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Abstract

The use of a weak constraint to control imbalance in the variational data assimilation
system (VAR) has been investigated, the chosen constraint being that of incremental non-
linear balance. This method of imposing balance is contrasted with that of the digital-filter
technique and theoretical reasons are given as to why a weak constraint may lead to a
more accurate analysis than is obtainable via digital filtering. In the experiments performed
the algebraic relation embodying non-linear balance is weakly enforced by the constraint
at individual grid points. However, it appears that this is achieved in a manner which is
non-locally inconsistent, and consequently imbalance is not successfully controlled. It is
suggested that this problem may be overcome by the incorporation of a suitable covariance
matrix. Such an approach may be especially beneficial in the context of high-resolution
forecasting, where gravity modes play a significant role.

1 Introduction

In this report we compare two methods for controlling imbalance in variational data assimila-
tion (VAR). One involves the incorporation of a balance condition defined by a small Rossby
number expansion of the primitive equations, via a weak constraint, and the other method
is based on the application of the perturbation-forecast (PF) digital filter (DF) [1]. The
problem of controlling imbalance in the process of data assimilation — that is, controlling
the generation of gravity waves when fitting the model to the observations — is a problem
with a long history, which can be traced back to Richardson’s first numerical forecast [2]. In
the process of data assimilation, experience has shown that the discrepancy between current
data, with their random errors, and model first guess, with its errors, can excite a spuriously
large amount of inertia-gravity waves in a primitive equation model. Typically these waves
are damped-out over a period of 12-24 hours, and have been shown not to affect the 24-48
hour forecasts substantially. However, in an assimilation scheme they can lead to a rejection
of data at the next sub-synoptic update time (at 6 hours, for example). Other difficulties
arise too if the initial conditions are unbalanced, e.g. verification.

Work is in progress at the JCMM to design and build a convective-scale forecasting
system [3]. One of the aims of this project is to develop a capability to provide quantitative
precipitation forecasts with short lead times. Nowcasting systems provide information to the
forecaster on the 0-6 hour time-scale: if this regime is to be covered by an NWP system,
the problems of imbalance alluded to above cannot be tolerated. Tt is also anticipated that
the data assimilation for this model will be designed to make good use of moisture and
precipitation data, but this raises the challenge of creating effective ways of assimilating



observations associated with condensed water in such a way that the dynamical information
inherent in these observations is used. This is a highly non-linear problem and one in which
the coupling between moisture, vertical motion and horizontal momentum balance could
lead to the generation of unrealistic gravity modes. The problem of an initial ‘spin-up’
of precipitation within a model is another well-known difficulty and one that is intimately
connected to the problem of imbalance.

With these issues in mind, we are investigating how to control imbalance using various
techniques within the data assimilation system. The formulation of the data assimilation
system for the high resolution forecasting system has yet to be defined (e.g. interpolation
from coarser resolution models [4]; VAR; Ensemble Kalman Filter) and so these investigations
are intended to help inform that decision. In this paper we present some preliminary results
from a study into the incorporation of a mass-wind coupling within 3D VAR. This initial
study has been carried out with the global model, which is appropriate since the scales of
motion we wish to examine in the first instance are well represented by this model.

1.1 The problem of spurious gravity waves

In 3D VAR, the best estimate of the current atmospheric state, otherwise known as the
analysis is defined as the vector x that minimises the following cost function, which consists
of the background penalty, J°, and the observation penalty, J°:

J(x) = J'4J° (1)
1 b\Tp-1 b
= i(x—x "B (x —x7)
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Here x” is the background state, and B is the associated background error covariance ma-
trix. y° are real observations and y(x) are model-predicted observations. E and F are the
instrumental and interpolation error covariance matrices, respectively. See [5] for a detailed
description of VAR. We define the increment vector as follows:

x =x—x" (2)

Let x'() denote a set of increments obtained via minimisation of (1), valid at time ¢. The
evolution of the increments from time ¢ to time ¢ + 1 is given by:

x'(t+1) = Myx'(¢) (3)

where M, is a matrix corresponding to a linearisation of the non-linear forecast model at
time ¢. x'(¢) can be expressed as a linear combination of the normal modes of M,:

N M
Xl(t) = Z a;s; + b]fl (4)
J

i

where s are the N ’slow’ or balanced modes, f are the M ’fast’, unbalanced modes, and a;
and b; are the weights of each type of mode at the analysis time. In general the {rue state
of the atmosphere will be composed of both fast and slow modes. The increments defined
by (3) can contain both realistic and spurious fast modes. By realistic it is meant that a
fast mode which is truly present in the atmosphere has been closely approximated by a fast
mode in x’. A spurious mode, conversely, represents a case where VAR, has erroneously fitted



a fast mode to observations which are characteristic of a slow mode. In the absence of a
method by which spurious and realistic modes can be distinguished, it is common practice
to post-process the increments via initialisation techniques such as the Incremental Analysis
Update (IAU) [6], DF methods (see, for example, [7]) or normal-mode initialisation [8]. Each
of the procedures are used to filter fast modes, be they accurate or spurious, from increments
after VAR has been performed. It may be thought that a useful alternative approach would
be to preclude the fast modes from the space spanned by B. However, this would lead to
the erroneous fitting of slow modes to real fast modes (i.e. it would lead to spurious slow
modes) and hence an inaccurate analysis.

An alternative approach to the problem is to enforce a weak balance constraint during
the minimisation process by including a so-called J. term in the cost function of (1). Since
minimisation of (1) leads to observational information being incorrectly projected onto fast
modes, this implies that the weightings, a;, of the slow modes in x’ are not optimal. By
contrast, including a J. term in (1) could lead to a more optimal set of both fast and slow
modes. The formulation of the J. term considered here is intended to impose incremental
non-linear balance (INLB). The strategy of imposing INLB as a weak constraint is motivated
by the relationship, which exists between INLB and gravity modes.

1.2 Contents of this report

The structure of the report is as follows. The theoretical background, including details both
of balanced motion and weak constraints is presented in section 2. Section 3 documents the
experiments, and we conclude, in section 4, with a list of recommendations for further work.

2 Theoretical Background

2.1 Balanced models

The balance between the mass and wind fields which exists at large scales, ensures that the
flow is dominated by slow, quasi-rotational rather than high-frequency, strongly divergent
motion. In linear terms, balanced motion is associated with slow Rossby modes, whilst
imbalance is associated with high-frequency gravity and acoustic modes. A balanced model
seeks to accurately approximate the Rossby-type flow alone, the high-frequencies having been
filtered out. Filtering is achieved by the elimination of time derivatives, leading to diagnostic
balance relations. The present formulation of VAR is hydrostatic and anelastic (so acoustic
modes have been filtered), and hence supports N Rossby and 2N gravity modes, where N
is the number of grid points. Constructing a balanced model in this context equates with
filtering the 2V gravity modes which, in turn, implies the neglect of two time derivatives.

2.1.1 The Balance Equations

A number of different balanced models have been derived in the literature. To illustrate
the link between balance and the normal modes of a system we concentrate on the models
presented in [9]. Consider the relatively simple case of the S-plane shallow-water (SW)
equations linearised about a state of rest:

a¢ B
1)
O (V26— fC+ Bu) = 0 (6)
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where ¢ is the vorticity, d is the divergence, ¢ is the geopotential and ¢ is the geopotential
of the linearisation state. The Coriolis parameter is given by f = f, + By, where f, is a
constant and y is the ’latitudinal’ coordinate on a Cartesian plane. As shown in [9], if the
height variable is geostrophically scaled and all of the variables are expanded in terms of
Rossby number, R, (= V/2QL, where V and L are horizontal velocity and length scales
respectively, and Q is the Earth’s angular speed of rotation), we can obtain the so-called
balanced equation system (BE) correct at order O(R,). This system consists of equations
(5) and (7) along with a truncated version of (6) in which the local time derivative of

divergence is omitted, i.e.:

Vi — fC+Pu=0 (8)

This diagnostic relationship is known as the balance equation. Substituting plane wave
solutions into (BE) leads to a quadratic dispersion relation, corresponding to a Rossby and
high-frequency spurious mode.!

2.1.2 The Slow Equations

Lynch [9] proposes an alternative balanced system referred to as the slow equations (SE).
This system is derived by first defining the imbalance, ¢ = V2® — f( + Bu. By re-casting
the SW system in terms of prognostic equations for ¢, ¢ and § and performing a Rossby
expansion as before, it can be shown that the local time derivative of € is of order O(R2).
Hence, the slow equation system, which is valid up to order O(R,), is given by (5), (8) and:

(6V? — )5 — [P =0 (9)

which is the diagnostic relation formed by omitting %. Since the SE system contains only
one time derivative it supports only one (balanced) mode.

2.1.3 Definition of INLB to be used in VAR

We have opted to control imbalance within VAR by imposing the form of balance charac-
terised by the BE system, rather than that of the SE system. One aim of using the J. term
might be to constrain the VAR increments so that when they are used as initial conditions
of the linearised forecast model, the resulting trajectory closely approximates the trajectory
that would be produced by running a linearised BE model using identical initial conditions.
This corresponds to ensuring that the incremental divergence tendency, during the period of
the trajectory, is of order O(R?) at most, i.e.:

(V. 1 /

V) (%u) = V. (u’.Vﬁ+ a.va' + fkAw + —Vp — %Vp> < O(R?) (10)
p p

where V is applied on a surface of constant height. We have neglected terms involving the

vertical velocity and assumed a time-independent linearisation state. We refer to (10) as the

INLB equation. An alternative aim would be to include a certain degree of realistic gravity-

wave activity in the increments. In this case, the left-hand side of (10) would be allowed to

'Note that this latter mode can be filtered by neglecting Su, (where u, denotes the divergent part of the
velocity) in (6), leading to a linearised version of the so-called Charney balance equation.



take on larger values than of O(R2). We discuss the dynamical implications of these two
different aims in section (2.2.2), below. It is important to note that in either of these cases,
the balance relation is to be imposed as a weak constraint, i.e. the balance relation is imposed
an inequality. In the case of a strong constraint, by contrast, the balance relation is satisfied
exactly throughout space. Imposing the left hand side of (10) as a strong constraint would
prevent the divergence field from evolving, and hence lead to innacurate increments. 2

2.2 Weak constraints

The concept of a weak constraint was presented by Sasaki [10]. Here we consider a simple
example before moving on to discuss the J. term itself.

2.2.1 A simple example: damping high spatial frequencies

Consider the following illustrative example (after Daley [8]). A set of observations is given by
the continuous 1D function ¢°(x). We wish to perform a least-squares fit to these observations
leading to an analysis, ¢®(z), subject to a constraint that reduces high spatial frequencies.
For the interval 2o < 2 < 21, the cost function is given by:

I =5 [ @) - 6" + f (11)

where the prespecified weighting factors, «, and «a., are assumed to be independent of x.
The constraint function, f, is chosen to be:

d2 ¢a
= — 12
j=22 (12)
Setting the first variation of J, §J = 0 leads to the following Euler-Lagrange equation:
a d4¢a 0
a0 + QCW = Qo0 (13)

If we assume the following form for ¢°:
¢°(x) = po — pr™” (14)
where the amplitudes ¢o and ¢; are independent of z, then the solution to (13) is given by:

ao¢1€ik$

Uz) = _— 15
8(2) = b+ 20 (15)
Clearly, the constraint serves its purpose since the degree of damping of the x-dependent
part of (15) increases with k. Furthermore, in the limit of large «., all spatial dependency is
removed. In general, the weighting function can depend on z thereby changing the nature
of the solution. Such a procedure would be used if, for example, we wanted to retain more

high-frequency components in a sub-region of the total domain.

2By way of analogy, we note that in a hydrostatic model the diagnosed vertical velocity must be, in general,
non-zero.



2.2.2 Controlling temporal frequencies: the J. term

The J. term is a weak constraint, analogous to that of ac‘fo in the previous example, which
is appended to the normal total cost function of (1):

J=J+J°+J° (16)

In an attempt to impose INLB on the increments, we define J. as follows:

o= s g S TG (1)

where the sum is over all grid points in model space, (¢, A, n), the scalar wy, is a weighting
factor (assumed to be independent of position), a; is the mass  and area weighting of the
ith grid point:

a; = (cos(¢) * Ap)|i. (18)

The divergence tendency in (17) is evaluated at the initial time only, but for INLB to be
imposed effectively, the degree of divergence tendency must not change rapidly with time,
i.e. the imbalance tendency must be of order O(R2).

It might be thought that inclusion of this term would lead to a uniform value of incre-
mental divergence tendency throughout the domain. On the other hand, information spread
(during minimisation) between grid points via J? and J° could lead to spatially non-uniform
values of the incremental divergence tendency. We can hypothesize that the inclusion of
(17) in the total cost function should generally reduce the degree of incremental divergence
tendency throughout the domain. Furthermore, we might expect that (in analogous fashion
to the simple case of section 2.2.1) the divergence tendency should decrease with increasing
wy,. Hence, naive reasoning suggests that it may be possible to tune wj, so that the in-
crements either contain no gravity waves or a realistic degree of such activity. This choice
points to a fundamental difference between weak constraints and (post-processing) initiali-
sation methods, which it is vital to bear in mind. Assume, for the sake of simplicity, that we
wish to impose SE balance, hence avoiding the complications of the spurious BE modes. As
was alluded to in the introduction, it is important that the space spanned by B includes all
degrees of freedom (i.e. includes both fast and slow modes) in order to prevent observational
information pertaining to fast modes from being incorrectly projected onto slow modes. If
the weak constraint were used to filter out all of the fast modes, then this would be equiva-
lent to limiting the space spanned to balanced modes only. Tt is likely that such a procedure
would lead to a less accurate set of increments than obtainable via initialisation methods.*.
On the other hand, if the weak constraint led to the inclusion of realistic gravity waves and
the exclusion of spurious gravity waves, then it is likely that the slow-mode component would
be a better representation than that obtained via filtering methods. The degree to which
such a constraint is practicable is not clear. Ideally, instead of the simple formulation of
(17), we would need to impose the chosen balance relation(s) in a way that better represents
the way in which they are held in the true atmospheric state ®. Qur results suggest that this

81t is arguable that a mass weighting should not be included, but this is likely to have little effect on the main
results presented in this report

*If the true state did not contain any fast modes, spurious fast modes would still contaminate the increments
given the current VAR system. Hence a J. term aimed at imposing balance would be of use even in this case

5Note that using the true state of the atmosphere as a set of initial conditions for the UM would not guarantee
an accurate forecast, as the underlying equations are of course approximations. Similarly, we would not necessarily
want to impose the balance relations ezxactly as they hold in the true state



would require the inclusion of a covariance matrix in the J. term, of the kind discussed in
the final section of this report. ©

3 Investigations within VAR

3.1 Experimental details

All of the experiments used the New Dynamics test case of 127 26/12/99, at a resolution
of 2.5% in the latitudinal direction and 3.75° in the longitudinal direction, with 38 vertical
levels. A constant linearisation state (corresponding to 12Z) was used throughout; we expect
the effects of this on the results to be minimal. In what follows, the following terminology is
adopted. Control experiments correspond to VAR minimisations without any initialisation
procedures applied. DF corresponds to experiments where the PF digital filter [1] has been
applied; w17, w18 and w19 refer to minimisations where the J. term has been included in
the total cost function and w;, has been set to 10'7, 10'® and 10'® respectively. The three
values of w;, were chosen to facilitate a comparison with the DF method.

3.2 The effect of DF on the increments

First we consider the effect of DF on the incremental balance. These results indicate the
degree to which % and % are reduced by the filtering of fast modes, and will be of use in
interpreting the effect of the J. term (see next section).

Figure (1) shows vertical cross-sections running along 50°N of the divergence tendency
associated with the control and DF-initialised increments at the analysis time, T+0. Appli-
cation of the DF clearly reduces g—‘z. Figure (2) shows estimates of the first time derivative
of imbalance, i.e. %, formed by differencing the T+0 state and a PF model T+415min state,
for the case of the control and DF experiments. The DF leads to a significant reduction in
the magnitude of %. Note, for future reference, that these values imply that the degree of
INLB obtained via the DF at the initial time will be maintained on a time-scale longer than

that of an hour.

3.3 The effect of J. on the increments

Figure (3) shows the total cost function and its components as a function of VAR iteration
number for the case of the control experiment. Given the default convergence criterion (a
relative change in the norm of cost function gradient of around 0.005), the minimisation
would be stopped after around 60 iterations. Also shown is the divergence-tendency penalty,
which was passive in this case, corresponding to w;, = 107,

Figures (4)-(6) show the behaviour of the cost functions in the cases of w17,w18 and w19
respectively. All lead to a reduction in the converged value of J.. In each case convergence is
obtained, as in the control experiment, after 60 iterations. A measure of the global divergence
tendency in each case may be obtained by dividing the converged value of J. by wy, . As
hypothesised, the divergence tendency decreases as wy, increases. The converged value of
J, is larger than in the control case and increases with wy_ . In other words, the J. worsens
the fit to observations. Presumably this is because the J. term is erroneously projecting
observational information which characterises fast modes onto slow modes. Note that the
converged value of J, decreases with increasing wjy, suggesting that, to some degree, the

®The covariance matrix in (17) is the (real-space) identity matrix

-~
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Figure 1: Vertical cross-section of the divergence tendency
of control increments (upper) and DF-initialised increments
(lower). The section runs along 50°N and the vertical coor-
dinate is the model level number, with 38 corresponding to
the top level. Units = s72
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Figure 2: Cross-sections (as in Figure 1) of 2t from the

control experiment at T4+0 (upper) and T+415min (lower).
Units = s=2p~!
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Figure 3: Total and component cost functions as functions
of iteration number in the case of the control experiment.
Total (full line), J, (dot-dashes),J (dots) and (passive) J.
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Figure 4: Total and component cost functions as functions
of iteration number in the case of the w17. Total (full line),

Jo (dot-dashes),J, (dots) and J, (dashes)

divergence tendency is reduced via the reduction in increment size rather than by a change
in morphology of the mass and wind fields. Figure (7) shows cross-sections of the divergence
tendency at T40 in the case of the control and the three J. experiments. It is clear that, in
general, the magnitude of divergence tendency decreases with increasing wy,. Figures (1) and
(7) suggest that the weighting factor must be set to a value in the range of 10'7 and 10'® to
obtain a similar degree of divergence tendency as is present in the DF-initialised increments.
" Furthermore, this implies that the constraint has been applied too strongly in the case
of wl19. That the J. term leads to a reduction in the overall degree of divergence tendency
does not guarantee that INLB has been successfully imposed. Rather, this reduction must
be achieved in a manner which is (spatially) non-locally consistent. The following results
imply that this latter condition has not been satisfied. = Figure (8) shows the imbalance
tendencies produced in each experiment. In all of the cases % exceeds that obtained via the
DF procedure. Assuming that the constraint has been applied too strongly in the case of
w19, we concentrate on w17 and w18. Whilst the J. term has significantly reduced % in
some regions (such as close to the tropopause), elsewhere the values are equal to, or larger
than, those associated with the control. Assuming that these growth-rates are maintained,
g—‘z (i.e. the departure from INLB), will attain values in places which exceed those imposed
at the initial time.

The J. term is not expected to limit the size of % to the extent to which the DF method
does, since the imposition of INLB does not remove the spurious modes associated with the
BE system. However, ideally the weak constraint should maintain INLB on the same time-
scale as achieved via the DF. Although the initial state may contain growing (as opposed to

neutral) fast modes, the DF method shows that it is possible to damp the initial amplitudes

7Attempting to set the degree of INLB to that obtained via the DF is not, as explained earlier, advisable from
the viewpoint of accuracy

10
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Figure 5: Total and component cost functions as functions
of iteration number in the case of the w18. Total (full line),
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Figure 6: Total and component cost functions as functions
of iteration number in the case of the w19. Total (full line),

Jo (dot-dashes),.Jy (dots) and .J, (dashes)
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Figure 7: Cross-sections (as in Figure 1) of divergence ten-
dencies at T+0. Control (top left), wl7 (top right), w18
(bottom left) and w19 (bottom right). Units = s~

12



new Eta (m)

new Eta (m)

Unkno %Jgk?owm stash code 414771 Unkno 1ngmowm stash code 414771

30 30
E

20 2 20
i}
=
o
<

2000 4000 8000 2000 4000 6000
Distance (km) Distance (km)

—1.08e-8 ~7.2¢-9 -3.6e-9-8.88e—16 3.6e—9 7.2¢-9 1.08¢-8 —1.08e-8 ~7.2e—9 -3.6e-9-8.88¢—16 3.6e-9 7.2¢e-9 1.08e-8

Unkno Unknown stash code 41477 Unkno Unknown stash code 41477
12/1 12 12 1

30 30
€
20 2 20
i
B3
3
2
10 10
2000 4000 8000 2000 4000 6000
Distance (km) Distance (km)
~1.08e~8 ~7.2e~9 ~3.6e~9-8.88e—16 3.6e-9 7.2e~9 1.08¢-8 —1.08e~8 ~7.2e~9 —~3.6e-9-8.88e—16 3.6e-9 7.2e~9 1.08e-8
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Figure 9: Plots of pressure tendencies at T+0 on model level
1. Control (top left), DF (top right), w17 (bottom left) and
w18 (bottom right). Units = Pah~'. Note that the colour
scale in the case of the DF experiment is ten times smaller
than in scale used in the other three plots. Similar behaviour
is exhibited throughout the entire global domain

of such modes sufficiently for balance to hold on a longer time-scale than an hour (see Figure
2).

The relatively large values of imbalance tendency exhibited in Figure 8 are symptomatic
of a fundamental problem with the J& term, which can be seen more clearly by considering
the resulting behaviour of other dynamical fields. Figure 9 shows the pressure tendencies
(formed via differences of T4+0 and T+15 fields) on model level 1. The control increments
are contaminated with erroneously high values, attaining a maximum of around 10mbh~".
The DF reduces the magnitude of the pressure-tendency field by a factor of ~ 10, while the
J. fails to reduce the magnitude of this field significantly. Moreover, the fields in the case of
w17, wl8 and the control are of a very similar morphology, implying that the J. term has
had little impact on the PF trajectory. As alluded to above, we propose that this behaviour
is indicative of a failure to constrain the divergence tendency in a non-locally consistent
manner. The J. term works by imposing an algebraic relationship between mass, wind and
density fields at each grid-point. Whilst the value of g—‘: at each grid point may be decreased
by the inclusion of J., this does guarantee that this has occurred in a consistent non-local
fashion; some means of spreading between grid points information pertaining to the balance
relation (10) is required. As suggested in section 2, it is possible that such information could
be implicitly spread via J® and .J°. That they are failing to do this, might explain why INLB

14



is not maintained. It should be noted that these arguments apply equally in the case where
the J. term is intended to filter out all gravity modes, and in the case where realistic gravity
modes are to be retained, since both cases are non-local problems.

4 Discussion and recommendations for future work

In summary, the J. term leads to a convergent solution, and the degree of divergence tendency
decreases as the J, weighting factor is increased. However, the behaviour of the imbalance
and pressure tendencies imply that INLB is not successfully imposed. The most likely cause
of this is that the divergence tendency is altered in a non-locally inconsistent manner. Below,
we consider possible ways of improving the formulation of J..

4.1 Covariance matrix

A method of explicitly including non-local information into the weak constraint is to include
a covarlance matrix in the J. term as follows:

g = <6<v-(;'<0)>>T G-l <a<v-;'<o>)) (19)

where G is the covariance error matrix of the background divergence tendency. One pos-
sible way of constructing G~! would be to adopt the NMC approach, i.e. form a model-
climatological estimate of G™! using an average calculated by taking differences between
T+48 and T424 forecasts. Whether such a estimate would lead to the inclusion of realistic
fast modes and the exclusion of spurious modes is not clear. To do this, it may be necessary
to include further flow-dependent information in G~!, which would be a complex task. &

Practical implementation of this method would involve a significant simplification since
the size of covariance matrix in real space is too large. This problem could be dealt with
by including, for each grid-point, the inverse covariances associated with a relatively small
number of surrounding points. Investigations of how many surrounding points are required
for adequate convergence would need to be performed.

It is likely that even an improved formulation of the J. term would not be able to prevent
all erroneous projection of observational information onto fast modes, but it may reduce such
contamination to an acceptable level and hence could be used in place of the DF. On the
other hand, if the contamination is too great, then it may be worthwhile implementing the
Je term and then applying the DF; the rationale being that the J. term would lead to a
more accurate estimate of the slow modes which are retained by the DF process (see section
1.1, above).

4.2 A further J. term

As discussed in section 2, the INLB system supports a spurious high-frequency mode. Even
if we could successfully control the size of the divergence tendency using a J. term, i.e. so
that it is of the order O(R2), the rate of change of divergence tendency of the resulting

8To implement a J. term intended to remove all gravity waves during VAR (which, as already stated, is
inadvisable), the relevant G should only span the space defined by modes of the primitive equations which

approximate those of the BE system.
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increments may still be too large (larger than O(R2)). We could attempt to control this
mode by introducing a second J. term of the form:

o= (20 1 (220 )

where G, is the relevant covariance matrix.

4.3 High-resolution modelling

At the horizontal resolutions of the convective-scale forecasting system being developed at
JCMM [3] (i.e. 4 km to 1 km), an accurate model solution will, in general, contain a signifi-
cantly larger degree of gravity modes than in the global model runs considered in this report.
The question arises whether the data assimilation procedure should be designed to capture
these important fast modes along with the slow modes, or whether we should aim to capture
the slow mode component alone. The approach being adopted presently [4] aims to do the
latter, using reconfigured low-resolution (i.e. 12 km or 4 km) VAR increments introduced to
a high-resolution (i.e. 4 km or 1 km) background via the IAU. However, it is certainly worth
investigating the use of a J. term in order to incorporate gravity modes into the increments
(or to obtain a better characterisation of the slow modes).
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