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Abstract

The tangent linear model has become widely used within numerical meteorology, both
as an explicit model of perturbation growth and as a means of determining the adjoint
model. In this study we look at two ways of finding such a linear model; the usual method
of linearizing a discrete nonlinear model is compared with the method used at the UK
Meteorological Office, in which a numerical scheme is applied to the continuous linearized
equations. The methods are compared using a simple initial value problem. The two
methods produce different linear models, which may exhibit quite different behaviour if
model instabilities are present. We demonstrate problems which may arise when applying

the standard test of a tangent linear model.
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1 Introduction

Recent years have seen an increase in the development of adjoint models within numerical
weather prediction. Their efficiency in providing the gradient of an objective function
makes them particularly useful for solving large optimization problems. Their applications
in weather forecasting include 4-dimensional variational assimilation (4D-Var) [12], and
the calculation of singular vectors to determine sensitive regions within a meteorological
field. The latter are useful within a variety of problems, for example the study of forecast
error, the determination of initial perturbations for ensemble forecasts and the targetting
of atmospheric observations [5], [7].

In determining the adjoint model, use is made of the linearization of the nonlinear
model around a background trajectory, the tangent linear model. In certain applications,
such as the incremental formulation of 4D-Var, the tangent linear model itself is also used
explicitly to model the evolution of a small perturbation [3]. The calculations made with
such models require that the tangent linear model represents the nonlinear evolution of
a perturbation to a good approximation. The satisfaction of this requirement will, in
general, depend on the particular meteorological situation.

In order that the tangent linear model correctly represents the first order part of
the nonlinear model, it is usually obtained by a linearization of the discrete form of the
nonlinear model. This can be done directly from the nonlinear model source code, a process
known as automatic differentiation. The adjoint model is then obtained by transposing
the source code of the linear model [2], [6]. This method has come to be widely accepted
as the way that tangent linear and adjoint models should be developed.

However, there are some inherent difficulties with this approach. Recent work by
Polavarapu et al. [9] has shown that errors may occur when the interpolation procedures of
semi-Lagrangian schemes are linearized in this manner. A problem arises if the perturbed
departure point is in a different grid interval from the original departure point. In this
case, for infinitesimal variations, the tangent linear model will correctly represent the first
order term of the nonlinear model if and only if the interpolating function has a continuous
first derivative. For finite perturbations it was found that this condition is also necessary,
but it is no longer sufficient.

Polavarapu and Tanguay [8] have also looked at the practical problems of determining
the linear model in this way when iterative processes are involved, for example in semi-

Lagrangian schemes or elliptic solvers. For such schemes the linearization of the discrete



scheme requires information of the background trajectory to be stored for each iteration.
In schemes which perform several iterations of a solution procedure on each time step, this
leads to very large storage requirements. Other work in this area has studied the difficulties
of treating the linearization of discontinuous processes within physical parametrizations
(for example [1]).

At the UK Meteorological Office an alternative approach to developing the linear model
has been taken. Beginning with the continuous nonlinear equations, we first linearize to
form a set of continuous linear equations. These linear equations are then discretized to
form the linear model, following as closely as possible the integration scheme used in the
nonlinear model. The adjoint model is derived from the discrete linear model.

There are two main advantages to this approach. The first is based on the premise
that what we want to model is the true evolution of a perturbation in the atmosphere.
The model can therefore be based more on physical principles and can make some small
approximations to the true tangent linear model. If the magnitude of such approximations
is no greater than that of the linearization error, then this should not affect the accuracy
of the calculations, but will allow significant savings to be made to the running costs of
the models.

The second advantage to this approach is that it is possible to avoid some of the prob-
lems with the particular kinds of schemes discussed above. For example, the numerical
model we are working with requires the solution of a 3-dimensional Helmholtz equation,
which is performed using an iterative solver (see [4] for full details of the scheme). Our ap-
proach to forming the linear model allows us to apply the same solver to solve a Helmholtz
equation within the linear model and avoids the need to linearize the iterative procedure.

Sirkes and Tziperman [11] have previously shown differences between forming the
adjoint model from the continuous linearized equations and forming it from the discrete
nonlinear model. However they do not examine the linear model itself, which plays an
important role in incremental 4D-Var. In this study we concentrate on the properties of
the linear model. We look at the two approaches to forming the model, either discretizing
the nonlinear equations and then linearizing, or linearizing the nonlinear equations and
then discretizing the continuous linear equations thus formed. The effects of possible
further approximations are not considered. We study the problem for the case of an
ordinary differential equation (ODE) initial value problem, first using a general linear

multistep method and then a particular nonlinear method. For this study the examples



chosen are fairly simple, and there is no guarantee that the results presented here will
extend directly to a system of partial differential equations present in numerical weather
prediction models. However, even these simple examples highlight some general points
which we will need to look at when we turn our attention to the full system.

In Section 2 we set up the problem we wish to model. In Sections 3 and 4 we then
present an analysis of the different methods of linearization, using a general linear multistep
scheme and a particular Runge-Kutta scheme. The results of the analysis for the Runge-
Kutta scheme are illustrated with some numerical results in Section 5. We then make a
short comment on the linearization state in Section 6, before presenting our conclusions

in Section 7.

2 The problem

We consider the general ODE initial value problem for a function z(¢) of the form

dx
- = f(z), t€la,b], z(a) = zo, (1)

where f is explicitly a function in z only. The linearization of this equation is

W) _ piayse, )
where
df
I e
f (x) - d.ﬂ ot .
Equation (2) is the tangent linear equation of (1). We note that since z = z(t), the

coefficient of dz in (2) varies with time. This must be taken into account when applying
schemes that require coefficients from different time levels. The procedure we follow is to
apply a numerical scheme to equation (1) and then linearize this scheme. The results from
this are compared to those obtained by applying the original numerical scheme directly to
equation (2).

Before doing this, it is desirable to say something about the existence of solutions to
these equations. We assume that equation (1) has a unique solution. This is true if f is

continuous on some interval [z,,z3] and satisfies a Lipschitz condition

| f(z1) = fz2) [| S L [l 21 =22 ]

for all 1,25 € [2,4,23]. L is the Lipschitz constant.



In order to show that the tangent linear problem (2) has a Lipschitz condition and
therefore a unique solution, we first note that for given perturbations dz¢, 6z to a state
z(t), we have

| f'(@)8zy = fi(w)bay | <[ f'(@) (Il 621 = ba || -

Hence, if f'(z) is bounded in [z,, 23], we can choose
L =max{[| f'(z) ||l: # € [24, 2]}

to give the required condition. A bound on f’(z) is therefore a sufficient condition for a
solution to exist and so this is assumed in our analysis.

Given that both equations can be solved, we can now look at the problem of producing
the discrete tangent linear model. First we clarify the notation used in the remainder of
this paper. Given a model variable z = z(t), the value of the analytic solution at time ¢;
is written z(¢;). The model solution at this time, which will be an approximation to the

true value, we denote z;.

3 Linear multistep methods

If we consider a general k-step linear method applied to equation (1), we have
Wpntk + p—1Tppk-1 + .o+ Q0T = AUBfugr + Br—1fugr—1 + ...+ Bofu],  (3)

where f; = f(z;).

A linearization of this scheme produces
0pdTpyr +  0p_10Zpqp—1 + ...+ agdz,
= ABkfrirk0Tngr + Br1frih—10Zngr—1 + ...+ Bofrb2n]. (4)
This is exactly the same as the result of applying the full scheme (3) to the tangent linear

equation (2). Hence, for the case of a linear multistep method, linearizing the discrete

model is the same as discretizing the linear equation.

4 Nonlinear methods

The conclusion of the previous section does not hold when we apply a nonlinear numerical
method to the problem. To illustrate this, we use the example of a two-stage Runge-Kutta

scheme for solving
dz
dt = g(m, t)v
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given by
ki = Atg(zg,t),
ky = Atg(:vZ + Atg(xi,ty;),ti+ At),

1
Tiy1 = r+ §(k1 + k3). (5)

Applying this scheme to the nonlinear equation (1), we note that the function f does not

depend explicitly on t and therefore we have
ki = At f(z;),
ky = At f(rz + At f(a:z)), (6)

which gives the model solution

At
vivn = @ik S (f(@) + flit ML) 7
Linearizing this scheme gives

At
0zip1 = 5mi+7{f/(wi)6$i

+ [+ At f(2i))[1+ AL f'(2i)]b2i} (8)

However, if we apply the nonlinear scheme (5) to the tangent linear equation (2), noting

the time dependence of the coefficient of x, we obtain

At
beip = b+ Af (zi)ba

+ (w1 + Al f'(2i)]6wi}. (9)

A comparison of (8) and (9) shows that they are very similar, but with z;4; in the
second equation being replaced by an estimate of this in the first. In the second scheme,
however, z;41 is given by the more accurate estimate obtained from (7), which implies

that
(5$7j_|_] = éz; + %{f’(a@)émz

b Pt S + I AL @D A e, (10)

It is clear that equations (8) and (10) are not the same for a general function f. Hence with
a nonlinear scheme, it does matter whether we linearize or discretize first. We therefore
wish to examine the two linear models (8) and (10) to see if we can say something about

the errors in each of them. The error can be analysed in two ways; a comparison of the



linear and nonlinear evolutions of a perturbation determines the validity of the models
under given conditions, whereas an analysis of the truncation error shows the order of

accuarcy of the models. We treat each of these in turn.

4.1 Comparison of perturbations

The usual way of testing the validity of a tangent linear model is to see how well it
models the behaviour of a perturbation in the nonlinear model ([10]). The method can be
summarized as follows:

Let M; be a given nonlinear model which maps a model state at time ¢; to one at
time ¢;11, and let a; = M(xo,t;) represent the model state vector after being integrated
from time tg to time ¢;, starting from an initial state zog. Then given an initial state of
the model zy and a small perturbation ézy, we can run the model twice starting from the
two different conditions zy and zg 4+ ézg. The difference between these two runs at any

particular time is the perturbation, N, evolved in the nonlinear model, given by
N = M(zo + 6z0,t;) — M(z0,1;). (11)

Now define M/ to be the Jacobian matrix of the model operator with respect to its state
vector at time ¢; and M'(z,1;) the repeated application of this operator from time ¢, to

time ¢; around the trajectory given by M (zg,t;), i.e.
=1
M (zo,t;) = J] M. (12)
j=0

Then M'(zo,t;) is the solution operator of the tangent linear model. By a Taylor series

expansion we find that
M(zo + é0,1;) — M(z0,t;) = M'(z0,t:)6z(t0) + O(62%). (13)

Thus, to first order, the solution operator of the tangent linear model applied to éz(to) is
equal to the perturbation NV calculated from the runs of the nonlinear model. A comparison
of these two quantities therefore allows us to determine the validity of the linear model.

Since this test is based on a linearization of the model, it favours the linear model
produced by linearizing the discrete scheme, which for this problem is the exact tangent
linear model according to the definition (12). We can show this by looking at the perturbed
nonlinear equation

d
T(x+82) = (o + b). (14)



Applying the Runge-Kutta scheme and subtracting the solution of the unperturbed equa-
tion (7), we obtain to first order in 6z equation (8), the linearization of the discrete scheme.
Hence the use of this error measure to determine the validity of a linear model must contain
the caveat that it only determines to what extent the linear part of the discrete nonlinear
model is captured. It does not provide a comparison with the evolution of a perturbation
according to the continuous equations. The effect of this will be seen more clearly when

we look at some numerical results in Section 5.

4.2 Truncation error

It is useful to calculate the truncation errors in both the linear schemes, to check the
accuracy to which they solve the linear equation. In order to do this we would like to
compare with the truncation error of the scheme applied to the nonlinear equation, and
so this is calculated first.

Let us denote the truncation error of the nonlinear model as 7. Then by the defini-
tion of truncation error and using (7), we have

a(tipr) —a(ty) 1

TNL = Al 2

{7 (1)) + fl2(t:) + At f(2(t:))} -

Noting that @(t;41) = z(t; + At), we can expand this around time ¢; and also expand the
second function about f(x(t;)). Using the fact that

dz

d*z '

-5 = [EO)f(=(1),
3z

5 = [fEON )+ @) 0],

we find

i = (G @) = 5 @) A
+ O(A#). (15)

By this we see that the scheme is second order in time.

Now we wish to examine the truncation errors for the two linear schemes (8) and
(10), which we denote 7 and 7, respectively. First we must be clear about what these
quantities mean. For the discretization (10) of the linear equation (2), the truncation
error is defined in the usual way with respect to the true solution of the equation that

the scheme approximating. However, when we look at the linearization of the nonlinear



discrete system (8), we do not have a clear definition of truncation error, since this scheme
is not designed as an approximation to any particular equation. For comparison therefore,
we take the truncation error with respect to the solution of the same linear equation (2).

For the linearization of the discrete scheme (8) the truncation error is found to be

da(tisr) = 6o (t:)
no= ) 200 )bl

+ f(e(t) + Atf(x(:) )1+ ALf'((1:))16(t:)}- (16)

Now expanding 6z(t;41) = 6z(t; + At) around #; and expanding the last term of the

(ti
equation around f’(z(t;)), and using
z)

d(é:
dt

TED) — pla(o) fat)se + [F(a(0)o2 + O(6a?),

dgéfgm) (@@ f(x(1)]?6z + 4f"(x (1) f/(2(1)) f(2(1))éz
+ [f'(z(1)*z + O(822),

= [f(z(t))bz + O(é27),

we find that to order 6z
no= (§EEIP + @) o) fa(t)
= ) )2 AR + O(5a(1) A, (1)
We note first of all that this is second order. A simple manipulation shows that it is equal
to the linearization of (15).

Turning now to what happens when we discretize the continuous linear equation, we

find that the truncation error is

(5%(752' 1)—6x(ti) 1.,
no= S0 e

A
+ et + 7t {f(2(ti)) + f2(ti) + At f(2(t)) DI + Atf'(2(ti))]62(4:)},(18)
and with the same cancellations as in the previous case, this reduces to

[ 3 Loy /
o= (GFE@P - 5 ) ) fan)

= P D) )ba(t) A + 01 AF) (19)

Again we see that this is second order, but this time it is not the linearization of the
truncation error of the nonlinear scheme.

For both linear schemes the second order accuracy in time is only second order with
respect to the linear equation (order §z). There are terms in 71 and 7, of order §z? and

higher which are only first order in time, but these vanish in the linear approximation.



5 Example

To illustrate the theory let us consider the simple example f(z) = 22, i.e.
dz 9
= 2

with ¢ € [0,10] and 2(0) = 2¢. The analytic solution to this equation is given by

— 'CCO
N 1-— .'fot.

x

(21)

By considering a perturbation 6z to the problem (20), we obtain the equation for the exact
nonlinear evolution of a perturbation,

(5%0

O T Gt s (1ol

(22)

Applying the Runge-Kutta scheme (5) to (20), we obtain the discrete nonlinear model

Tip1 = ¥+ 2IAE+ 2P AL+ ﬁ, (23)
which is second order in time, with truncation error
—_— x(ti);AtQ N i": ()" AT, (24)
n=4
The linearization of the analytic equation (20) is
d(jf) = 2zéz, (25)
which has the solution
dz(t) = uf%. (26)

To find the linear model by the first method, we linearize the discrete scheme (23) to
obtain

dxip1 = (14 22;At + 327 At* + 227 At?)a;, (27)

The second linear model is determined by applying the discrete scheme (5) to the linear

equation (25). This gives
001 = 0x; + 2 A6z + 21 AL[1 4 22, At)b ;. (28)
Then, using the estimate of z;41 from (23), we have

bxipr = bz + x;Atdx; + <m¢ + 2ZAt + 2P AL

m?AtS

+ )At[] + 22;At)bz;

(1 + 22;At + 322 A1 + 327 A8 + gx;‘m“ + 2 At)é ;. (29)

10



Substituting the correct solution into both these schemes, and using equations (20) and
(25) and their derivatives, we find the following truncation errors:

e for the linearization of the discrete scheme to order éz

o= 22(4;)°At*éx(t;) + ba(t) A3 62 (1) + 6z (t;)> Attéx(t;)

+ f:(n + Da(t;)" A" 62 (1), (30)

which we note is the linearization of (24);

o for the discretization of the linear equation
o= a(t)PARSa(L) + gac(ti)‘lAt?’ém(ti) + Sa(t;)P Attty
+ D (n+ Da(t)" A" ba(t;), (31)
n=6

which can be seen is different from 7, with a smaller principal term.

5.1 Numerical experiments

In order to compare the linear and nonlinear evolution of the perturbations, some numer-
ical experiments were performed with this example, according to the method described in
Section 4.1. The schemes were coded and the nonlinear model was run from two slightly
different initial conditions zg and 2o+ d2g at time £ = 0. The difference between these two
runs was then compared with each of the linear models initialized with the perturbation
bdxg at ¢ = 0. The first experiment used values of zg = —2.5 and dzg = —0.1 and a time
step At = 0.25. The output is shown in Figure 1. The solid line shows the difference
between the two nonlinear runs, the dashed line shows the scheme formed by linearizing
the discrete scheme (27) and the dotted line shows the discretization of the linear equa-
tion (29). Also plotted with diamonds is the true nonlinear variation of a perturbation
calculated from the analytic expression (22). For this experiment the solid line and the
dashed line are almost identical. We see that both linear models approximate well the
true nonlinear variation.

The experiment was then repeated with larger time steps, first for At = 0.35 and
then for At = 0.5. The output from the first of these is shown in Figure 2. The solution
trajectory from the model formed by discretizing the linear equation moves away from
the other curves. This model thus seems to be less accurate in representing both the true
nonlinear variation and the evolution in the discrete nonlinear model, despite having a

smaller truncation error.
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Figure 1: Plot of perturbation against time for At = 0.25. The solid line indicates the evolution
in the nonlinear model, the dashed line shows the linearization of the discrete scheme, the dotted

line shows the discretization of the linear equation and the diamonds indicate the true nonlinear

varlation.
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Figure 2: As Figure 1, with At = 0.35.
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Figure 3: Plot of perturbation against time for At = 0.5. The solid line indicates the evolution
in the nonlinear model, the dashed line shows the linearization of the discrete scheme, the dotted
line shows the discretization of the linear equation and the diamonds indicate the true nonlinear

variation.

However, when the time step is increased even further, to a value of 0.5, a different
behaviour is seen. The output from this experiment is shown in Figure 3. In this case
the difference between the two runs of the discrete nonlinear model is quite different
from the true nonlinear evolution of the perturbation. The linearization of the discrete
scheme follows closely the difference between the two discrete nonlinear runs, whereas the
discretization of the linear equation is closer to the true nonlinear variation.

To explain the peak in these results which makes the two linear schemes so different,
it is useful to look at the behaviour of the numerical solution of the nonlinear equation.
The solution from the runs of the nonlinear model is shown in Figure 4. The dotted line
indicates the model run with At = 0.25, the dashed line with At = 0.5 and the solid
line is the analytic solution. The global error of these runs is shown in Figure 5. It
can be seen that doubling the time step gives a large increase in the error of the model
solution, showing that the scheme itself is inaccurate with the larger time step. The effect
of this inaccuracy on the difference between the perturbed and unperturbed runs is that
the perturbation can change sign. This can be seen in Figure 3; the solid line shows the

initial negative perturbation becoming positive during the nonlinear model run, whereas
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Figure 4: Solution of nonlinear model runs. The dotted line is for At = 0.25 and the dashed line

is for At = 0.5. The solid line indicates the analytic solution of the nonlinear problem.
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Figure 5: Global error of nonlinear model runs. The dotted line is for At = 0.25 and the dashed
line is for At = 0.5.
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Figure 6: As Figure 3, but with the nonlinear model run with A¢ = 0.25 and the linear models
run with At =0.5.

the true nonlinear variation, shown by the diamonds, remains always negative.

If we consider the true nonlinear variation (22), then for given initial values z¢ and
dxp both less than zero, we see that dz(t) cannot change sign. If we examine the analytic
solution to the linear equation (26), we see also that éz at any time ¢ is always a positive
factor times the initial éz and thus cannot change sign. Hence the analytic solutions to
both the nonlinear and linear problems tell us that an initial negative perturbation must
remain negative throughout the model run. Thus the behaviour of the perturbation in the
discrete nonlinear model is one which is not allowed by the analytic solution.

Turning now to the linear models, we wish to understand why the solution of that
formed by linearizing the discrete scheme (the dashed line in Figure 3) follows the erroneous
nonlinear model solution. In particular, we wish to determine whether this is an effect
of an incorrect linearization state or a feature of the scheme itself. The experiments
were therefore repeated, using a time step of At = 0.25 in the nonlinear model run, and
then using the linearization state from this to force the linear models with a time step of
At = 0.5. The result of this is shown in Figure 6. From this experiment we see that a
more correct linearization state is not enough to prevent the perturbation from changing
sign in the linear model formed from the linearization of the discrete scheme. The linear

model is unstable even though the nonlinear model is well-behaved. The problem must

15



therefore be inherent in the scheme of the linear model. We therefore analyse further the

linear schemes, to understand how their behaviour changes with time step.

5.2 Analysis of numerical results

We first consider the stability of the schemes. Applying the Runge-Kutta scheme (5) to
the ODE
dy
dt - luy7
where p is a negative constant, gives the linear stability limit
2
At < ——.
I

Hence with g = 22, as in our linear equation, we find that for stability we require

1
At < ——. (32)

T
For @ = —2.5 this gives a time step limit of At < 0.4.
This limit also holds for the linear model formed by linearizing the discrete nonlinear

scheme. If we define the amplification factor X; of the linear scheme as

5$i+1
)\Z_ 6307; ’

then for an initial negative perturbation to remain negative we require that \; is always
positive. A simple analysis of (27) shows that (32) is a necessary and sufficient condition
for this.

To illustrate this we plot A; for the scheme, for a range of values of z and At. This is
shown in Figure 7. We see that for # = —2.5 the amplification factor becomes negative
for time steps At greater than 0.4, as predicted by the analysis.

In contrast, the scheme formed by discretizing the linear equation allows a larger time
step for any particular value of z than that given by the above analysis. In this case, the
scheme allows for the variation of u in time, thus making it more stable for larger time
steps than the model formed by linearizing the discrete nonlinear scheme. This can be
seen in the plot of its amplification factor in Figure 8. A comparison with Figure 7 shows
a greater range of values for which A; remains positive. In particular, for z = —2.5 and
time step At = 0.5, A; is positive with value 0.38.

In order to compare the accuracy of the linear schemes, we define the local error of
each scheme at time ¢,4; by

F = (SQU(tH_]) — (SZUH_],

16
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where we assume 6z; = 6z(%;) and z; = z(¢;). Then, expanding about time #; we find the
following local errors after one time step:

o for the linearization of the discrete scheme to order éz

By = [22(4:)° A8 + 52(4;) At* 4 62(4;)° AL + O(2(t;)°At®)]d2(t;); (33)
o for the discretization of the linear equation

Eo = [2(t;)* At + gx(tz-)‘*m“ + 52(1;)°At° + O(x(1;)° A1°)]62(1;). (34)

The higher order terms of these errors are identical, and so we can write an exact expression

for their difference,
By = By = (P A 4 2a(t:) At 4 (1) A da(n). (35)

A simple analysis shows that within the limits of stability, the magnitude of the error Fy

is greater than that of £y wherever

1
—1<zAt < —=.
2
For a value of x = —2.5 this corresponds to a time step range of 0.2 < At < 0.4, and

so explains the relative accuracy of the two linear solutions when At = 0.35. When the
time step is less than 0.2, we find that the scheme formed by the discretization of the

continuous linear equation is more accurate.

6 Linearization state

Within each of the linear models we find a dependence on z(t), the state about which the
model has been linearized. This state is called the linearization state. From equation (9)
we note that the discretization of the linear equation depends on f(z(t)) at times ¢; and
t;iy1, where t;4; = 1; + At. In operational use we may want to replace both of these with
some average value of the linearization state, since storing the values at every time step
may be too costly. There are different ways that this can be done. One way is just to
use the value of the linearization state at time ¢; everywhere. However, calculation of the
truncation error for this scheme shows it to be first order in time; that is, the accuracy of
the original scheme is reduced.

Since a reduction in accuracy is undesirable, the next natural thing to try is to find

an average state in the middle of the time step, which we will write z,,. This gives the
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scheme

dwiy1 = bx;+ %{f’(xm)éac2
b P (o)l + At ()i}, (36)
Note that this is not just the same scheme (5) with values at the intermediate time level,

since this formula would imply that k1 = f'(z,,)éx;, which contains variables at two

different time levels. Applying this scheme to the general linear equation, the truncation

no= S ()
+ A (a(tm)]62(15)]. 0

We have looked at two different ways of calculating the intermediate value. We can either

take the average of the values of x at the ends of the time step, i.e.

Ty = %(mz + ac7;+1), (38)

or we could take the value of the model state at the middle of the time step

Ty = T

i+l (39)

This second option requires the nonlinear model, which generates the linearization state,
to be run at a higher time resolution than the linear model in order to produce the
intermediate values. An expansion of the truncation error finds that both of these options
are second order accurate.

Although it may be argued that this is not a fair comparison, since by changing the
time of the linearization state we are changing the numerical scheme, this is in fact what
we do in practice. In the perturbation forecast model of the Meteorological Office we apply
the scheme of the nonlinear model to the linear equations, and afterwards decide where
to take our linearization state. Hence it is important to know to what extent the choice
of linearization state can affect the accuracy of the model.

To illustrate the effects of the choice of linearization state, the numerical experiment
of the previous section was repeated twice, using the scheme given by (36) and a time
step of 0.5. For the first run z,, was taken to be equal to z;, and in the second run the
value of z,, defined by (38) was used. The results are shown by the asterisks in Figures
9 and 10 respectively. It is seen that using the value at the start of the time step, giving

only a first order approximation, does indeed degrade the results. The evolution is no
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Figure 9: As Figure 3, with the asterisks showing the evolution when the linearization state is

taken at the start of the time step.
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Figure 10: As Figure 3, with the asterisks showing the evolution when the linearization state is

taken at the midpoint of the time step.

longer monotonic, but has an undershoot in the early stages of the run. Averaging the
linearization state to the midpoint of the time step instead results in a much closer solution

to the true discretization of the linear equation.

7 Conclusions

Although this study has looked at only a very simple example of a numerical scheme, it
has demonstrated some details which must be taken into account when coding a tangent
linear model or an approximation to it. It is clear that the two methods of deriving the
tangent linear model lead to different results; applying a nonlinear numerical scheme to the
continuous tangent linear equation is not the same as linearizing the discrete nonlinear
model. The linear models thus formed may have different stability characteristics and
so may exhibit different behaviours in some circumstances. Sirkes and Tziperman [11]
found similar properties when looking at different ways of determining the adjoint model;
the model formed by taking the adjoint of the finite difference scheme could contain
computational modes not present when taking the discretization of the continuous adjoint.
Our study indicates that such differences may also occur when forming the tangent linear

model.
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These differences may become particularly important if we wish to run the linear model
at a lower temporal resolution than the nonlinear model. In practice this will be the case
in 4D-Var, since many iterations of the linear model will be required and means to reduce
the cost of the linear model must therefore be sought. Our numerical results illustrate
that it is possible that the linear model formed by linearizing the discrete scheme may
become unstable for time steps at which the other linear model remains stable. There
may of course be situations in which the contrary holds. However, an advantage we see
in applying the discrete scheme to the continuous linear equation is that the stability
characteristics may be more easily controlled by careful choice of the scheme.

A corollary of these results is that the testing of a linear model must be performed with
a good understanding of the nature of the numerical scheme. The usual method of testing
such a model by comparing its output to the evolution of a perturbation in a nonlinear
model will indicate how well the linear model represents the behaviour of the discrete
nonlinear model. This is expected from the theoretical analysis and has been illustrated
with numerical experiments. However, if the limitations of the numerical scheme are
not understood, the linear model will not necessarily indicate the true evolution of a
perturbation in reality, for example a perturbation to the atmosphere, and so may not
be valid for applications which require this. It is therefore necessary to keep in mind the
particular application for which the model is required.

For the example considered in this study, we have also shown that both methods
of linearization produce models of the same order of accuracy. However, the relative
magnitudes of the local error for each model may be dependent on the time step being
used. If we apply a slightly modified version of the scheme to the continuous linear
equation, for example by using the linearization state at a different time level, then the
order of accuracy may be reduced. In practice we may want to do this, approximating the
true linearization state by one valid at a different time, in order to reduce storage costs.
Further investigation will be required to see the effect on accuracy this will have for the

schemes actually used at the UK Meteorological Office.
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