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Abstract

An investigation of the contact transformation is carried out, mainly in the lowest
dimensional case. This case is chosen because it allows a very general family of explicit
contact transformations to be derived, which is not available elsewhere. This family gives
a desirable perspective to certain familiar particular cases which it includes, associated
with the Legendre transformation and with the semi—geostrophic equations of meteorology.
It also displays a clear distinction between contact and canonical transformations, which
have often been confused in the past. For clarity we begin by introducing the concept of a
lift transformation. A brief study of generalized duality is also included. Contact

transformations have an important role in the study of differential equations.

1 Introduction

The aim of this paper is to convey a very explicit understanding of the contact
transformation. The subject of contact geometry has a long history, and some modern
writing gives the impression of a high level of sophistication, but without always being
accessible or precise. Our study of the literature has convinced us that any potential user
will have the need for a significant body of concrete examples of contact transformations,

and this paper provides that.



In a previous paper (Sewell and Roulstone, 1993) we gave new examples of the
canonical transformation, and compared several distinct definitions of it, which are all
different from our definition here of the contact transformation. One of the remarkable
features of the history of mathematical physics is the long standing confusion between the
two transformations. It is interesting to notice, for example, that in his first edition
Goldstein (1950, p. 239) treated them as synonymous, whereas in his second edition (1980,
P. 382) he has realized that there is a difference between them.

We study the contact of plane curves in terms of the intersection of their lifts. We
specify the distinction between regular and singular lifts. The latter include a vertical
segment whose projection is a single fixed point, and we give examples showing that such a
lift is far from being a pathological case, but completes the theory of contact in a natural
way. This is related to the fact that the envelope of a family of curves which all pass
through a fixed point must include that point, and so may consist of disjoint parts. For
clarity we make explicit the distinction between a lift transformation and a contact
transformation. This puts us into position to prove Theorem 3, which is the central result
in the paper. This establishes a much wider family of lift and contact transformations than
has been demonstrated before, as far as we are aware, and we extend some of these to any
odd number of dimensions. We show how Theorem 3 includes two very special cases,
associated with the Legendre transformation and with the geostrophic transformation of
meteorology. The geostrophic transformation was in fact the starting point which showed
us the need for this investigation and the previous one. We prove that the lifts of the plane
curves which participate in the Legendre transformation are converted into each other by
the associated lift transformation, and in Theorem 10 we generalize this result in a study of

generalized duality which links with other parts of the literature.
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2 Lifted curves and the contact of plane curves

We need to begin with a critical review of some ideas in contact geometry, in the
simplest possible context, to establish a basis for subsequent Sections.
Let x,y,z be cartesian coordinates in R3. A plane curve in the x, y plane is

given in parametric form by the relations

x=x(u) , y=y() (1)

between the coordinates and given functions, on the right, of a scalar parameter u for
some continuous range of u. When z(u) is any given function, the plane curve (1) can be

regarded as the projection of the space curve

x =xw) , y=y@© , z=a1@) (2)

where x(u) and y(u) are the same as in (1). One might say that every such curve (2) is
a lifted version of (1) into R3.

For the purposes of contact geometry, however, it is conventional to adopt a
narrower meaning of this terminology. In this paper we follow that convention to the

extent of adopting the definition that (2) is a lifted curve, or lift of (1), if and only if z(u)

satisfies

(3)

Bifr

& = 2

Given the plane curve (1), however, this formula (3) does not always fully specify the

function z(u). To elucidate this uncertainty, we define each point of the plane curve to be
regular if g%-# 0 or singular if g_xﬁ = 0. (4)

At a regular point the inverse function theorem guarantees that we can use x as



the parameter and write (1) with (3) as
y = y(x) with gradient z = g% : (5)
Then the ordinate of the lift is the gradient of the plane curve, and we can say that the lift

has a regular point on it too. Two different lifts which intersect at regular points therefore

have projections which are in contact, in the sense that they meet and have the same

tangent line there. For example, y = %xii and y = x —%— arein contactat x=1, y = %-
where dy/dx =1 for both, and their lifts have a regular point in common there.

It proves very convenient to discuss the contact of plane curves in terms of the
intersection of their lifts. To do this with reasonable generality, however, we must address
the fact that at a singular point, or singularity of the plane curve (1), equation (3) gives
incomplete information about the value of z on the lift. A distinction between two types
of singular point must be made before we can decide what further information should be
added to (3) to complete the description of the lift.

We call the singularity isolated if dx/du =0 at an isolated value of u, so that

adjacent points on the plane curve are regular ones. If dy/du # 0 = dx/du, (3) implies
that z must be infinite. However, if dy/du=0= dx/du, (3)implies nothing about z,
but is certainly satisfied for any finite z. When x(u) and y(u) are analytic functions, we

can define z(u) in (2) by

d2

d 1
+ +
2(u) = ax ’;’d‘;x (6)
-’0 a— 2- m [ R

where € is the u—increment, and the derivatives are evaluated at ¢ = 0. At regular
points (3) and (6) are equivalent. At isolated singular points (6) is consistent with (3), but
(3) does not imply (6). We adopt (6) because it gives the interpretation that the ordinate

of the lift is the gradient of the plane curve at such isolated singularities (as well as at



regular points), and we can say that the lift has an isolated singularity on it there too. For
example, if dy/du = dx/du = 0 # d2x/du?, (6) specifies the value

2 2
; = S/du ()

on the lift. Two different lifts which intersect at a regular point of one and at an isolated
singularity of the other, or at an isolated singularity of each, therefore have projections
which are in contact, because (6) ensures that the projections have the same tangent line
where they meet.

A singularity where dx/du =0, i.e. where x is constant, is not isolated. Then (1)
could be either a straight line parallel to the y—axis if dy/du # 0, or a fixed point if
dy/du = 0, i.e. where y is constant. A lift of the first option would require z to be
infinite to satisfy (3). The second option is of more interest. A fixed point in the x, y
plane satisfies (3) for any range of finite z. Therefore we define the lift of a fixed point to
be any finite line segment vertically above it, which we can call a vertical singularity.

A fixed point in the x, y plane will be deemed to be in contact with another plane
curve if that fixed point lies on the curve. This type of contact is equivalent to the
intersection of the vertical singularity with the lift, at a regular point or an isolated
singular point, of the plane curve, i.e. in the same terms as the ideas already described.
This is a recognised convention, although it is expressed in other ways in the literature
(e.g. see Fig. 15.6 of Burke, 1985).

An example of a lifted curve containing only regular points is

= u oTamy ] st m;
(mp)t "7 (1+m2)} 1% 5t .

with any fixed m, which we shall use subsequently.

The curve



x=312u2-mu, y=éu3—%mu2, z=1u (9)

with any fixed m, satisfies (6). It illustrates a lifted curve which has an isolated
singularity, at u = m. We can use z as the parameter everywhere, but x is only
available as an alternative parameter for two—sided limits where x > — %— m2, and not

through the singularity itself.

3. Lift transformations and contact transformations
=1L transiormations and contact transformations
We now consider a mapping

X=X(x,52) . Y= Y(xy2) «2Z2=2Zxy, z) (10)
of R3— R3. Here X, Y, Z are the cartesian coordinates in the second R3. The
functions of x, y, z on the right are assumed to be single valued. The first two functions

are also assumed to have single valued derivatives. The mapping will transform any space

curve (2), whether it is a lift or not, into another space curve
X=X(u) , Y=Y , Z=2Z@) (11)

in the second R3, where functions of u are on the right. This (11) will be a lift of the

plane curve
X=X(w) , Y=Y() (12) ~ Jl ‘
if and only if .
dy:® ix =
da = Z du (13) 5 !

and reasoning like that associated with (4) — (9) again applies.

(.
NLSH

A lift transformation is defined to be a mapping (10) which converts one lift
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satisfying (3) into another lift satisfying (13). It will be one of the following two types.

A general lift transformation converts every lift into another lift, and does not
depend on the curve being transformed.

A special lift transformation converts only a restricted class of lifts into other lifts,
and has a dependence upon that class of lifts.

It may be expected that general lift transformations are the more important type,
and Theorem 3 is the central result of this paper which describes a large family of them.
Some special lift transformations are readily obtainable, however, and we illustrate how to
do that in the last part of Theorem 2 and in 86.

A contact transformation is a lift transformation which applies to a pair of lifts

which intersect in the first R3. It therefore transforms contact in the associated first plane
into contact in the second plane.

Therefore to be sure that a lift transformation is also a contact transformation one
really needs to either exhibit a pair of plane curves in contact, or nominate a fixed point on
the plane curve. The transformation then applies to their lifts. The second option is
always available, but the first needs to be demonstrated. If it is assumed, as may be
common, then the distinction between a lift transformation and a contact transformation
becomes blurred.

The envelope of a class of plane curves is a familiar method of illustrating contact,
in this case between the envelope and any member of the class. The envelope itself is often
not a member of the class, however, and this may mean that a general but not a special lift
transformation will serve as a contact transformation in such a case.

A prerequisite for the study of contact transformations defined in this way is
evidently an analysis of lift transformations.

For this purpose it will be convenient to use the following shorthand notation for

any mapping (10).

)4 X Y oY L X
Fiw o= ﬂ—-a?-z'ay Rt e e et (14)



Theorem 1

Necessary and sufficient conditions for (10) to have the property

oo - (5.4

for every smooth space curve (2) are that

atfe=0:; % =0
Then
ay ay ay
ix @ ‘o 3z
Z = and Z =
X dX dX
ax T %5y 0z

when % + 2z -g;—(# 0 and %# 0 respectively.

Proof

The chain rule shows that

ax dx d dz
i

ﬁ[g%-—z%] +(a+ﬁz)%§+ 'yg%.

dy
du

The sufficiency of (16) is then immediate, and so is necessity if the tangent components

dx/du and dz/du of the space curve are to be arbitrary. When (16) holds, (17) is an

immediate consequence.

Theorem 2

When (16) holds, (10) transforms any lift into another lift if

B #0.

(15)

(16)

(17)

(18)

(19)

g .
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In other words, necessary and sufficient conditions for (10) to be a general lift
transformation are that (16) and (19) hold.

A necessary and sufficient condition for a vertical singularity to transform into

another lift is that = 0.

Proof

On any lift in the first R3 (3) holds. From (15), (19) implies (13).

The case =0 in (16) is of no interest because then every curve in the first R3
implies (13).

The last part follows from (18) because a vertical singularity has dx/du = 0,

dy/du =0 and dz/du =1, so that (16), and (19) are not necessary for the stated

particular conclusion. 0

Theorems 1 and 2 do not, of themselves, say anything about contact. The single
valuedness assumed for (10) is needed, when Theorem 2 holds, to guarantee that when a
pair of lifts intersect in the first R3, their transforms will also intersect in the second R3.
This invariance of intersection is needed to justify the definition of a contact
transformation adopted by Carathéodory (1982, §119), namely that of a mapping (10)
which satisfies (15) with (19). The formulae (17) gives an alternative and more explicit
confirmation of the invariance of an intersection of lifts, at least as far as their height is
concerned. Variants of (17) are familiar in the literature (e.g., see Jeffrey and Taniuti,
1964). None of these authors distinguish between regular and singular points of lifts, or

between lift and contact transformations.

4, Families of general lift transformations
Theorem 3

The following are explicit illustrations of general lift transformations (10) when

g)z—{ # 0. Each example listed below is a family of transformations whose coefficients may be

any given constants, subject to the stated inequalities.



(i)

Pl o 1

X = }Ax?+ 4Cz2+ zx + RAx + (CA — 1)y + Rz,

Y = 1gAx? + jcz? + gzx + rAx + (cA —g)y + 1z,

Z = %:CCZZJRI, X+ Cz+R#0,
¥ (c — gC)(Ax + z + RA) + (1 — CA)(r — gR)
¥ X + Cz + R

¢—gC and (1-CA)(r—gR) not both zero.

X = 1G(G + Q)x? + 422 + Gzx + R(G + Q)x + Qy + Rz,

(20)

)

Y = 48(G + Q)x? + jcz2 + gzx + 1(G + Q)x + [¢(G + Q) —gly + 1z,

Z = gé‘x'*"_*_‘;z:%, Gx+z+R#0,

g = (G -G+ Q)x +

z + R] — Q(r — cR)
Gx + z + R ?

g-¢G and Q(r —cR) not both zero.

X = $GPx? + 4C22 4+ Gzx + Px + (CP - G)y + z,

Y = 4gPx? + 4cz? + gax + tPx + (cP —g)y + 1z,

ﬂ=(Gc-—Cg)(Px+ z) — (g — 1G) + P(c — 1C)
Gx + Cz + 1

Cg — Gc and g—r1G —P(c —rC) not both zero.

(21)

(22)

)



(R

W oand

[ ]

vy

[N

Lt B =

BBk |t

Proof

We seek solutions of (16) among the families of quadratics

2X = Ax? 4 By?+ Cz2 + 2Fyz + 2Gzx + 2Hxy + 2Px + 2Qy + 2Rz,

(23)
2Y = ax?+ by? + cz2 + 2fyz + 2gzx + 2hxy + 2px + 2qy + 2rz .
These assumptions require, from (16), that when Gx + Fy + Cz+ R #0 ;
- Ex 4+ fy + cz +
Z_Gx+Fy+Cz+1{ (24)
and
(Gx+Fy+Cz+R)[(ax+hy+gz+p)+z(hx+by+fz+q)]
(25)
= (gx+1fy+cz+1) [(Ax + Hy + Gz + P) + z(Hx + By + Fz + Q)].
Then
(cF — Cf)z3 + (gF — Gf + cH — Ch)xz? + (cB — Cb)gz?
+ (fH — Fh + gB — Gb)xyz + (gH — Gh)x?z + (fB — Fb)y2z
+ (gA — Ga)x? + (fH — Fh)y? + [¢(G + Q) — C(g + q) + rF — Ri]z2
+[f(G+Q)—F(g+ q) + cH—Ch + 1B — Rb]yz
+(8Q — Gq + cA — Ca + rH — Rh)zx + (gH — Gh + fA — Fa)xy
+ (8P — Gp + rA — Ra)x + (fP — Fp + rH — Rh)y
+[cP-—Cp+r(G+Q)—R(g+Q)]z+rP—Rp=0. (26)



A

perceive its internal logic.

equations, does not contain the coefficients P, Q,R.p,q,
Y. Itis

BA =0 = 0. fA-Fa =90
¢B—-Cb =0, gB-—Gb =0, fB—Fb = 0
fH-hF = 0, gi-hG = 0,

¢F-fC =0, gF—-fG+cH-hC = 0.

Equations (27)
extent that such ratios are well defined.

There is a second group of only three equations which contain P. R, p;

Q, q, namely

—Gp+gP+Ar—aR = 0,
—Fp+{P+Hr—hR = 0,

Pr —pR

These 16 equations divide naturally into three groups. The first group,

This equation can be satisfied identically by choosing all 16 coefficients in it to be zero.
This provides relations between the 18 coefficients in the quadratics X and Y, but onein
each of those can be regarded as a disposable scale factor. There are 9x9 = 81 different
ways of fixing these scale factors, for example by choosing one coefficient in each of X and
Y to be unity. This leaves 16 bilinear equations to be solved for 16 unknowns.

We provide sufficient detail that will allow the reader to reconstruct the proof and

of nine

r of the linear terms in X and

(27)

relate the ratios of the coefficients of the second degree terms in (23), to the

r but not
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The third group, of four equations, does contain Q and g, andis
(G+Q)-R(g+q)+cP-Cp = 0,

¢«(G+Q)-C(g+q)+rF—Rf =
(29)
f(G+Q)-F(g+q)+B—Rb+cH—-Ch =

8(G+Q)-G(g+q)+rH—Rh+cA—Ca = 0.

From (29) we see that Q and q only ever appear in conjunction with G and g
respectively. In retrospect (29) would have been simpler if we had written Q — G and
qQ—g inplaceof Q and q in (23).

The last seven of (27) and the last three of (29) imply

3 s (cA—Ca)x + 2(cH—Ch)y + (cG—-Cg)z + qR — Qr (30)
Gx + Fy + Cz + o

We now prove that F = 0. Suppose that F # 0, and ensure this by choosing the
scale factorin X tobe F = 1. Then (27) implies

a=fA’ b=fB) C=fC, 8=fG, h=fH; ﬂ-GX +q§:8; +R

Then (28) implies

(A-GH)(r-fR)=0, p—fP=H(r—fR), (P—RH)(r—{R)=0,

and (29) implies



=15 =

R —Qr = (r—{R)(G - CH),

r—fR = C(q—-1Q), q—fQ =B(r—fR), G(q—-1Q) = H(r — fR) .

It follows that either r = fR, so that £ = 0 immediately; or that

r#fR and (q-1Q)(G — CH) = 0, which implies G = CH because q # fQ, so that

f =0 again. Hence : 1

F =0 (31)

to ensure S+# 0 as (19) requires.
The remainder of the proof divides naturally into three parts. We put F =0 at

the outset. Then, because Gx + Cz + R # 0, we need to explore the cases G # 0, €40
and R #0 in turn.
(i) Suppose that G # 0, and ensure this by choosing the scale factor in X to be

G =1. (32)
Then (27) implies

B(c-gC) = 0, H(c—gC) = 0.

If we assume ¢ = gC, (28); and (29), imply that r # gR is needed to avoid 4= 0,

and then (28); and (29); imply B = H = 0. It is therefore more general to assume
instead that (27) implies

B=H=0, b=h=f=0, a=gA.
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Then (28) and (29) imply

P—gP = A(r-gR), q-gQ = A(c—gC),
(P-RA)r—gR) = 0, (Q—=CA +1)(c—gC) = 0,

(P—RA)(c—gC)+ (Q-CA + 1)(r—-gR)=0,

ﬁ__(c—gC)(Ax+ z +RA) —Q(r—gR)
x +Cz +

Hence at most one of ¢c-gC and r — gR can be zero to achieve f# 0, and both

could be non—zero. In each case we deduce
P=RA, QeCA-1_ P=rA, q=cA-g.
The family (20) results. The scale factorin Y could be chosen in several ways,
depending on the use which may be required for the family; one way which ensures
the validity of the inequalities stated in (19) is to choose
c—gC+(1—-CA)r—gR) = 1. (33)
Suppose that C # 0, and ensure this by choosing the scale factor in X to be

e (34)

Then (27) implies



=Y

If we assume g = cG, (28), with (29); and (29)4 imply that r # cR is needed to
avoid A= 0, and then (28); and (29); imply B = H = 0. It is therefore more

general to assume instead that (27) implies

S |

Then (28) and (29) imply

g_CG= CQ—q,
p—'CP = (G+Q)(I—CR) ) a—cA = (G+Q)(CQ-Q),
[P-R(G+ Q)] (r—cR) = , [A-G(G+Q)(Q-q) =

[P-R(G+Q)(cQ—q)+[A-G(G+Q)](r—cR) = 0, i

_ (G -G +Q)x + 2z + R] Q(r — cR)
Gx +z + R ;

Hence at at most one of g—cG and r —cR can be zero to achieve f#0, and

both could be non—zero. In each case we deduce

=G@G+Q) , P =R(G+Q),

=gG+Q) , p=1G+Q). 5

s 30

The family (21) results. The scale factorin Y can again be chosen in several ways; o

one way which ensures the validity of the inequalities stated in (21) is to choose |

§=cG+Q(r—cR) =1. @) = |
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(iii) Suppose that R # 0, and ensure this by choosing the scale factor in X to be

R=1,

Putting F =0 in (27) implies

gA=Ga, gB=Gb, gH=Gh, cB=Cb, cH=Ch,

fA=1B =1 =1G =1fH =0.

(36)

(37)

(38)

There are apparently two cases here, but in reality only one. For if we assume that

(38) implies

A=B=C=G=H=0,

then (28) and (29) imply

(39)

Hence Q(cP —g) =0. Excluding f=0 leaves Q = 0, but this implies f= 0.

Therefore it is more general to assume that (38) implies

f=0

instead of (39), with (37) still available as it stands. Now (28) implies

(40)
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and (29) with (37) then implies

b=rB, B(g-rG) = Hg-:G) = B(c—1C) = H(c—1C) = 0

together with

g+4q = (G + Q) + P(c-1C),
(G+Q-CP)(c—1C) =0 (A-GP)(g-1G) = 0,

(G+Q-CP)(g—1G) + (A —~GP)(c-1C) = 0

)

and

ﬁ=QG—g)[(G+Q)x+Cz+ 1] + (c — rC)[GPx + Gz + P]
Gx + Cz + 1 :

We see that g —rG and ¢ —rC cannot both be zero if B =0 is to be avoided. It
follows that

The family (22) results. Again the scale factor in Y can be chosen in several ways,

and one way which ensures f# 0 is to choose

(C+1)(g—r1G)— (G + P)(c - 1€} = 1. (41)

it
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5 Examples

Theorem 4

The most general family of lift transformations possible in which Z is linear when
X and Y could be quadratic is obtained by putting G =C =0 in (22). Z cannot be

constant with such X and Y, and it turns out that X must be linear.

Proof

This is immediate from Theorem 3(iii). o

For example, the last of
G=C=0 . g=¢cPal, (42)

shows two possible alternative ways of fixing the previously arbitrary scale factor in Y.

Then (22) becomes

X =Px+1z,

Y = }(cP+1)Px2 + $cz2 4+ (cP # 1)zx + rPx = y+ 1z,

(43)
Z = (Ptl)x+cz+r,

B =rx1,

with arbitrary P, ¢ and r.

All the lift transformations (43) have the especially simple property that any space

curve (2) in x, y, z space is transformed into another space curve (11) in X, Y, Z space

such that

oo g, (40

B s . b e W
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by (15). Whenever (2) or (11) is a lift, so is the other, by Theorem 2. Any pair of
intersecting lifts is transformed into another pair of intersecting lifts (this is the contact
transformation property of the associated plane curves or fixed points).

The special choice P =c¢ =1 =0 with g=+1 in (43) gives f=—1 and
Ramgl oY S oaxay Ty (45)
The first two of these equations have the property
Y+y = Xx (46)

of a Legendre transformation which maps the point or pole x, y into the line or polar (46)
in X, Y space, or a polar into a pole. The lift transformation (45) of R3- R3 therefore
contains within it the Legendre transformation of R2- R2. The latter does not use (45),,
so the two transformations are not equivalent. The last two of (45) have the property

Y + y = Zz of another Legendre transformation, which does not use (45);.

Theorem 5 following is a precise expression of the well known association between
contact transformations and Legendre transformations. The reader may compare our

|

approach with that of Burke (1985, §20), for example, who says that "the most common :

contact transformations are the Legendre transformations", notwithstanding the difference

in dimensionality between the two. Arnold (1989, Appendix 4K) calls (45) a Legendre 5 I
involution. ™
Theorem 5 ‘

The particular lift transformation (45) maps the lift of a function y(x) onto the lift

remnd

of its Legendre dual function ¥(x). 23

s
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Proof

First we note that the lift of a pole x =a,y =b with constant a and b is any
vertical line above it with a finite range of z, and (45) maps this into the horizontal line
Y =aX-b, Z =a, which is the lift of the polar of the original pole.

When the pole x, y moves on a smooth nonlinear plane curve y = y(x) with slope
X = dy/dx, the polar (46) envelops the smooth plane curve Y = Y(X) with slope
x = dY/dX, by the standard envelope properties of a Legendre transformation (e.g. see
Theorem 2.3 of Sewell, 1987). The Legendre transformation now maps each plane curve
into the other. Neither need be convex, nor even single valued. By adding (45), and (45)3

to these Legendre gradient properties we obtain

z=§3‘§ i z=g§. (47)

The convention described just before (8) allows us to say that a straight line
y=m(x—a)+ b with fixed m isin contact with the point a, b on it. Their lifts are
vertical and horizontal lines intersectingat x =a, y=b, 2 =m. Then (45) is a contact
transformation which maps these lifts into the horizontal line Y = aX — b, Z=a and the
vertical line above X =m, Y = ma — b, which also intersect, thus illustrating
transformation of this type of contact. In accordance with Theorem 5, Y = aX — b is the
polar of the pole a, b, and the polar of m, ma—b is y = m(x — a) + b.

Any two curves in the X,y plane which are in contact will be converted by any lift
transformation, such as all those in (20)—(22), and (43) and (45) in particular, into another
pair of plane curves in the X,Y plane which are in contact, so that we may now call the
lift transformations contact transformations. Theorem 5 shows that (45) has the additional

feature that the pair of curves in the X,Y plane are the Legendre transforms of the pair of

respective curves in the x,y plane.
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The following example includes an explicit illustration of a pair of plane curves in

contact. The family of regular lifted curves (8) parametrized by u for each fixed m can

also be written
y = mx—%(1+rn2)x2, z = m-(1+m?)x. (48)

The envelope of the plane curves (48), for varying m has two dis joint parts, consisting of
their common intersection point at x = y = 0 whose lift is any finite vertical line above it,

and a parabola whose regular lift is

y=%,(1_x2), Z = —X. (49)

Intersection of (48) with the vertical singularity takes place at
x=y=0, z=m. (50)

This represents the type of contact, defined in §2, whereby x =y = 0 lies on (48), for

each m. The intersection of (48) and (49) is, provided m # 0, at

1 1 1 1
X B g s v (51)

s0 (48); touches (49), at (51),,,. Equation (48), is the trajectory of a particle projected
with initial slope m in vacuo over a flat Earth, with distances y measured vertically
upwards and x horizontally. The initial speed U of projection is regarded as assigned.
The parameter u = Ut in (8), where t is time. For simplicity we have chosen units such
that the acceleration due to gravity is g = U2. Equation (49), is the parabola of safety
from all such trajectories having fixed U but any m. Equation (51)3 proves that every

trajectory touches the parabola of safety where the local velocity vector has turned through
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90° from its initial direction (a pleasing little theorem in itself), as shown in Fig. 1.
x ]

7N

Fig. 1 Trajectories touching the parabola of safety.

Fig. 2 Legendre duals of trajectory and envelope.
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The reader can use any of the contact transformations (20)—22) to illustrate how
the plane contacting curves (48), and (49); transform into another pair of contacting curves

in the X,Y plane. In particular, (45) applied to (48) and (49) delivers the regular space

curves

e (52)

Yo -giedin 72 % (53)

and

in X,Y,Z space. It can be verified that the parabola (53), is also the envelope of (52), for
varying m, and the contact point at X = —1/m shown in Fig. 2 is the mapping by the
contact transformation (45) of the original contact point (51)1,2. It can also be verified
that (52), is the Legendre dual of (48)1, thus illustrating Theorem 5 that the lift (48) is
mapped by (45) into the lift of (52). The same applies to (49) and (53).

The intersection point (50) is transformed by (45) into
X=m, Y=12=0. (54)

This represents the fact that the contact described after (50) is transformed into the
contact of the parabola (52), with the X—axis, as also shown in Fig. 2. In other words,
(45) transforms the lift of the pole x =y =0 into the lift (54) of its polar.

The special choice P=c=1, g=r=0 in (43) gives f = + 1 and

X =x+2z Y=%z2+y s (55)
This example of a contact transformation was given by Blumen (1981), in other notation,

and stated to be a "one—dimensional analog" of the geostrophic coordinate transformation

in meteorology. We shall explain and extend this statement in §9.

)
/
#
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When we apply (55) to the regular lifts (48) and (49) we get, provided m # 0, the

regular lift
: b e B i e 8
e raﬁ[m*‘ 1]"’ el [m
i and the vertical singular lift
: =0 . ¥si 9. .
3 ) 2’ )

+1]x

(56)

(57)

respectively. These intersect at the transform 0,1/2, —1/m of (51), and the transformed

contact is of the type that the point X = 0, Y =1/2 lies on the parabola (56);. This

illustrates that a lift transformation sometimes does not transform a regular lift into

: another regular lift. Moreover (55) applied to the vertical singular lift of the intersection
i Xx=y =0 of (48), delivers the regular lift of Y = %X& The envelope of (56), for varying
i m consists of this parabola, and the common intersection point X =0, Y = %, as shown
-~ inFig 3.
. Y
i 1 F /
. 8 =
i
! 0.5
1
1
0.25
: \ & X
-1 05 .8 Ok o 0.25 0.5 0.75 !

Fig. 3 Parabolas (56) and their envelope.
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6. Families of special lift transformations

In this Section we give up the requirement that (16) holds. We illustrate briefly
how some lifts can still transform into lifts, even though Theorem 1 and its consequences

are no longer available.

Theorem 6

If the transformation (10) is such that we can find a regular lifted curve satisfying

the pair of differential equations

1R+ @) =0, o, (58)

so that the curve depends on such (10), then the transformed curve is also a lift.

Proof

The result follows from (13) and (18) if §# 0 (and trivially so if 8= 0).

o
It will be easiest to solve (58) if they are uncoupled, with y absent from (58),. If
we confine attention to linear examples of the family (10) for a simple example, this
uncoupling is achieved with
! X = Px+ Qy + Rz,
Y = px+qy + 1z, (59)

Z =gx+cz+f,

where the coefficients are arbitrary and (= q - ZQ.

The differential equation (58), is then

[r+(gx+ 2+ ORI SE 4 p— 1P — gPx +(q = ¢P —1Q)z — gQax — cQz? = 0 (60)

| S

Ber Ay S
| S

o
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which is amenable to solution by elementary methods. For example, the equation is exact
if
—gR = q—cP —1Q — Q(gx + 2¢z) . (61)
This is satisfied for all x and z if
Q=0 and q = cP-gR. (62)
Then = q, and (60) is satisfied by any conic of the type

%—ng2 + gRxz + %ch2 + (fP —p)x + (fR — 1)z = constant. (63)

As one of many possible illustrations we have the following particular simple consequence.

Theorem 7

The transformation

X =fx+z,

Y = [1+ (r—m)fx + fy + 1z, (64)

Z =z+r—m,

with arbitrary constants £ # 0, r and m, transforms the lifted curve

X = %22—mz A %z3—%mz2 (65)

into another lifted curve in X, Y, Z space.

Proof

The result follows from (59) and (63) by choosing g =0, c=R=1, f=r—m
P=1+(r—m)B. Then (65), follows from (65), and (58)s.

7
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The curve (65) is the same as (9), and it does have an isolated singularity at z = m,
but is regular elsewhere. It is readily verified directly that the transformed curve in
X, Y, Z space satisfies (13).

If (61) is not satisfied, then other methods are required. For example, when g=0

(60) is a separable equation with a solution which may be non—algebraic.

(3 Higher dimensions
There is one family of general lift transformations from R2n+! to another R2n+1
for any positive integer n, which can be briefly recorded here, because it is an immediate

generalization of (43). The reader will easily be able to verify the following result, a special

case of which is used in §9.

Theorem 8

Let Pjj; and ¢ij be typical components of any given symmetric nxn matrices, and ;
let r;i be the typical component of any given nxl matrix. Using the summation
convention for repeated suffixes, the mappings

Xi = Py xj + 21,

(66)
Zi = (cpq Pgp £ 1)x; + cj zj + Ij j
m
are general lift transformations in the sense that first differentials satisfy :
|
dY — Z; dX; = = (dy — z; dx;) . (67) :
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8. Generalized duality

Here we augment a viewpoint which is familiar from, for example, the text of Morse
and Feshbach (1953, p. 288), and we indicate how it is related to the approach of §§2—7.

Let any given function S(x, y, X, Y) of four variables be used to define an equation

S(x,y,X,Y) = 0. (68)

For each fixed x, y point, (68) is the implicit description of a curve C (say) in
X, Y space; and for each fixed X, Y point (68) is the implicit description of a curve ¢
(say)in x,y space. If the point x, y is now moved along another curve ) (say), the
varying curves C will envelop another curve E (say), their envelope. We may call )\

and E generalized dual curves. If the point X, Y is moved along another curve A (say)

the varying curves ¢ will envelop another curve e (say), their envelope. We may call A

and e generalized dual curves also. This construction provides a pair of generalized dual
mappings

A—E and A—e, (69)

each of one plane curve into another. It is worth recalling that envelopes do not have to be
convex or minimizing curves, for example because of the presence on them of cusps or
inflexions. In applications envelopes may be wave fronts (e.g., see Arnold 1989, 1990), for
example. Fixed points may be dis joint parts of some envelopes, as we have seen.

We can define a line element of )\ to bea point on A together with the tangent
lineto A at that point. The construction of a differentiable envelope E is such that the
mapping A — E can also be regarded as a mapping of each line element of )\ into a line
element of E; and A — e does the same for the line elements of A and e. When the
functions in (1) are analytic, a line element of ) is specified by the two coordinates x, y
and the value z of (6). This illustrates that the definition of line element has less

ambiguity at singular points than the definition of lift in (3) (the definitions are the same
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at regular points). Notwithstanding the differences between these definitions, the verbal
argument above for the mapping of line elements suggests that there will be circumstances
in which the lift of A\ maps into the lift of E (and that the lift of A maps into the lift of
e). To identify such circumstances precisely, as illustrated in Theorem 10, we require the

following preliminary result.

Theorem 9

When A has the form (1), and E has the form X = X(v), Y = Y(v) where v is

another parameter related to u by a function u(v), (68) has the properties

oS d aS dX . 85 4%,

el&

as
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Proof

By definition, E is the relation between X and Y which is obtained by
eliminating u between S(x(u), y(u), X, Y) =0 and dS/du = 0. Then (70), is
immediate, and (70); follows from dS/dv = 0 applied to
S(x(u(v)), y(u(v)), X(v), Y(v)) = 0. -

Particular illustrations of (68) are available whenever it is possible to eliminate z
between the first two equations of (10), whatever the function Z(x, y, z) may be.
Sufficient conditions for this are 0X/0z+0 or 8Y/6z#0. For example, Legendre duality
is recovered in the special case S(x,5,X,Y) =xX -y —Y obtained by eliminating z
from the first two of (45), and ¢ and C are then straight lines called the polars of the
respective fixed points (called poles). Because $(x,y, X, Y) =5(X, Y, x,y), the two
polars ¢ and C are the same whenever the poles are the same. However, this type of
symmetry is not present in other cases, such as the S(x,y, X,Y) = %— (x=X)2+y-Y

implied by (55). These two examples are included in that provided by (43), namely
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S(x,y,X,Y) = %—(CP + 1)Px2 + Px sy

(71)
+ 3 (Px—X)2=[(cP + )x + 1] (Px— X) — Y .

The Legendre case provides an example of Theorem 9 in which, at regular points, we can

use u=x and v =X, whence (70) becomes the familiar X = dy/dx and x = dY/dX.

Theorem 10

Any transformation of the form

LeXlxpy 8) o Y='Y(x, v.2) Z=g§% (72)
in which :
Ly (73)
has the following properties.
(i) There exists a function z(x, y, X) inducing the definition
S(x,7,X,Y) = Y(x,, 2(x,y, X)) - Y (74)

which provides an example of (68), and which has the gradients

e, B-p, B_, 8__, (75)

(ii) Each fixed point x =a,y =b is mapped by (72); and (72), into a plane curve C

consisting entirely of regular points and expressible explicitly as

Y = Y(X) with gradient g% - %. (76)

(ili)  The whole transformation (72) maps the lift of the fixed point into the lift of C.



(iv)

Proof

(i)

(i)

(iii)

When the x, y point moves along a plane curve A, and (72) is required to be a
general lift transformation, z is the height of the lift of \. Then C varies, and

(72) maps the lift of \ into the lift of the envelope E of the curves C.

Condition (73) is sufficient for (72), to have an inverse function z(x, y, X) whose

gradients satisfy

= OX . X by _0X , X 0z _0X 0z
O_EY+-5?3§’ 0—'3?4"5;3'}7; 1—'57‘5)(- (77)

This inverse can be used in (72)2 to construct the function (74) whose gradients are

those stated in (75), by using (14), (72); and (77).

Equations (72); and (72), map the fixed point into a curve C expressible in
parametric form as X = X(a, b, z), Y=Y(a, b, z) with z as the parameter, and
(73) is the definition that all points of C are regular. C is expressible
alternatively from'(68) and (74) as S(a, b, X (a, b, z), Y(a,b,2)) =0 or

Y = Y(a, b,z (a, b, X)). The chain rule with (77)3 delivers (76),.

The lift of a, b is the vertical singularity above it, which is parametrized by z.
This lift is mapped by the whole of (72) into a space curve

Y=Y(X) withheight 7(x)=3Y (78)

by equating (72); and (76),. But (78) is the definition of the lift of C when, as
proved in (ii), all the points of C are regular. It will be noticed that this proof
only needs the last part of Theorem 2, and it does not use the conditions

@+ fz=0 in(16);, A+ 0 in (19), or the further hypothesis used to get (17);.
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(iv) The gradient of A satisfies (70), in general, and since (75) applies in the case of
(72) with (73),

o FE+pY = 0. (79)

When (72) is a general lift transformation Theorem 2 tells us that o+ fz =0
and f+#0, and then (79) implies

dy.. . dx

T =z I (80)
so that z is the height of the lift of ).
The envelope E of C has a slope which satisfies (70)2, and therefore

ay - ., dX

& =I5 (81)
from (75). By comparison with (13) (with u there now replaced by v), we
deduce that Z is the height of the lift of E. o

At regular points of A we can choose u = X, and at regular points of E we can

choose v = X. The proof of Theorem 10 for the Legendre case is given explicitly in
Theorem 5.

9. A _meteorological application

In this Section we use a notation associated with the physics of the problem, in
place of the neutral notation of the previous mathematics.

Certain mid-latitude motions of the atmosphere on a sub—continental scale,

including allowance for the presence of fronts, can be analyzed using a cartesian system of
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spatial coordinates x, z and time t ag independent variables. Here x is the true
horizontal position vector, and z is a pressure—related pseudo—height. The geostrophic
coordinate transformation is a mapping to an alternative system of independent variables

called geostrophic coordinates M, z, t, where M is the horizontal momentum vector.

—nanad

The active part of the mapping, between x and M

, can be expressed, in the notation of

Chynoweth and Sewell (1989, 1991), as a Legendre transformation with properties

M=g , z=8f iy pes (82)

Bk

where P(x) and S(M) are two scalar functions (eachof z and t also). This useof §
is quite different from that in (68). The modified geopotential (Cullen and Purser, 1984) is
P(x) = ¢(x) + %-52 in terms of the true geopotential function ¢(x). If we introduce a new

two dimensional vector variable P, we can extend Blumen’s (1981) result concerning (55)

to higher dimensions as follows. ‘

Theorem 11

The transformation

L Y=%23+y ) a= ] (83)

from x,y, p space to M,Y,Z spaceisa higher dimensional general lift transformation
from one RS to another, in the sense of (67) for n =2 there.

In particular it maps the lift !

)
y=dx) , p=22 (88)
of the geopotential into the lift

Z = M—x. (85)

Gl s



Proof

The first differentials of (83) satisfy

dY —Z.dM = p.dp + dy — p-(dx + dp) = dy — p.dx, (86)

which is a particular example of (67), and we can say that (83) is a higher dimensional

general lift transformation belonging to the family (66). In this case, in fact,

T

I
St

i (87)
e = 1 87
y

When (84), which makes the right side of (86) vanish, is inserted into (83), and

(82), is used to express x in terms of M, we obtain (85), and the left side of (86)

vanishes.

Purser (1993) has carried further the applications of contact transformations, based

upon the viewpoint of (68), to a wide class of semigeostrophic theories, including vortex

dynamics.
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