a theoretical explanation which seems to fit with
current practical experience.

Dynamical analyis confirmed that these storms fall into the regime » — 0, and can
reasonably be considered in terms of Sobel-Bretherton dynamics. Using S-B dynamics
combined with moist static energy arguments adapted from Neelin, we showed how an
unstable feedback between model dynamics and large-scale condensation scheme can arise.

Essentially a partial cloud scheme can tap locally into potential instability (if present).
This mechanism only works on very isolated gridpoints and therefore probably requires
some local trigger. The mechanism does not necessarily require conditional instability
but a different (and weaker condition) sometimes called ‘potential instability’.

We suggest that parametrized deep convection acts to suppress GPSs not so much
through precipitation (which, after all, implies further latent heating), but through pene-
trative vertical transport, carrying excess moist static energy to higher, more stable levels
where it is less damaging to the model. The behaviour of shallow convection, if active in
this context, is not yet clear and deserves further study.
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8 Annex: derivation and interpretation of w-equation

In this Annex we review the forcing of vertical motion by convection using a fully time-
dependent ‘w-equation’; i.e. an equation for diagnosing ‘pressure velocity’ w = Dp/Dt
from other forcings or fields. Quasi-geostrophic versions of the w-equation are derived in
many textbooks but here we derive for reference a fully time-dependent version with con-
vective forcings of heat and momentum, which enables us to assess convective-dynamical
interactions at all latitudes. In our pressure coordinates we use the notation Vg to denote
‘horizontal’ vector gradients at constant p.

For simplicity we linearize about a basic state at rest (thereby losing' some advection
terms) but we include the effects of the planetary vorticity gradient S. The standard
[B-plane approximation effectively replaces the Earth’s angular velocity € by its vertical
component, written here as f/2 = (0,0, f/2). The primitive equations then become

horizontal momentum: du = —f Au — Vy® (67)
buoyancy: 8,® = —1/p = —RT,/p = —RI18, /p (68)
(see Notation). Then 0,(68) —
0,0,® = —(RI/p)0i0, = (RI1/p) (00 )0 = —5% (69)
where
s = —(RI1/p),0, = N*/(0.p)* (70)

We now modify the primitive equations by adding convective source terms F and B =
(RI1/p)DB,/Dt , so that

ou=—-fAu—-Vy®+F (71)
and
0,0,® = —s°w — B (72)
Then Vy.(71) —
OVgu = —Vy.(fAu)—-V4d+VyF (73)
= —fVyAu+pu—Vyd+VyF (74)

since
VH(f/\ 11) = —va Au+ u.VH NE

lactually the advection terms are easily reinstated by reclassifying them as forcings
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and
uVy Af=pu (75)
Differentiating further, 9,0;(74)—
070,Vuu = 9. Vy Adwu] — V50,0,® + 8,0,(Vu.F + Bu) (76)

and substituting Vy.u = —0d,w (continuity) on the left-hand side and J;u=(71) on the
right-hand side we obtain

—0}0w = £V AO[—fAu—Vy®+F|+ Vi (s’w+ B) + 8,0,(Vi.F + Bu)(77)
which by using the vector identities Vg A Vg ® = 0 and
VuA(aAb)=a(Vyb)+ (b.Vyg)a—b(Vy.a)— (a.Vy)b
(with a = —f and b = 9,u) we can write as

—0}0w = £[-fVy.(0pu) + 0,V AF] — B0 + Vi (s°w + B) 4 0,0,(V.F + pu)
= f.(f2w+0,Vy AF) — fBOv + Vi (s’w + B) + 8,0,(Vy.F + fu) (78)

which we can finally write, collecting source terms on the right, as

[(f*+07)02 4+ s*Vi]w = —VEB —£.0,(Vg AF) + 800 — 0,0,(Vy.F + fu)  (79)

8.1 Interpretation and scale analysis of the w-equation

As compared to the quasi-geostrophic (QG) version (James 1994) our w-equation (79)
includes some 0, terms, which strictly make this a prognostic rather than diagnostic
equation. Here though we consider those terms only for scaling purposes. Essentially
these additional terms are negligible compared to the Coriolis terms if 9; < [f|. By
contrast in the opposite limit, where rotation is slow compared to the fluid timescales,
the 0, terms dominate the w-equation.

In the deep tropics the Coriolis parameter f is not usually ‘large’ in the sense required

for QG theory. For instance at 5° latitude the inertial period is about 5 days, so the QG
approximation is unreliable for waves on sub-weekly timescales.
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In the absence of ‘forcing’, i.e. setting the RHS of (79) to zero, we recover the stan-
dard dispersion relation for inertia-gravity waves. In addition to the Coriolis and time-
derivative terms, the static-stability term on the left-hand side of (79) is also important
at shorter wavelengths.

In order to describe the scales on which the static-stability is important, let us write
fPw/s*Viw ~ Ly /Ly (80)

where Ly is the horizontal scale, Ap the pressure-depth scale of the disturbance (usually
related to the troposphere depth) and L = sAp/|f| ~ NH/|f| is the Rossby-radius
of deformation. The ratio Bu = Lg/Ly is called the Burger number, and the low-Bu
regime may be viewed as applying to broadscale barotropic waves. Typically though,
most tropical and midlatitude weather systems involve scales shorter than Lg, in which
static-stability is as important as the Coriolis term, i.e. Bu > O(1).

Amongst other mechanisms our w-equation includes the ‘Ekman pumping’ effect. The
Ekman effect, in its simplest terms, corresponds to a balance between the Coriolis force
acting on the ageostrophic wind and the frictional acceleration F (due to boundary layer
turbulence or convection). This leads in (79) to a balance between f?07w and —f.0,(Vi A
F). More generally let wgy be the forced response to a steady friction F = 0,7, where

=~ o) 1)

Then when the forcing scale is large compared to the Rossby radius (Bu = NH/Ly|f| <
1) we have
WEk fﬁl(VH A Tp)3 + D (82)

Here D is a compensating term linear in p which represents Dines compensation, and
enables us to satisfy w = 0 at the top and bottom (or some alternative condition) even if
F does not vanish at the bottom. As a linear, boundary-compensating term, D does not
affect the scaling.

However where the forcing scale is smaller (moderate or high Bu) then static stability
terms enter as we saw earlier for buoyancy forcing. The scaling then changes to

WEKk "~ f_l(l + B’U,Q)_I(VH A Tp)g + D (83)

It follows that for a given frictional forcing and given NH, the Ekman pumping wgy is
maximized at a value of f such that Ly = O(Lg), and that actually wgx — 0 when f — 0.
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The terms in the planetary vorticity gradient 8 come into their own when the merid-
ional scale is ‘planetary’, or at least a few degrees of latitude. These terms arise from two
stages in our derivation, but can be written together as — f0,(8u) + 0,0,(5v).

The term —f0,(Su) reflects a tendency for Westerly flow to induce convergence and
Easterly flow divergence, owing to the variation in f. Consider for instance Westerly flow
near the Equator. To the North f > 0 and the flow turns to the right, whilst to the
South the flow turns to the left, hence convergence results. Such effects militate against
simple barotropic flow solutions of the kind seen in f-plane dynamics. Consequently on
scales where the (-effect is significant, there is a tendency for mixed barotropic-baroclinic
behaviour, especially when the characteristic lengthscale for [ effects becomes smaller
than the Rossby radius. See Gill (1982), p.588, and references.

The term fB0,v in (79) corresponds to the forcing of vertical motion by vertically non-
uniform advection of the planetary vorticity gradient. In the quasi-geostrophic limit the
vertical motion acts to balance differential vorticity advection together with other terms
that tend to disturb thermal wind balance. The tendency of a cyclonic vorticity anomaly
in the upper troposphere to induce ascent in the mid-troposphere (in the presence of
planetary vorticity f) may be termed the ‘vacuum cleaner effect’.

The case where v balances potential vorticity forcing is known as a Sverdrup balance,
particularly when the forcing is ‘frictional’; i.e. fv = Vg AF. Equation (79) incorporates
these terms differentiated with respect to p and multiplied by f. The factor f implies
that the horizontal ‘restoring tendency’ of potential vorticity is slow at low latitudes, even
though £ is at its maximum there.

The Sverdrup response to diabatic heating in the mid-troposphere is slightly counter-
intuitive. Such heating tends to reduce upper-tropospheric static stability (and hence
PV), inducing equatorward flow, whilst low-level PV is increased and equilibrates by
poleward flow. Hence diabatic heating close to the Equator can induce a thermally indirect
flow component in the meridional plane. However this does not mean that the induced
circulation as a whole is thermally indirect. An example of this behaviour occurs in the
Gill problem, as discussed above in §3.

In (79) we wrote the § terms as ‘forcings’, although evidently a full solution involves
relationships with the other terms through flow geometry and continuity. Detailed analysis
shows a complex set of wave solutions, including Rossby- and Kelvin-waves as discussed in
Gill (1982), p.438. Kelvin waves may be viewed as a form of equatorially trapped gravity
waves with flow in the zonal plane, whereas Rossby waves primarily involve meridional
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advection of planetary vorticity. Both types of waves permit ascent in convecting regions
to be compensated by remote subsidence.

Gill (1982), p.454, says that the adjustment under gravity near the Equator can be
thought of as a two-stage process, with an initial fast adjustment due to gravity waves
followed by a slow adjustment due to planetary waves. Although planetary waves un-
doubtedly play an important role in propagating the influence of convection, we shall
assume that their detailed properties are not critical to the feedbacks of present interest.
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Notation

T,Y, 2 standard Cartesian coordinates (righthanded with z vertical)
u, v, W corresponding velocity components

t time

P pressure

p density

T absolute temperature

) geopotential

Vu Horizontal derivative on p-surfaces

O, 0, etc. partial derivatives with respect to ¢, p etc.

D/Dt Lagrangian (material) time derivative

11 Exner function (p/1000hPa)%/c

R gas constant

Cp specific heat capacity of air at constant pressure

w ‘pressure velocity’ Dp/Dt

f Coriolis parameter

I} df /dy where y is taken as the latitudinal direction

N Brunt-Vaisala frequency (typically 1072s71) in the free troposphere
B buoyancy forcing in pressure units

Rp the part of B not compensated by vertical motion

s = N/(—0,p) parameter for static stability in pressure coordinates (typically 10~3mPa 's~!)
tdyn effective dynamical response timescale for our feedback model

r effective fractional area parameter for our feedback model
k,l,m wavenumbers in x,y, z directions respectively

ky characteristic wavenumber for dynamic response to local forcing
o growth rate (implying time-dependence e”*)

10) general scalar quantity

H height scale for convecting layer

Ly horizontal scale

Gsat (T, D) saturation value of specific humidity

Ly NH/|f|, Rossby radius of deformation

Bu = Lgr/Ly Burger number
Buy = k/k, modified Burger number for §3.1

Q nondimensional heating in the Gill problem

Q1 apparent convective temperature-source (contribution to 9,7")

Qr radiative temperature forcing

M convective mass flux

Tsst atmospheric temperature in equilibrium with given sea surface temperature
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F frictional force

T frictional stress

Ro Rossby number U/ f Ly where U is a velocity scale
Ri gradient Richardson number
WEE Ekman-pumped contribution to pressure-velocity w
WEE Ekman-pumped contribution to vertical velocity w

C"  coefficient governing momentum transport in Gregory-Kershaw scheme
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