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Abstract

This note describes the dynamical properties of the terrestrial vegetation structure
represented in the Hadley Centres coupled climate-carbon cycle model. Investigating
the dynamical properties of the terrestrial vegetation structure provides an understand-
ing of the causes of variability of the land surface properties, which are important in
land-atmosphere interactions. In order to investigate the vegetation structure mathe-
matically a simplified version of the TRIFFID vegetation model is derived. TRIFFID
is shown to be dynamically stable, and converges towards an equilibrium balance of
carbon fluxes; i.e. TRIFFID is not intrinsically sensitive to the choice of initial veg-
etation structure, though the behaviour of the full climate model may be. Analysis
of the underlying equations demonstrates that competing TRIFFID vegetation types
can coexist in a single grid box, and that there is potentially a smooth transition be-
tween regions dominated by one competing vegetation type to another. The stability
of TRIFFID means that variability of land surface properties is therefore driven by
variability of atmospheric conditions. TRIFFID does however attenuate atmospheric
variability, and is a source of red noise. The timescale for a recovery of vegetation
structure from perturbations and the maximum rate of growth are investigated and
are shown to relate to the predicted net primary productivity. The time taken for trees
to recover from a extreme perturbation is shown to be of the order of 125 years. This
timescale is validated against recovery of forest cover after the 1908 Tunguska meteorite
impact. Investigation of the Tunguska recovery also demonstrates a scale dependence
of the spectral response of TRIFFID to perturbations. The recovery timescale also
governs the spectral attenuation. This means that the spectral properties of TRIFFID
are sensitive to changes in atmospheric carbon dioxide levels and climatic conditions.

1 Introduction

Advances in the representation of the land surface in general circulation models (GCMs)
has been made over the past decades, and the most advanced GCMs now incorporate
representations of the land surface which are not static, but can change in response
to changes in the atmospheric state. For example in these models the distributions
of desert regions can vary. In developing dynamic global vegetation models (DGVMs)



choices must be made concerning the underlying behavioural properties that global
vegetation is assumed to exhibit.

The Hadley Centre’s TRIFFID model couples a photosynthesis model (Cox et al.
(1998)) to a population model (in the ecological sense). The population model updates
the fractional coverage and height of vegetation depending on the predicted photosyn-
thesis. This population model therefore plays a large role in the dynamic properties of
the land surface. The TRIFFID model is described by Cox (2001). Cox (2001) discuss
the photosynthesis model and the way that environmental conditions are translated
into predicted net primary productivity (NPP) rates. This report will investigate the
population model, and derive a simple version of the population model used in TRIF-
FID which helps give greater insight into the fundamental processes and interactions.

In section 2 standard analysis of the type of population model (Lotka-Volterra
competition equations) is reproduced. This is then linked to the TRIFFID model pa-
rameters. The diffusive Lotka-Volterra competition equations are also investigated, and
these results are then linked to the TRIFFID model. Analysis of the Lotka-Volterra
competition equations is not new, but it is necessary to reproduce it here, to be able
to investigate the TRIFFID equations. Few ecological textbooks contain the analysis
of the diffusive equations, but it is a very simple addition to the investigation of the
non-diffusive equations. In section 3 the assumption of a single dominant plant func-
tional type at a particular grid box is tested. Using simulated plant functional type
distributions from a pre-agricultural control simulation the mutually exclusive nature
of competing plant functional types is demonstrated. In section 4 the simplified form
of TRIFFID is derived. In section 5 the ability of the simplified form of TRIFFID to
predict the vegetation dynamics is verified, and in section 6 the steady state solution
of the simplified TRIFFID model is discussed. In the next section the initial growth
rate of the simplified TRIFFID model is analysed. In section 8 the maximum rate of
expansion of fractional coverage is derived, and the stability of the model is discussed.
Internal variability and the interaction with stochastic forcing is analysed in section
9. In section 10 the re-growth timescale of needleleaf tree PFT is compared with the
recovery of real forest to a grid box scale cosmic perturbation. The extent that the
simplified model captures the behaviour of the full TRIFFID model and the lessons
learnt from this study will be discussed in section 11.

Using a similar approach to that presented here, Huntingford et al. (2000) present
a simplified version of the terrestrial carbon cycle. Huntingford et al. (2000) also re-
duce the vegetation dynamics to a single plant functional type (assumed to be a tree
PFT). The model of Huntingford et al. (2000) incorporates a representation of soil
carbon dynamics and photosynthesis. As a result of this approach, Huntingford et al.
(2000) focus on simulating the response to increasing CO2 levels. Whilst the study of
Huntingford et al. (2000) focussed on the impact of environmental change, the sim-
plified model presented here will be used to investigate the dynamical properties of
the vegetation model, interpreting the results of this to help understand how the veg-
etation model behaves in the full GCM system. Several of the assumptions made by
Huntingford et al. (2000) and also in this report are evaluated here. The links between
the simplified model presented here and the full complexity TRIFFID model are made
explicit, and the ability of the simplified model to capture the behaviour of TRIFFID
is tested; this was not performed by Huntingford et al. (2000). In future studies the
TRIFFID model will be investigated within a full GCM system, allowing vegetation to
dynamically interact with the atmosphere. The analysis presented in this report will
help interpretation of these simulations.



In order to test the simplified model aginst full complexity TRIFFID model a
pre-agriculture simulation was completed using the Hadley Centre’s climate model,
HadSM3. HadSM3 uses a thermodynamic ’slab’ representation of the ocean. Modern
heat convergences are used here. The atmosphere is represented with 3.75 degrees by
2.50 degrees resolution, and 19 vertical levels. Atmospheric CO3 is held constant at
287 ppmv. Agricultural disturbances are set to zero coverage.

2 Competition solution

In this section the now classic analysis of Lotka-Volterra competition equations is re-
produced (see Case (2000) pp. 316-327). This analysis is then related to the specific
case of the TRIFFID model. The Lotka-Volterra analysis is then extended to consider
diffusive Lotka-Volterra competition equations. One modification to the Lotka-Volterra
equations is to introduce the effects of harvesting. This is a steady reduction in pop-
ulation and is usually either a constant rate or proportional to the population size. If
the decrease in population size is greater than a population’s ability to increase, then
the population size will decrease towards extinction. For this reason Lotka-Volterra
competition equations including the effects of grazing or harvesting are said to be dif-
fusive (Case (2000), p. 137). The TRIFFID model is based on diffusive Lotka-Volterra
competition equations.

The original Lotka-Volterra competition equations for two species are given by eqns.
1 and 2 ( e.g. Gotelli (1998),p. 101).

ANy 1 -

YN - LK Ny — N 1
dt N, Kl( 1= N = al) (1)
AN, 1 ro

Y2 - L 2K, Ny— N 2
dt N, KQ( 2= Na = 21) (2)

N; and Ny are population sizes for two competing species (e.g. between grasses).
Coefficients ¢; and co are the competition coefficients, and quantify the ability of one
species to restrict the expansion of another species. r1 and 7o are the intrinsic growth
rates for Ny and N, respectively. K7 and K5 are the maximum magnitudes of Ny and
Ny that can be supported by their environment.

In TRIFFID, shrub dominates grasses (i.e. it always displaces grass fractional
coverage). Trees dominate both grasses and shrub. However between plant functional
types on the same level of this dominance hierarchy competition is resolved with Lotka-
Volterra competition for space. To derive the possible solutions of the Lotka-Volterra
competition equations we consider the necessary conditions under which a population
will persist under the least favourable conditions possible in the Lotka-Volterra equa-
tions. For species N7 this is when Ny ~ K5 , and Ny is close to 0, i.e. the conditions
(dNy/dt)(1/Ny) > 0, when N; tends to zero, and Na tends to K3. Then we have

di 1

KA NI Ki—0—c K
dt N, Kl( 1= 0—ak) (3)



For %NLI > 0, since r; > 0 by definition, we get eqn. 4.

— > (4)

By considering what conditions are required for N5 to expand, when N; = K and
Ny is close to 0 we get inequality (5).

— > C2 (5)

Now each inequality (eqns. 4 and 5) is either satisfied, or not, generating 4 possible
combinations.

Case 1: Ny does not satisfy eqn. 5, and will not persist, but N satisfies eqn. 4 and
persists. This leads to the case where N; out-competes No with the steady state
solution Ny = Ky, Ny = 0, fig. 1(a).

Case 2: The reverse of Case 1 , No satisfies eqn. 5, but N; doesn’t satisfy equality 4,
leading to the solution N1=0, No=Ko>, fig. 1(b)

Case 3: Both N; and N, persist as equality 4 and 5 are both satisfied, and a stable co-
existence is reached, fig. 1(c).

Case 4: Neither eqn. 4 5 are satisfied, and Ny and Ny are in unstable equilibrium, fig.
1(d).

Exact solutions of the Lotka-Volterra competition equations are found when the
time derivatives of the Lotka-Volterra competition equations are set to zero. This
leads to eqns. 6 and 7

N1 = K1—61N2 (6)
N2 = KQ—CQNl (7)

Then the four different cases simply refer to the 4 different ways of plotting the two
solution lines.

In fig. 1 the arrow triplets show the direction both the populations move in, for
a specific region of the graph. To the right of the steady state line for Ny, N1 > Kq,
i.e. the population of Nj is too large to be supported, and Nj decreases (moves to
the left). Therefore the plots allow the behaviour to be predicted for any point on the
Ni,Ns plane.

The TRIFFID model is constrained to case 3 by the following assumptions (which
are built into TRIFFID): ¢; and ¢y are always less than 1.0, and K7 = Ko. As % =1,

and ¢ is < 1 eqn. 4 is satisfied. % =1 and ¢ < 1, satisfying eqn. 5, so we have the
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Figure 1: The four possible solutions of the Lotka-Volterra model. The lines correspond to
the equilibrium solutions of the Lotka-Volterra model. The solid, blue line is the equilibrium
solution for species Ni. The dashed, red line is the equilibrium solution for species Ny. The
circles indicate the final solution in each case. Reproduced from Gotelli (1998), pp. 107-
114. The x-axis shows the magnitude of population Ny. The y-axis shows the magnitude of
population No. The arrow triplets indicate the direction of change of both populations, in a
particular region of the graph. The dotted arrow in the triplet indicates the net movement
on the graph.

case of stable co-existence. In the TRIFFID model setup non-diffusive Lotka-Volterra
competition equations must be constrained to case 3 because the total fractional cov-
erages must sum to 100 %, and dominant PFTs impose the same reduction in space for
both of the two competing species. If, however, competition were for something other
than fractional coverage these assumptions might not necessarily apply, and other cases
would be possible.

The above analysis ignored diffusion. TRIFFID uses a diffusive version of the
Lotka-Volterra competition equations, which become:
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N = LK Ny — e Ny — 8
dt N, Kl( 1= M—ah)-m (8)
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and the inequalities 4 and 5 become :

SRS fias) 10
s c1 + 1 Ky ( )
Ky Y2 Ko

22 1222 11
Ky > et ro Kq (11)

v is the natural disturbance rate, including such effects as fire and herbivory. Con-
straining these inequalities to the properties of TRIFFID, using the same assumptions
as the non-diffusive case, the inequalities become:

- 12
Lo (12)

1-2 5 o (13)
T2

The equilibrium solutions of the diffusive Lotka-Volterra equations are :

N1 = Kl(l - %) - C1N2 (14)
1
Ny = Ky(1-— Z—i) — Ny (15)

The effect of diffusion is to force a translation of the solution lines, parallel to the
axis. It has now been shown that for the non diffusive case, constraining the Lotka-
Volterra competition equations to the TRIFFID choice of parameters forces stable
coexistence of the two species. As can be seen from eqns. 12 and 13, when 1 >> v
and 71 >> 7y the diffusive TRIFFID model is constrained to the case of stable coex-
istence. When these inequalities are not satisfied the other three cases are also possible.

When the two equalities are met, and there is stable coexistence, Ni and N, are
given by eqns. 16 and 17

N o= [Ki(1- :—i) — e Ka(1 - Z—i)](l —crep) ! (16)
Ny = [Ko(l— Z—i) — K (1 - Z—I)](l —crep) ! (17)

When eqns. 12 and 13 are not both met then either Ny = K1(1 — &) or Ny =

r1
K3(1—12), depending on which of the inequalities is satisfied, and the other fractional

coverage is at most that which can exist in the space left by the dominant species, No
=1- Kl( —Z—i), or N1 =1- Kg(l—z—;)
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Figure 2: Delta function. X; is the fractional coverage of species i. The Triangular region,
bounded by the points [(0,0), (0,1), (1,0)] is the range of possible combinations of X1, and
Xy5. The ratio of the number of points within the green shaded region to the total number of
points is calculated. When § is small only points that are approximately equal to [X1,0] or
[0, X5] are in the green region.

3 The single species assumption

In the rest of this report we investigate the properties of a single species version of
TRIFFID. This is equivalent to assuming that grid boxes are dominated by only one
PFT of a competing pair of PFTs (e.g. broadleaf and needleleaf trees.). The previ-
ous section showed that the Lotka-Volterra competition equations do not exclude the
possibility of coexistence, but the physical parameters of the different PFTs suggest
that they may thrive in different environments (see Cox (2001)). In order to justify
the assumption of a single, dominant fractional coverage of vegetation, the simulated
pre-agricultural vegetation is analysed. If vegetation is mutually exclusive, then in a
scatter plot of the two fractional coverages, the points will lie on the axis. The further
from the axis the points are, the less reliable is the assumption of a single dominant
species.

In order to quantify the validity of the single species assumption the number of
points found within a region, 4, of the axes is calculated and expressed as the ratio to
the total number of points. This ratio is calculated for § ranging between zero and 0.5
(when it includes all the possible values), and is illustrated in fig. 2. It can be shown
that if the points are uniformly distributed then the ratio of points within the § region
(equivalent to the area of the region) to the total number of points (or area) is equal
to 1—(1—29)?, neglecting the effects of diffusion, which varies from grid box to grid box.

Discounting zero coverage grid boxes produces four datasets of pre-agricultural
fractional coverages, of 2,381 points. These datasets actually incorporate a total of
2,571,480 data points as the pre-agricultural vegetation is a mean of 30 years of data,
at 10 day resolution. Plots of the ratio of points within the § region to the total number
of plots are shown for the grasses and the trees in fig. 3. Figure 3 also plots the uniform
distribution assumption, 1 — (1 — 26)2, for comparison.

Figure 3 shows that the distribution of points is significantly clustered around the
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axis, i.e. for the simulation of steady state, pre-agriculture vegetation, vegetation is
largely either C3 or C4 type grass, or either broadleaf or needleleaf tree, at a particular
grid box. Figure 3 suggests that the assumption of a single dominant plant functional
type is reasonable. For pre-agricultural grasses, 96 % of grass is found within the
0 = 0.05 region. For tree plant functional types, 94% is found within the 6 = 0.05
region. Figure 3 shows that if the plant functional types were uniformly distributed
this percentage would be close to 20 %.

4 Derivation of simplified TRIFFID

Having justified the assumption of single PFT, in this section the simplified TRIF-
FID model is derived. The litterfall rate, A;, and the disturbance parameter, 7, are
assumed to be a constant. By reducing the TRIFFID model to a single PFT, we re-
strict the use of the simplified model to predicting the behaviour of the dominant PFT.

The main dynamic vegetation equations in the TRIFFID model represent the rela-
tionship between vegetation carbon density and fractional coverage (see Cox (2001)).
The equations are:

dcC,
Y o= (1-MNI-A 1
- (1-=X\) l (18)
dv
CVE = )\HV*(]_ — E CZ_]V_]) — '71/7/*01/ (19)

J
C,, is the vegetation carbon density of the PFT, IT is the NPP, A; is the litterfall rate
on PFT, and represents the loss of carbon matter resulting from the natural life cycle
of the vegetation. v; is the fractional coverage of PFT i. v, is the fractional coverage of

PFT i, if v; greater than 0.001 %, otherwise v, = 0.001 %. =, is a disturbance param-
eter and implicitly incorporates the effects of mortality arising from processes other



than competition with other PFTs, e.g. fire, disease, and herbivory into TRIFFID.
A is defined in expression 20. A controls the partitioning of NPP between fractional
coverage expansion and increasing the carbon density.

1 for Ly > Lmas
A=Q p=tmin for Ly < L < Linax (20)
0 for L < Lin

L is the Leaf area index (LAI), and Ly, and Ly,q, are minimum and maximum
LAI values, and are specified for each PFT. ¢;; is the intra-species competition term
between species ¢ and species j, as described by table 1, and eqn. 21.

i=1]i=2]i=3 | i=4 | i=5
i=1 11 | 1|1
=2 | * 1| 1|1
i=3] 0 | 0 1|1
=4[ 0] 0] 0 *
i=5] 0] 0] 0 F*

Table 1:  Intra- species competition relationships. Numbers © = 1,5 represents plant func-
tional types: broadleaf tree, needleleaf tree, shrub, C3 type grass, and C4 type grass. Entry
*7 s given by eqn. 21. A wvalue of 0 implies that PFT i dominates PFT j. A wvalue of 1
implies PFT 7 dominates PFT 1.

1
i = - - - - 21
i 1 + exp{20(height; — height;)/(height; + height;)} (21)

height; is the vegetation height of PFT i. (), is the carbon content of the plant
functional type, defined by eqn. 22.

C, = L+R+W (22)

L, R and W are the different components of the vegetation carbon content, divided
into (L)eaf carbon, (R)oot carbon and (S)tem carbon. The local litterfall rate, A, is
given by:

AN = yL+%R+ v W (23)

v1,7Yr, and 7, are the turnover rates of the different carbon pools. If we approximate
eqn. 23 by

: L+R+W) (24)

Then comparing eqns. 24 and 22 we can see that we are in effect approximating
Ay as A; < C),. This assumption is also made by Huntingford et al. (2000). However
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Huntingford et al. (2000) do not claim that their model is TRIFFID. The TRIFFID
equations can now be simplified to the one species case, expressed in terms of v and
C,. This form of TRIFFID is given in eqns. 25 and 26.

dc,

£~ (1-X)I-aC, (25)
dv N Ty
s ) (26)

NPP is initially held constant. The A function is originally a function of balanced
leaf area index (balanced leaf area index is the LAI value before phenological constraints
are applied), but leaf area index is approximately proportional to C,, (Huntingford et al.
(2000)) and so we can approximate the original A function by a function of vegetation
carbon content, given in eqn. 27.

1 for C), > Chas
N=1Q 7S for Conin < Cyy < Crnaa (27)
0 for C, < Chin

Cinin and Ch,q, are the carbon densities corresponding to the maximum and mini-
mum LAT values. The values of constants in eqns. 25, 26, and 27 are given in table 2.
The value of « is chosen such that the behaviour of the simplified form of TRIFFID
matches as closely as possible that of the full complexity TRIFFID.

BL | NL | C3 | C4 | SH
v (year™) 0.004 | 0.004 | 0.100 | 0.100 | 0.030

Cpaz (kgCm=2) | 26.0 | 271 | 03 | 05 | 2.0

Coin (kgCm™2) | 43 | 47 | 0.1 | 0.1 | 02

Table 2: Values of constants, for each PFT. a must be chosen so the behaviour of the simpli-
fied model matches that of the full complexity model. This method was used in Huntingford
et al. (2000). The v values presented here are reproduced from Coz (2001). Caz, and Cryn

values are equivalent to minimum and maximum leaf area inder values presented in Cox
(2001).

5 Validation

In order to test the ability of the simplified model to successfully capture the behaviour
of the TRIFFID model, the simplified model is forced with a dataset of NPP, from a
control run of MOSES2. The vegetation fractional coverage predicted by the simpli-
fied model is then compared to the fractional coverages predicted in the full TRIFFID
model. Figure 4 compares the simplified model predicted fractional coverage of C4
grass, for an Australian grid box. Grass was chosen because it exhibits high variabil-
ity, and therefore provides the most stringent test of the simplified model. Other tests
were performed for land surfaces dominated by other PFTs. The shrub and tree PFTs
do not exhibit as great variability as the grass PFTs, and because the simplified model
requires that a suitable choice of a be selected these other tests are not particularly
demanding. Therefore reproducing the high variability of grass PFT structure is the
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best test of the simplified model.
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Figure 4: Comparison of fractional coverages from the full complexity TRIFFID DGVM,
and from the simplified model, forced with identical net primary productivity. This is for
an Australian grid bozx. a) shows the difference between simple model fractional coverage
and the full complexity TRIFFID. b) shows the fractional coverage from the full complexity
model and the simplified model. The full complexity TRIFFID fractional coverage is plotted
with blue circles, and the simplified model predicted fractional coverage is plotted with a solid
red line. For the simple model, a choice of « = 8.0x 107 year™t gave the best fit to the
behaviour of the full complexity model. This value was derived through a method of trial and
error.

Figure 4 shows that the simplified model is fully capable of reproducing the be-
haviour of the TRIFFID model. It suggests that results from analysis of the simplified
model are directly applicable to the full TRIFFID model. We will therefore analyse
the properties of this simplified model

6 Steady state solutions of the simplified model

Figure 5 simulates the re-growth from a small seeded amount (1x 10~* % fractional
coverage, and 1x 1079 kg C m~2 s7!) of the broadleaf and needleleaf tree. As can
be seen in fig. 5, the re-growth of the fractional coverage is much slower in coming to
equilibrium than the carbon density. The difference in behaviour between the two tree
PFTs is due to the different values of C,,q, and C,,ip (see table 2). The ’s’ shaped
pattern of fractional coverage recovery is characteristic of the logistic equation (which
has the general form : %X o X(1 — X)). The logistic equation is characterised by an
initially slow growth rate, when the population size (or fractional coverage) is small.
Next the population undergoes rapid expansion, until the effects of over-crowding slow
the population expansion rate down, and the curve reaches a steady state.

The steady state solutions of the simplified model equations are found by setting
the time derivatives to zero, and by solving the resulting equations. Doing this leads

11
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Figure 5: Simulation of broadleaf and needleleaf re-growth from bare soil using the simpli-
fied TRIFFID model. a) Fractional coverage. b) Carbon density. These figures show the
re-growth from a small initial population of the two tree PFTs. Both PFTs have been indi-
vidually simulated, and the two runs are over-laid for comparison. Broadleaf tree is shown as
the red line, whilst needleleaf tree s shown as the blue line. In simulating the tree’s re-growth
the values for model constraints were taken form table 2, o was set to 0.128 year—'. NPP =
1.57x1077" kg C m~% s7'. Values of o and NPP were chosen so that the re-growth of trees
took a realistic time (similar to that observed in studies presented in Hughes (2003)). The
merit of these plots is not in the prediction of the re-growth timescales, but in illustrating
the intrinsic differences between the different tree PFTs, and the general pattern of re-growth
common to all PFT.

to eqns. 28 and 29.

Vss = 1_(%)(1;—/)\/) (28)
Css = % (29)

When )\ takes the form of expression 27, the steady state solution is :

Yy (Cmax - Cmin + E)
o = 12 al _q 30
1% Oé( (% _ len) ) ( )
1I (% - szn)
Ces = —(1-— T ) (31)
« (Cma:v - szn + E)

When the steady state fractional coverage is plotted as a function of net primary
productivity, fig. 6, we see that below a cut off value of NPP, which will be referred to
as II(x), the steady state fractional coverage is zero. For NPP < II(x) the growth rate
is less than the harvesting rate and the population cannot expand. For NPP values
greater than II(x) the fractional coverage increases non-linearly as a function of NPP.
Initially the rate of change of vgs with respect to NPP is relatively large, and v, is
sensitive to small increases in NPP. For larger values of NPP the rate of change of v
with respect to NPP is relatively small, and v is insensitive to increases in NPP. The
absolute values of NPP vary for different PFTs, however, as NPP approaches some
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Figure 6: The generic steady state response of vegetation fractional coverage to NPP (I1).
The x-axis shows NPP. The y-axis shows steady state fractional coverage.

value, II', such that v, approaches 1, the vegetation structure becomes increasingly
insensitive to further increases in NPP, because of the substantial over-crowding effects
at this point on the curve. Cy; has a similar non-linear response, without the threshold
level value of TI(x).

7 Initial growth rates

The intrinsic growth rate (r;) is the rate of population expansion in a completely un-
restricting environment (i.e. without the effects of overcrowding). Lotka-Volterra type
equations have one main timescale of variability (7), which is the inverse of the intrinsic
growth rate, 7 = 1/r;. In the simplified TRIFFID model the intrinsic growth rate is
given by:

NI
rno= m T (32)
Equation 32 shows that the intrinsic growth rate is a linear function of net primary
productivity. It also shows that the response time of the TRIFFID model is inversely
proportional to carbon density. As NPP decreases towards II(x), 7 increases towards

infinity.

In the section 6 it was stated that below NPP= II(x) the steady state fractional
coverage is zero. The interpretation of this is that at II(x) the growth rate (r;) =0.
Therefore from eqns. 31 and 32 it can been derived that:

acmin(cmax - szn) OCCmin -1
1M1 —
1- V(Cmaar - szn) * Cmm” 1- V(Cmax - Cmm)] (33)

In this report several different timescales are referred to. It important to define
the relationships between these different timescales. The generic logistic curve has the
form ‘fl—‘; = r;v(l — v). 7; is the intrinsic growth rate. v is the population size (in
non-dimensional units). The maximum size of v is assumed to be 1. When v is small,

Ccll—’;% = r;. Therefore the intrinsic growth rate is equivalent to the initial growth rate.

II(x) = «f
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The logistic equation has solutions of the form:

1

v(t) = T perit (34)
This form of the logistic equation can then be used to relate the intrinsic growth
rate to the re-growth timescale. The time taken to re-grow is assumed to be the time
take to re-grow from v, to Viipal, i-€. the re-growth timescale is assumed to be the
time taken to re-grow from a very small fractional coverage to some value close to the
maximum possible fractional coverage. Figure 5(a) shows that as fractional coverage
approaches the maximum possible value the re-growth slows down, and so it is neces-
sary to consider re-growth to some percentage of the maximum possible population as

having re-grown. Constraining eqn. 34 to the initial condition v(0)=v;,;; we have:

1
vt = 1+ (vt —1)erit (35)

init

and then the time taken to reach vy, is given by:

re— growth time = ~In[(wzh, )i~ 177 (36)
(2
This shows that the re-growth time, and indeed the time taken to change between
any two values of v is determined by the intrinsic growth rate and the two values of v.
Therefore the recovery from a 4% reduction in fractional coverage, the re-growth from
near-bare soil conditions, and the initial re-growth rate are all governed by the same
parameter, 7.

8 Maximum rate of expansion and stability anal-
ysis

Equation 26 can be rearranged as :

dv AT AT
e = (-5 (37)

A plot of % against v takes the form of a parabola, fig. 7. The zeros of % arev =0

and v =1— % The maximum value of %

rate of expansion is given by :

isat v=(1- %)/2, and the maximum

dv y2C
E’max - ﬁ (38)

Figure 7 also demonstrates the stability of the model, for positive fractional cover-

ages. At fractional coverages greater than v = 1 — K—ﬁ the change in fractional coverage
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Figure 7: Parabola properties of the simplified TRIFFID model. This figure shows the sta-
bility properties of the fractional coverage, v. Marked on this figure is the mazimum rate of
expansion, and the mazimum fractional coverage. The green lines and arrows indicate that
iof displaced from the equilibrium point marked with a red circle the system will return to the
equilibrium point. This is therefore a stable equilibrium.

is negative, and the fractional coverage decreases. For fractional coverages less than
vr=1- % the change in fractional coverage is positive, so perturbations away from
the equilibrium point decay, and the model is stable.

In the discrete form of the logistic equation, equations can exhibit chaotic behaviour
(May (1976)). However this is numerical chaotic behaviour of the discrete logistic equa-
tion, and it means that there is a limit to the size of possible timesteps. This effect is
important when the timestep size is equal to 1 year, but is eliminated when a timestep
of 10 days is used (tests were performed for grass plant functional types, as with the
fastest response time they are most prone to chaotic effects). This emphasises the need
to use relatively small timesteps.

9 Internal variability

The values of NPP in the full TRIFFID model are not constant, and are associated
with the variability of meteorological surface conditions. The effect of forcing the sim-
plified TRIFFID model with stochastic net primary production is investigated in this
section.

There is considerable intra-annual variability of simulated grass structure in TRIF-
FID. The simple model is ideal for investigating the source of this variability. When
the simplified model is run with a constant value of NPP, the fractional coverage does
not vary between timesteps. A randomly generated data set of white noise NPP val-
ues are used to force the simple model. When this is done, as is seen in fig. 8, the
vegetation structure also exhibits stochastic-like variability. The random NPP values
mimic the natural variability of environmental conditions. When forced by stochastic
NPP the model still exhibits convergence behaviour. This means that the model is still
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Figure 8: The effect of forcing the simplified model with stochastic NPP, for C3 type grass.
a) Fractional coverage. b) Carbon density. c) Intrinsic growth rate. d) A function. The red
line shows the grass behaviour for constant NPP. The blue line shows the behaviour of C3
type grass with a stochastic NPP term. o =7.13x1072 s7'. NPP=5x10"" kg C m? s~ ..
The amplitude of noise added to NPP =5x10"% kg C m? s=*. Values of o« and NPP were
chosen such that the re-growth from bare soil was realistically simulated. The amplitude of
noise added was chosen to maximize the observed variability in vegetation structure.
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Figure 9: a) the spectral profile of vegetation fractional coverage fluctuations. b) the spectral
response of the NPP data set used to force the simplified model. In both figures the y-axis
shows the power at a given frequency, whilst the z-axis shows the frequency. The model was
run with monthly timesteps, and the data set length was 10,000 years. NPP=1.57x10""
kg C m?* s~t. The white noise amplitude is 1.25x1077 kg C m? s~'. a=0.128 year*.
These values were chosen such that the re-growth from a small initial fractional coverage was

realistically simulated. The amplitude of the white noise was chosen to maximize variability
of fractional coverage.
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stable even when forced with random NPP datasets (which represents the variability
of environment conditions in the full model). A system is generally considered stable
if small differences in the initial conditions remain close together (Khalil (1996) p. 97).

In order to investigate the role of the intrinsic timescale in the observed variabil-
ity of vegetation structure the spectral profile of the changes in fractional coverage
was calculated, when the simplified model was forced with a white noise NPP data
set. The simple model was run with broadleaf tree parameter values. Figure 9 shows
the spectral profiles of both the NPP data and the corresponding fractional coverage
changes. Figure 9 shows that when the simplified model is forced with white noise
NPP it responds with red noise variability. This means that high frequency noise in
the NPP data set is damped out. The frequency above which the variability is damped
corresponds to the time taken to re-grow from near-bare soil conditions (~100 years).
TRIFFID therefore acts as a climatic integrator below these timescales. This is also a
general feature of individual trees (Woodward (1987)). The attenuation of timescales
less than the characteristic response time was also shown by Lasaga and Berner (1998)
to occur for the geological terrestrial carbon cycle. Henderson-Sellers (1993) state that
this property of the global vegetation model is an important component of modelling
global vegetation dynamically.

An additional feature discussed by Woodward (1987) is that trees tend to have an
increased response to climate close to the characteristic timescale. This is equivalent
to stating that the trees resonate at their characteristic timescale (for a mathematical
definition of resonance see Thomson (1993)). The TRIFFID model does not explic-
itly include resonance (this can be seen in fig. 9), but may exhibit resonant behaviour
when coupled to the ocean (through the atmosphere), as was the case in the conceptual
model of Nevison et al. (1999). This would be hard to detect in the Hadley Centre
model, and there is no evidence for vegetation-oceanic resonance at present. There is
also no clear resonant peak in the suite of models discussed by Mitchell and Karoly
(2001), which includes the HadCM3 GCM.

10 Validation of re-growth times

Validation of the behaviour of the dynamical vegetation model is problematic, because
of the length of observations required (Woodward and Beerling (1997)). One source of
possible validation is the recovery of vegetation after the 1908 near-impact of an me-
teorite. On June the 30th, 1908, a large meteorite exploded 5-10km above Tunguska
in western Siberia (60 N , 101 E). The blast is thought to have started forest fires, and
photographic evidence shows that a large area (~ 2,000 km?) of trees was uprooted
(Vasilyev (1998)). At this latitude a HadSM3 grid box covers an area of approximately
55,000 km?. The Tunguska perturbation therefore corresponds to a near-instantaneous
reduction of fractional coverage of 4 %.

Given the site’s obvious cosmological value the site has been repeatedly visited,
however scientific literature on the Tunguska meteorite is usually cosmological, and
often in Russian language (see Jones (2002); Svetsov (2002)). Detailed information
on the fractional coverage of the disturbance is therefore unavailable (T.P. Jones pers.
com. 2003). Photographic evidence suggests, however, that the disturbance region
had been re-colonised by 1990, which is taken here to show a recovery time of 80 years.
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HadSM3 predicts dense needleleaf forest at the Tunguska grid box in the pre-
agricultural simulation, which approximates the observed swampy forest at the Tun-
guska site. The Tunguska grid box is then represented in the simple model as entirely
needleleaf tree, and the Tunguska meteorite event as an instantaneous reduction if
needleaf fractional coverage by 4 %. Figure 10 shows the predicted response of the grid
box fractional coverage of needleleaf trees to this perturbation.
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Figure 10:  Simulated re-growth of needleleaf tree PFT from the effect of the Tunguska
meteorite in 1908. Values of NPP = 1.1x10™" kg Cm™2 s7!, a = 4.12x107? 571 were used.
These values were chosen as they produced a re-growth from bare soil time of 125 years for
needleleaf tree.

Figure 10 shows that the simplified model predicts a full re-growth of needleleaf
tree coverage by the mid 1990’s, and is in agreement with what is know of the Tun-
guska site. Figure 10 also illustrates an important feature of the simplified model (and
hence the full model). If instead of modelling the entire grid box the simplified model
had been used to simulate vegetation re-growth only in the region of disturbed trees,
the re-growth would have followed the same pattern as is shown in fig. 5, and the
re-growth would have taken much longer (125 years). This demonstrates a clear scale
dependence in the TRIFFID model.

11 Conclusions

The aim of this study was to investigate the properties of the population model relevant
to properties of the vegetation-climate system in the TRIFFID model, and in order to
perform this a simplified version of TRIFFID was developed and analysed.

The approximations made in developing the simplified form of the TRIFFID equa-
tions appear to have minimal effect. The assumption of a single plant functional type
has been shown to be reasonable for the majority of global vegetation, but obviously
constrains the model to simulating the dominant plant functional type. The assump-
tion of constant litterfall and disturbance rates means that appropriate constants must
be chosen to match the vegetation dynamics of the full model, but once this is done
the simplified model captures the variability of the model. The main limitation is
that the photosynthesis model was not coded explicitly into the model. The photosyn-
thesis model, however, simply acts to translate climatic conditions into net primary
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productivity, and has been discussed elsewhere (see Cox (2001)). The net primary pro-
ductivity has therefore been either specified, or set to a constant value with stochastic
variability. Huntingford et al. (2000) present a simplified terrestrial carbon cycle which
does simulate photosynthesis rates, and including this feature into the simplified model
would only increase the model complexity without adding anything new.

Analysis of the TRIFFID equations suggests that the TRIFFID model parameters
allow for stable coexistence. The fact that competing vegetation types are seen to be
approximately mutually exclusive suggests that the plant functional types exist in a
largely exclusive climatological niche. Analysis of TRIFFID equations suggests that
the simulated transition between plant functional types is smooth, rather than discrete
(see Svirezhev (2000)). From the simplified TRIFFID model it can be seen that the
fractional coverage is the slowest component of the TRIFFID system. Figure 5 shows
that for tree PFTs, the carbon density has reached a steady state after 10 years, whilst
fractional coverage takes 125 years to reach a steady state.

Data sets of net primary production and the vegetation structure were calculated in
the full complexity surface energy scheme. Grid boxes where the dominant vegetation
type was C4 type grass were chosen. Grass shows the largest variability in structure,
and is therefore the most stringent test for the simplified model. The generated datasets
of NPP were used to drive the simplified model, and the predicted vegetation structure
was compared to that simulated by the full complexity model. Given the reduction in
sophistication associated with assuming a single plant functional type, and constant
litterfall parameters, the simplified model captures the behaviour of the full complexity
model surprisingly well.

Equations governing the steady state of the vegetation structure have been derived.
They show the existence of a threshold value of NPP, below which vegetation cover-
age is zero. These equations also show that the steady state vegetation structure is
insensitive to further increases in NPP as NPP becomes large. This insensitivity is due
to the assumption that vegetation fractional coverage can be modelled using a logistic
curve (see fig. 5(a)).

The initial growth rate and the maximum growth rate have been diagnosed. Both
rates are dependent on the NPP. The initial growth rate is equivalent to the intrinsic
growth rate, and is the reciprocal of the vegetation structure response time. The frac-
tional coverage response time is the most important timescale (and hence the general
response time) as it is the slowest response time of the TRIFFID model. This response
time acts as a climate integrator, smoothing the effects of climate on the fractional
coverage, and filtering out climate variability at frequencies above the response time.
The response time also acts to provide a vegetation memory, perturbations to the vege-
tation structure decay at the response time of the vegetation. Further work is required
to investigate how this affects the atmospheric variability. The results described here
suggest that vegetation structure will change a white noise spectrum to red noise.

The population model exhibits convergence, even when forced with stochastic NPP,
which means that the model is stable. It can therefore be concluded that the model is
not a source of chaos. The simulated variability in grass structure (e.g. fig. 4) is there-
fore driven by variability in the meteorological conditions (potentially with feedbacks
from the vegetation), rather than internal model variability. However the response
time which is an internal feature of TRIFFID determines how much the stochastic
meteorological signal is damped, and hence provides some internal control over the
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observed variability.

The timescales of response have been tested against observations of a well dated
perturbation, on the spatial scale of an atmospheric grid box. The timescale of response
predicted by the model is similar to that observed. The discussion of the response to
a small perturbation also shows that the behaviour of the dynamic vegetation is scale
dependent. It is hoped that the results presented in this study will be useful for inter-
pretation of results from future GCM experiments.
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