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ADVANCED LECTURE No 8

CLIMATES OF THE PAST. III - INSTRUMENTAL ERA

8.1 Summary

The reality and nature of fluctuations in climate in the last 300 years are
discussed in the light of the quality and quantity of instrumental data.
Emphasis is placed on trying to link the "Little Ice Age" fluctuations with
the modern era and on evidence for climate variation over the most recent
century.

8.2 Introduction

This lecture covers climatic fluctuations on time scales from a decade to a
few centuries and bridges the gap between studies of interannual
variability and paleoclimatology. The approach to climatic fluctuations in
the instrumental period has traditionally differed from the approach to
interannual variability, with necessary emphasis on a few long
well-documented local or global time-series of data, mainly those of
temperature and PMSL rather than on statistical and physical links between
atmospheric behaviour in different parts of the globe. The bias remains in
this lecture.

8.3 Observations of changes in temperature

The beginning of the instrumental period (say the early eighteenth century)
coincides with the latter part of the "Little Ice Age" and part of the
problem that must be tackled is whether temperature (and atmospheric
circulation) have really varied appreciably since that time. Referring
back to Fig 7.26, lecture 7, 5190 measurements from tree rings in W. Europe
at least suggest a rise of winter/early spring temperature since the late
seventeenth century, exceeding 1°C up to 1940. Of equal interest is a
marked increase in temperature in 1720-1740 which quickly reversed. Fig
7.26 also showed temperatures for January - March in Central England for
the period after 1700. Central England Temperature (CET) is the longest
available, mostly instrumental, temperature series and we shall first look
at CET in detail.

8.3.1 Central England Temperature and the problems of homogenising ancient
thermometer readings

A fundamental problem in constructing a local time-series is to ensure that
the data are as temporarily homogeneous as possible: in other words, that
a given meteorological reality has always resulted in the same value in the
series. Only to the extent that this is true can the series be used to
make reliable deductions about local climatic fluctuations. A time series
of temperature in a restricted locality may, however, reflect fluctuations
of climate on a larger scale as local temperature is sensitive to much
larger scale changes in atmospheric circulation.

Manley (1974) constructed a monthly temperature series for Central England
and a smoothed updated series (Storey, Folland and Parker (1985)) is shown
in Figure 8.1. Manley chose to represent an area, rather than to reduce

his series to a single point, because of the scattered locations of most of



the early observations, and because the only concentrated observations were
in London and thus were eventually affected by heating resulting from urban

expansion. He adjusted the monthly data to compensate for the following
variables:

i) Different times of observation: the traditional mean temperature
computed as 1/2 (max + min) differs from eg the mean of 8 am and noon, by
amounts which vary with season but can be estimated from modern data. The
problem of different observation times can be quite acute when studying
very long time-scale temperature changes.

i4) The change of calendar in September 1752 when 11 days were omitted in
that month. Daily data facilitated this adjustment.

iii) Housing of thermometers: in the 18th Century this was often an
unheated north-facing room attached to a house; in later years, use was
often made of either north-wall observations, or of Glaisher screens, which
preceded Stevenson screens. The problem of changing thermometer screens
may be a serious problem which has probably never been adequately
investigated.

iv) Types of thermometer: pressure corrections were needed for early
thermometers which consisted of a U-tube with one open end. Also different
scales had to be converted to modern units. Unreliable instruments were
excluded from Manley's compilation.

V) Geographical region and site: Manley found from modern data that so
long as frost-hollows and other unrepresentative sites ‘are excluded, the
monthly deviations from a long-term average, or the successive differences
between months of the same name, are almost uniform for English inland
stations. Thus he could work with temperature differences rather than
absolute temperature values, and producé a single series from overlapping
records at sites scattered through much of England. This technique also
aided cross calibration of early temperature scales and the effects of
changing observing time and instrumentation.

Manley checked his compilation against a series for Utrecht (Holland) and
found good agreement. Also, in periods of sparse data he noted
observations of wind direction and snowfall.

It can be seen from Manley's series (Fig 8.1) that, except in summer, much
of the 20th Century in Central England has been warmer than the previous
250 years: the peak warmth was in the mid-20th Century except in winter
when it was earlier. The late 17th Century was particularly cold,
corresponding to the supposed peak of the "Little Ice Age". There was
notable warmth in the 1720's and 1730's however. These features are also
found in instrumental temperature series for Utrecht and for other
locations in Northwest Europe. Other major features are the warming in
October between 1890 and 1975 and the sharp cooling in April in the past 25
years.

Fig 8.2(A) shows a power spectrum analysis of the unsmoothed annual mean
CET data from 1659-1975. The most significant peak is labelled 76 years
and mainly reflects the temperature fluctuations between about 1890 - 1975
and 1700 - 1770. (bottom diagram of Fig 8.1). Fig 8.2(B) shows a power
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spectrum reported by Lamb (1972), due to Siren, of tree-ring widths in N.
Finland which mainly reflect summer temperature (it is thought). The shape
of Figs 8.2(A) and 8.2(B) are surprisingly similar with more power in Fig
8.2(B) at the 70-200 year time scale presumably because of the longer (497
year) data series. The 23 year peak, like the 76 year peak, is
statistically significant (using an "F" test) and has sometimes been linked
with the "double sunspot" cycle of magnetic activity on the sun. (The
double sunspot cycle is constructed from the sunspot series shown in
lecture 3 by reversing the sign of the values in the sunspot series between
alternate sunspot cycles (which have opposite magnetic polarity)). Fig 8.3
(Folland (1983)) shows that a band-pass filtered time series of annual CET
whose filter function is centred on the 23 year time scale bears no
consistent long-term phase relationship with the double sunspot cycle.
Indeed the 23 year peak disappeared after 1880 whereas the double sunspot
cycle increased slightly in amplitude. Nevertheless the true origin of
this CET fluctuation and the reason for its disappearance is of interest.
The meaning of power spectra such as Fig 8.2 can only be gradually
uncovered by a worldwide study of temperature and circulation fluctuations
as improved data and physical understanding permit. A clue to some of the
variations of CET may come from the diagram shown at the end of lecture U4;
there it was suggested that a century-time scale fluctuation in the
temperature of Lamb westerly types in Central England over the last century
may be related to parallel fluctuations in N. Atlantic SST (see also
section 8.8).

Fig 8.4 shows an attempt (Lamb (1972)) to estimate Central England
temperatures back to the beginning of the Medieval "climatic optimum"
including assessments of their uncertainties. Prior to 1680, the
temperatures have been derived from a mixture of botanical and documentary
evidence. A clear minimum in mean annual and winter CET is suggested
around 1600 - 1700 with winter temperatures in the period 1900-1950 similar
to those during the "Medieval optimum™. ;

8.4 Possible effects of urban heating on temperature records

The possible undesirable effect of urban heating on long time series of
temperature, mostly avoided by Manley, is illustrated for Paris in Figs
8.5(A) and (B) (after Dettwiller (1978)). Central Paris has warmed by 1°C
since 1900 when its temperature is compared with that of the surrounding
countryside; much of the warming has been in the minimum temperatures as is
typical of urban heating. Studies like that of Dettwiller can only be used
to correct urban data if long series of homogeneous rural data exist. The
problem of the effects of urbanisation is serious as many long temperature
series have been kept in what are now large cities; Fig 8.6 compares a long
time series of annual mean temperature for Vienna with that for an
observatory on a low mountain in S. Germany (Hohenpeissenberg) 600 km to
the west. (Angell and Gruza (1984)). A relative warming of Vienna since
1920 appears to have occurred but it is not easy to determine if
urbanisation is the main cause. The higher frequency fluctuations tend to
be in phase however and a very long period temperature fluctuation with a
flat minimum around 1880-1890 is common to both series; the period around
1800 is relatively warm though, unlike in Central England.



8.5 Hemispheric Temperature Fluctuations

Hemispheric scale air temperature variability, mainly over land, has
received increased attention in recent years despite the problems cited
above. Fig 8.7 shows the variations in mean annual N. Hemisphere air
temperature (mainly but not wholly over land - but no ship data is
included) from two authors: Vinnikov et al (1980) for 1881-1978 and Jones,
Wigley and Kelly (1982) (JWK) for 1881 - 1981. Vinnikov et al's analysis
only extends to 17.5°N. However the correlation between the two
hemispheric series is 0.97 (Angell and Gruza (1984)). Of interest is the
fact that the interannual variability of hemispheric temperature is much
less than that for local series like Vienna, Hohenpeissenberg or the
unsmoothed Central England series (mean year to year variation of
hemispheric temperature is about 0.15°C compared to 0.8°C in the Vienna and
Hohenpeissenberg series). Despite this, the (decadally-averaged) century
time-scale fluctuations are comparable, being in the range 0.5°C - 199G

The reality of a coherent long time-scale N. Hemisphere temperature
fluctuation this century is suggested by Figs 8.8(A) and (B), taken from
Jones and Kelly (1983). The warming between 1917-1939 is quite coherent
over mid and higher latitudes (Fig 8.8B); also the Arctic series is rather
l1ike that for the N. Hemisphere as a whole but with larger amplitudes of
fluctuation. Groveman and Landsberg (GL) (1979) used regression formulae
relating a near-hemispheric grid-point data series of N. Hemisphere air
temperature which had been previously constructed by Borzenkova et al,
(1976) to temperature values constructed for a few very long-period
stations. These series had to be based on a mixture of botanical and
documentary data in the pre-instrumental era. In this way a continuous N.
Hemisphere temperature series was estimated back to 1579 (Fig 8.9).
Confidence limits for the series are shown and are comparable to the
magnitude of the climatic changes suggested by the series. Nevertheless, a
cold period around 1600-1700 is suggested in common with European series,
with a hint of warmth in the 1730's. The large temperature fluctuation in
the first half of the nineteenth century is less expected but the early
twentieth century warming (based on instrumental data) is clearly visible
in GL's series and is comparable in magnitude with that of JWK or

Vinnikov et al.

8.6 Can we believe the evidence concerning land surface temperature
changes?: the associated circulation fluctuations

8.6.1 Atlantic Sector

The chief evidence for circulation fluctuations in the last few hundred
years comes from the Atlantic sector and is to be found in:-—

(a) diaries kept by careful observers of wind direction and weather.

(b) Since the eighteenth century, we have many measurements of pressure at
station level.

One of the most interesting and lengthy series of type (a) was put together

by Lamb (1972), (of necessity rather subjectively), (Fig 8.10), and shows
variations in the frequency of south westerly winds in S.E. England.
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A relatively low frequency of south westerly winds during much of the 17th
century and a peak in the 1730's is in accord with the variations in CET
(i.e. outside the summer season; in summer, the level of CET is not
well-related to the frequency of south westerly winds). A minimum
frequency of south westerly winds has been confirmed for a few years in the
late 18th century by Kington (1980) who has constructed daily weather maps
for the period 1781-86. At this time, due to a briefly successful
interlude of international cooperation, a well-distributed network of
pressure observations was made in Europe. Lamb and Johnson (1966) have
also constructed monthly-mean PMSL charts for the N. Atlantic for January
and July since 1750, and in later years, for much of the N. Hemisphere.

The most convincing evidence of a circulation fluctuation (in winter) in
the N. Atlantic sector over the last century is probably provided by Fig
8.11(A). The data from the two stations shown are of good quality, have
been carefully scrutinised and both are situated near sea-level. They
provide an index of Atlantic circulation where the strength (or location)
of the mid-latitude N. Westerlies is reflected by the size of the
difference in PMSL between the Azores and Iceland. The long-term trend in
this index in winter roughly parallels the trend of Manley's CET; greatest
warmth in the winter parallels the strongest westerlies earlier in this
century, but correspondence is somewhat poorer in the late 19th Century.
Fig 8.11(B) shows variations in a more subjective index: that of Lamb
"Westerly" types over UK which were introduced in Lecture 1 (from Lamb
(1977)). Allowing for differences in the location and definition of the
indices,; (UK is 30°E of Azores and Iceland) Fig 8.11(B) is acceptably
similar to Fig 8.11(A) though some details do differ.

Focussing on a shorter period, Fig 8.12 shows differences in PMSL during
January over the N. Hemisphere between 1951-70 and 1901-30 taken from
Folland, Parker and Newman (1985). Some of the differences will not be
reliable but most of those over the N. Atlantic between 20°N and 75°N
should be. In the period 1901-30, a very strong mid-latitude south westerly
wind anomaly (of magnitude 3-4 m/s over Scotland) existed in January
relative to 1951-70. Scrutiny of Fig 8.1 (where the 20 year running mean
of CET is plotted against the last year of the 20 year period) shows that
between 1911-30, January CET averaged about 1.2°C higher than in the latter
period. 1.2°C is a large change in mean temperature; e.g. during the recent
30 year period (1951-80) a month with an anomaly of 1.2°C from the mean is
just enough to place that month into the top 20% of the January temperature
probability distribution. The larger warming in October between 1890 and
1975 can be shown to be partly due to an increase in the frequency of south
westerly winds in that month. The warming is so large that a very mild
month (top 20% of the ranked distribution of October temperatures in the
period 1870-1900) could easily have the same temperature as a rather cold
month (bottom but one 20% of the 30 year ranked distribution of October
temperature) in the period 1951-80. The sharp cooling in April since 1961
has been associated with a strong increase in blocking and thus in
east-north-east winds in that month. So (mainly) as a result, there have
been no very warm Aprils in Central England since 1961.
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8.6.2 Evidence of Circulation variations on the global scale

A comprehensive analysis of all available quality-controlled PMSL data on
land and at sea has yet to be carried out. However the potential value of
such analyses is suggested by Fig. 8.13 taken from Tan and Yasunari (TY)
(1983). TY analysed July PMSL over much of the globe using station,
including island, data but excluding the Atlantic Ocean sector 0-60°W. The
data was analysed into a grid point format. Fig 8.13 (A) shows the first
two eigenvectors (EOFs) of an EOF analysis of 11 year running mean PMSL
data; this averaging time-scale was chosen to highlight the long time-scale
variations. The first EOF (31% of the variance) is negative north of about
20°N and positive to the south; the time series suggests a progressive
reduction of PMSL in the S. Hemisphere relative to the extratropical N.
Hemisphere over the last century with a temporary halt to this tendency
between about 1900 and 1930. Fig 8.13(B) shows the second EOF (19% of the
variance), a variation of PMSL between the Pacific and Indian Ocean on the
one hand and the surrounding continental areas on the other. Relatively
low pressure over land and high pressure over the oceans is suggested in
the late nineteenth century and mid-twentieth century, with a reversed
pattern around 1900-1920. Both eigenvectors are clearly dominated by
century time-scale variations. Could these PMSL eigenvectors reflect
century-time scale fluctuations in relative air temperature between
continents and oceans or even between whole hemispheres? It must be
emphasised though that away from the mid latitude N Atlantic region most
existing grid point data sets of PMSL must be viewed with great caution.
Parker (1980) has shown that substantial disagreements exist, especially
over the N. Pacific, between several well-known N. Hemisphere PMSL data
sets, (TY's data set was not tested), of sufficient magnitude to obscure
past real circulation changes in some regions unless they have been large.
Other authors have shown that PMSL data sets have been subject to sudden,
unrealistic, changes in the mean value of derived PMSL over some
mountainous regions and are e.g quite unreliable over the Canadian and
Siberian Arctic prior to about 1930.

8.7 Changes in Troposphere and Stratosphere Temperatures

These data series are generally too short to indicate much about climate
change; the series are presently much more useful for studying interannual
variability, especially the effects of El Nino, for which the data have yet
to be fully exploited. Radiosonde data are unfortunately subject to severe
problems of changing instrumental biases, especially upper atmosphere
temperature measurements; biases vary between countries and therefore may
be geographically variable. This problem results from a combination of
changes in instrumentation and changes in correction procedures. The main
difficulty has been the need to compensate adequately for solar heating of
radiosonde thermometers; the problem is acute in the lower stratosphere.
Fig 8.14 shows time series of fluctuations in tropospheric and
stratospheric temperature reported by Angell and Gruza; the N Hemisphere
stratospheric changes at 26-55 km are far too large to be due to the
expected cooling influence of increasing carbon dioxide. It is possible
that a careful synthesis of these data and surface data may become feasible
in the next few years.
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8.8 A recent study of climate variations using worldwide SST and Night
Marine Air Temperature (NMAT) Observations

The first reasonably comprehensive analysis of worldwide SST and MAT,
including attention to the problems of data quality, especially those due
to changing measurement biases, has been carried out by Folland, Parker and
Kates (1984) and Folland, Parker and Newman (1984). They used the
Meteorological Office Historical Sea Surface Temperature data set (MOHSST)
(see Minhinick and Folland (1984)) and the corresponding night marine air
temperature data set (MOHMAT) (Parker 1984).. Folland, Parker and Kates
(198Y4) discuss the problems of the changing biases in the SST and MAT
observations; the biases in the latter were reduced by only using
night-time observations of air temperature, thereby eliminating most of the
problems due to heating of the ship's fabric in bright sunshine. Despite
the fact that problems are known to still exist with these data, the
apparently reasonable agreement between variations in SST and in MAT on
many time and space scales has suggested that useful information about
climate change over the oceans can be obtained from them. Fig 8.15(A)
indicates the amount of data available and Fig 8.15(B) gives an idea of the
worldwide SST (or NMAT) data coverage in the 1870's; nowadays data are
reasonably complete on a seasonal time scale north of U45°S except west of
Chile and in parts of the Tropical central Pacific.

8.8.1 Main Results of the Marine Analysis

Fig 8.16(A)-(D) shows the main results on the global space scale. Fig
8.16(A) shows the SST and NMAT time series before correction; the data are
expressed as anomalies from a 1951-60 average. The main correction to the
NMAT data concerned compensation for a progressive increase in the heights
of screens above the ocean surface as ships have become larger. In
addition, pre-second world war SST data were too cold due to the
predominant use of canvas or leather buckets to collect sea water which
suffer from evaporative cooling on the time scale of the SST measurement
procedure. Fig 8.16(B) shows the series after correction. A century
time-scale fluctuation in SST and NMAT is indicated of range about 0565
0.6°C; part of the superimposed "noise" is related to the influence of El
Nino (see lecture 5). Fig 8.16(C) shows that the time series of SST and
NMAT anomalies have a remarkably similar shape in all calendar seasons (or
months); this is similarly true for most regions of the world. The
development of EL Nino tends to be locked to the seasonal cycle and the
increased interannual variance of global SST and NMAT between October and
March in Fig 8.15(C) would be expected as a result. Fig 8.16(D) shows a
comparison of corrected NMAT averaged over the N. Hemisphere and a
digitized version of Jones, Wigley and Kelly's land surface temperature
data. After 1900 the agreement is very good, surprisingly so perhaps as:-—

(a) The data are completely independent in origin and

(b) largely independent in the areas they represent.

(¢) the surface ocean air temperatures show the same interannual and
long-time scale magnitudes of variation as those on the land, a result not
expected by some authors due to the thermal inertia of the oceans.

Fig 8.17(A) shows zonally and decadally averaged changes in SST between

1856-1980 (anomalies expressed from a 1951-60 average). Relatively warm
conditions at most latitudes are suggested around 1861-1875 (data was
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sparse but widely spread) followed by a slow cooling. A more rapid cooling
followed in the N. Hemisphere between 1891-1910, especially in middle and
sub-tropical N. Hemisphere latitudes. Warming then commenced in all
latitudes with peak warmth around 1950. After 1951-60, cooling occurred in
the N. Hemisphere until 1971-80 but further slight warming is evident in
the S. Hemisphere. Interestingly, in the light of the PMSL analysis in Fig
8.13(A),the S. Hemisphere was relatively coldest compared with the N.
Hemisphere around 1871-1880 and relatively warmed until about 1891-1900
with only slow relative warming thereafter. After a sharp relative cooling
around 1930-50, further relative warming started. Despite the limitations
of both Fig 8.17(A) and the non-global coverage of Fig 8.13(A), a direct
1ink between the SST and PMSL changes is possible as relative warming of
one hemisphere should cause its PMSL to fall relatively to the other
hemisphere. Fig 8.17(B) shows the worldwide SST anomalies in the coolest
decade, 1903-12, compared with 1951-60, which was (probably) the warmest
decade. The worldwide nature of the century-time scale SST fluctuation is
brought out, with smallest changes in the Tropical central and W. Pacific
and largest (reliable) changes in the tropical and sub-tropical Atlantic.

Fig 8.18(A) shows the first correlation eigenvector, EOF1, of seasonal 10°
x 10° ‘area SST anomalies calculated between 1901-1980. This eigenvector
accounts for about 11% of the variance of SST on the 10° x 10° space scale
measured in all areas; Fig 8.18(B) compares the time series of this
eigenvector with that of the global, seasonal, SST anomalies shown in Fig
8.16(B). The correlation is over 0.9. (The arrows point to years judged
to experience an E1l Nino warming event). EOF1 indicates that relative to
the local variance of SST, the largest long time scale changes in SST have
occurred in the tropical and subtropical Atlantic, in the N. Indian Ocean
and near Japan. Only a small region near Greenland has fluctuated with a
weak opposite phase to that of the remainder of the world, i.e. the
long-term variations have probably been truly worldwide. In fact
individual time series of most individbal 10° x 10° areas show a common
long time scale SST or NMAT fluctuation of similar phase in all seasons.

Fig 8.19(A) shows maximum entropy power spectra of SST and NMAT for the
Northern and Southern hemispheres for 1861-1980. The dominant peak in the
N. Hemisphere represents the century time-scale fluctuation; in the
Southern hemisphere this peak is large but shorter time scale fluctuations
in the period range 2.5-10 years are more prominent - mainly related to El
Nino. The peak near 17 years (SST) or its equivalent near 20 years in NMAT
is unexplained but merits investigation. Fig 8.19(B) shows a spectrum of
global SST between 1951-80 when long-time scale fluctuations (averaged over
the globe as a whole) are not very evident. ENSO-related fluctuations
dominate the spectrum though the 8-10 year time scale fluctuations,
prominent in the original time series, are not clearly only the result of
successive ENSO events. Fig 8.20 highlights the relative changes in S. and
N.Hemisphere SST (effectively on a 5-10 year time scale). The relative
warming of the Southern Hemisphere since about 1960 is shown and currently
exceeds 0.3°C or over half the range of the long term trend in global SST.

Figs 8.21(A) and (B) suggest a possible link between the long term trend in
land and ocean surface temperatures and recent fluctuations of some
European glaciers, despite the complexity of the climatic factors that
influence individual glacier advances and retreats. Figs 8.21(A) and (B)
show that the percentage of advancing and retreating glaciers in




Switzerland (derived from a large sample and quoted by Untersteiner (1984))
and variations in N. Atlantic SST north of 35°N seem to be related. Autumn
was chosen as being the most critical season affecting glacier advances and
retreats though in the N. Atlantic all seasons show broadly similar SST
fluctuations. The advance of the Swiss glaciers in the early twentieth
century seems to correspond with the cool period in the N. Atlantic (and
over the globe) around 1900-1915; the subsequent retreat peaked around 1950
again seems to be nearly phase locked to the variations of SST. Most
convincing is the recent advance that corresponds well with the fall in N.
Atlantic SST up to about 1980. The changes in SST may not of course be the
direct cause of the glacier fluctuations - both may be the result of a
third common factor. ;

8.9 The Sahel Drought

The Sahel drought has been a special theme of these lectures. So it is
perhaps fitting that we should complete the trilogy of lectures on climatic
variations with recent evidence that the drought is not just a regional o
phenomenon but seems to be related to large scale changes in atmospheric
circulation and possibly of SST. Fig 8.22 repeats for convenience the 2
graph, due to Nicholson (1985) of Sahel rainfall anomalies shown in lecture
1. Fig 8.23(A) and (B) show for July and August separately maps of PMSL
differences for the N. Hemisphere derived from the Met O 13 grid point PMSL
data set for the most recent dry Sahel period (1968-84) minus the wet
period (1950-59). The two maps are remarkably similar and the regions of
difference that are statistically significant at the 5% level (shaded)
cover similar areas. These areas total about 25-35% of the N. Hemisphere
north of 20°N, the southern limit of the analysis. The chance area is
about 5-7%. Except near the Himalayas, the central N. Pacific and over
Greenland, the PMSL changes should mostly be reliable. The largest changes
occur near Scotland; as a result, rainfall averaged over England and Wales
(EW) in July and August has been declining since about 1955-1960 with a
small reduction in June also. Fig 8.24 shows unsmoothed standardised (EW)
prainfall totals for July and August since 1901. The possible link between
the Sahel drought and UK drought is heightened by the fact that since 1975
four of the 11 driest summers (June-August) recorded in EW since 1767 have
apparently occurred. The EW series used is due to Wigley et al (1984).

The summers include the driest (1976) and second driest (1983). (1984 was
probably the sixth driest). Recent work (Folland, Palmer and Parker
(1986)) has shown that recent hemisphere scale SST changes (which have been
considerably larger in the N and S Atlantic sector) are related to the
Sahel drought. This possibility is currently being explored using the
Meteorological Office 11-level AGCM. Rowntree and Bolton (1983), in an
investigation of the effects of large scale soil moisture deficits over W.
Europe in summer, have provided evidence from experiments with the
Meteorological Office 5-level AGCM of a possible positive feedback between
dry conditions over W. Europe and over the Sahel; (the fundamental cause of
dryness in either region would have to lie elsewhere however). The
feedback is conceivable as a drier than normal origin of the N.E. trade
winds that converge toward the W. Africa ITCZ near 20°N in July and August »
could play a part in further suppressing deep convection just to the south.

8-12



8.10 Conclusion

The nature, even the real existence, of climate change and variation in the
instrumental era is only now being exposed. As yet, except for the role of
El Nino, there are few convincing explanations of the observed fluctuations
but the role of the oceans is likely to be crucial on most time scales.
Meanwhile a wide-ranging critical review of current evidence for climate
change in the instrumental period has been prepared by Ellsaesser,
MacCracken and Walton (1986); it is recommended as providing an excellent
summary.
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.- Variation in mean-annual NHST according to Vinnikov
et al. (analysis only to 17.5°N), and Jones, Wigley & Kelly. The
volcanic eruptions of Krakatoa and Agung are indicated.
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Zonally-
averaged sea-surface tem-
perature anomalies (rela-
tive to 1951-60) (°C).
Values are for 5-vearly
overlapping decades and
are corrected for instru-
mental changes. b, Correc-
ted decadal sea-surface
temperature for 1903-12
relative to 1951-60 (°C).
Hatching denotes missing

data.

Figure 8.17
From IMolland,
Parker and
Xates (1984)
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EOF1 Global SST (10" squares 1301-80)

120°E 180° 120° 60°W 0 60°E 120°
fFigure 8,184 From Jolland,Parker and Newman (1934

Comparison between EOF1 and Global SST Anomaly Time Series

Temperature ('C)

Temperature (C)

Figure 2,183 From Polland,Parker and Newman (1934)
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- Migure 38,20 Jiltered seasonal 38T and night marine air tenperature
afnomalies in the N and 5 Hemisphere 1856-1984, The filter used was a
triangular one of 41 terms (10% years) total length,
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Figure 8,21A From Untersteiner (1984)

Percentage of advancing and retreating glaciers in
Switzerland, 1891-1975, showing the increase of advancing
glaciers since the mid-twentieth century. (From Kasser & Aellen,

1981.)
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Figure 8.24.



