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Abstract: 
A number of papers have looked at the effect of observation errors on verification statistics. In this paper, those methods are brought 
together in order to assess the importance of observation errors on verification statistics for the Met Office short-range ensemble 
prediction system. 
The results indicate that the effect of observation errors is substantial - reducing the apparent skill of the forecast system by around 
1-day in forecast lead time. The effect of observation errors are typically largest at short lead-times when forecast errors are smallest. 
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1 Intr oduction 

A major problem in the area of weather forecasting 
is caused by deficiencies in the observing network, 
either through the imperfect coverage of the observa­
tional network or through errors in the observations 
themselves. These deficiencies contribute to the ini­
tial condition uncertainties that have been the subject 
of great study. Comparatively little has been written 
about the effect of observation errors on the ver­
ification of forecasts. Recently a few papers have 
addressed this issue. These methods are briefly 
reviewed here, and then applied to forecasts from the 
Met Office Global and Regional Ensemble Prediction 
System - MOGREPS, (Bowler et al., 2007). 

Ciach and Krajewski (1999) introduced an error 
separation technique for decomposing the mean 
square error of a forecast into terms involving the 
error in the observations and the error in the forecast. 
Anderson (1996) & later authors (Hamill, 2001; Sae­
tra et al., 2004) used the rank histogram for verifying 
ensemble forecasts and showed how to remove the 
effect of observation errors from the verification of 
these forecasts. Bowler (2006) developed a method 
for accounting for the effect of observation errors in 
categorical verification of forecasts. Recently, Can­
dille & Talagrand (personal commun.) have intro­
duced a method which treats the observation defin­
ing a probability distribution, and using methods for 
the verification of probability forecasts to assess the 
impact of observation errors. That method will not be 
used in this study. 

∗Correspondence to: N. E. Bowler, Met Office, FitzRoy Road, Exeter, 
EX1 3PB, UK. E-mail: Neill.Bowler@metoffice.gov.uk 

In this paper a set of forecasts will be verified 
using a number of verification methods. In section 
2 the root-mean-square error is considered. The 
rank-histogram is used in section 3, and categorical 
verification of forecasts is examined in section 4. In 
section 5 verification using analyses is considered 
and how this can lead to some difficulties in the 
interpretation of results. Methods for estimating the 
observation error are discussed in section 6. Final 
discussions are presented in section 7. 

The forecasts verified here are from the global 
component of the Met Office short-range ensemble 
prediction system MOGREPS (Bowler et al., 2007). 
This system has 23 perturbed forecasts, plus a con­
trol forecast, and initial condition perturbations are 
derived from the Ensemble Transform Kalman Fil­
ter (ETKF). The forecasts (except in section 5) are 
verified against radio-sonde observations across the 
globe. The observation errors are taken from the 
standard estimates used by the data assimilation 
system. In this paper we choose to focus on fore­
casts of wind speed at 850 hPa, for which radio­
sonde observations are expected to have an error 
of 1.6 m/s. This is the standard value used by the 
Met Office data assimilation system and includes the 
fact that the observation may not be representative 
of the average conditions over a model grid-length. 
For categorical verification, the event is chosen to 
be the wind speed being at least 10 m/s. Similar 
results have been seen for verification of other quan­
tities. Ideally account should be taken of the effect of 
varying climatology (Hamill & Juras, 2007), and con­
fidence intervals should be used, but this is beyond 
the scope of the current study. A simple bias cor­
rection has been applied to all the forecasts before 
verification is performed. 
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2 Root-mean-square error 

The root-mean-square error of a forecast is given 
by the RMS difference between the forecast and the 
verification as 
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Figure 1. The root-mean-square error, and RMS spread, of forecasts 
of wind speed at 850 hPa, verified against radio-sonde observations. 

1.5% to give a 1% improvement in the RMSE mea-
sured against observations. This means that forecast 
improvements may be considerably larger than they 
appear to be. Conversely, an improvement to the 

1 
RMSE = (fi − vi)2 . (1)

N 
i=1 

Here fi is the forecast value for some quantity, and 
vi is the value against which the verification is per­
formed. Typically, the verification will be performed 
against either observations or an analysis of the 
atmospheric state. Both these sources of information 
will be corrupted with errors, which has a consequent 
effect on the score achieved by the forecast. As 
shown by Ciach and Krajewski (1999), if the errors 
in the observations can be treated as additive noise, 
then the RMSE of the forecast as measured against 
observations is given by 

observing network could improve the apparent qual-
RMSEt 

2 + RMSEe 
2 (2)RMSEo = ity of a forecast, even if the system has not been 

changed. 

3 Rank-histograms 

The rank histogram was developed independently by 
a number of authors (Anderson, 1996; Hamill and 
Colucci, 1997; Talagrand et al., 1997) in order to 
assess whether an ensemble forecast is reliable. If 
the ensemble forecast is reliable, then the set of 
ensemble member forecast values (at a given point) 
will be drawn from the same distribution as the true 
state. If this is the case, then it implies that if an n-
member ensemble and the verification are pooled 
into a vector and sorted from lowest to highest, then 
the verification is equally likely to occur in each of 
the n + 1 possible ranks. By repeated calculation of 
the rank for many independent sample points, the 
pooled result should be a uniform histogram. This is 
a general result that is true irrespective of the shape 
of the distribution which defines the truth. 

In order to account for the effect of observation 
error, it is appropriate to randomly perturb the fore­
cast values for each ensemble member by the obser­
vation error, as was suggested by Anderson (1996); 
Hamill (2001); Saetra et al. (2004). The effect of this 
approach is to increase the spread of the ensemble 
to account for the effect of observation error. A lot 
of focus on rank histograms is on the frequency with 
which the verification lies outside the range of the 
ensemble (the outlier frequency). Since the verifica­
tion can often lie close to, but outside the forecast 
values then observation errors can have a very large 
effect on rank histograms (as argued by Saetra et al. 
(2004)). 

Results for the MOGREPS ensemble, for fore­
casts of 850 hPa wind speed made at a lead time 

where RMSEt is the value of the RMSE if the true 
state of the atmosphere is used in the verification, 
and RMSEe is the RMSE of the observations, as 
measured against the truth. Of course, the truth is 
not a quantity which is known, but it is the quantity 
against which we would wish to verify. Provided 
estimates of the observation errors can be obtained, 
then equation 2 may be inverted to give an estimate 
of RMSEt. 

Verification of the RMSE of MOGREPS ensem­
ble mean forecasts for wind speed at 850 hPa is 
shown in figure 1. The RMSE of the ensemble mean 
forecast is clearly less when the effect of observation 
errors is accounted for. Also note that since it is the 
square of the RMSE that is subtracted, the effect of 
observation error is largest at short lead-times, when 
the forecast error is smallest. Also shown is the RMS 
spread of the ensemble forecasts. An ideal ensem­
ble forecast would have a spread equal to the RMSE 
of the ensemble mean. The MOGREPS ensemble 
appears to be under-spread, even after accounting 
for observation error. 

Evaluations of ensemble prediction systems 
have sometimes focused on the ensemble spread, 
and whether the spread is growing sufficiently fast. 
Since observation errors affect the apparent rate of 
growth of the RMSE of the ensemble mean forecast, 
the conclusion about whether the ensemble spread 
is growing fast enough may be affected, although in 
figure 1 the difference in growth rates appears small. 

Another issue is the quantification of improve­
ments in the forecasting system. If the RMSE 
of a forecast (as measured against observations) 
reduces by 1%, how much has the forecast really 
improved? Using the data from figure 1, the fore­
cast will have improved by between 1.25% and 
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Figure 2. Rank histogram of 72h forecasts of wind speed at 850 
hPa, verified against radio-sonde observations. 
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Figure 3. The frequency with which the verification lies outside the 
range of the ensemble, relative to the number expected for a flat rank 

histogram. 

of T+72 hours, verified against radio-sonde obser­
vations is shown in figure 2. For the ideal flat rank 
histogram the verification would lie outside the range 
of the ensemble 2/24 ∼ 8.33% of the time (the control 
forecast is not included in this assessment). In reality, 
the observation lies outside the range of the ensem­
ble approximately 24% of the time. This reduces to 
around 13% of the time once the effect of observation 
errors has been accounted for. 

The frequency of outliers as a function of lead 
time is shown in figure 3. This has been normalised 
by the expected number of outliers (for a flat rank-
histogram) so a reliable ensemble would have a 
value of one, and a value of two indicates the verifi­
cation lying outside the range of the ensemble twice 
as often. As the lead time increases the frequency 
of outliers, when verification is performed against 
observations, decreases rapidly. When account is 
taken of observation errors, however, the frequency 
of outliers is approximately constant with lead time. 
This indicates a persistent feature of the effect of 
observation errors - they are larger at shorter lead 
time. 

Event Forecast Event not forecast 
Event 
occurred 

a (hit) b (miss) 

Event did not 
occur 

c (false alarm) d (correct rejection) 

Table I. Contingency table for a categorical forecast. A perfect 
forecast would have zeroes in the off-diagonal elements. 

4 Categorical verification 

A categorical forecast is defined as one which fore­
casts whether a particular event will occur, for exam­
ple will it rain in London tomorrow? Thus a whole 
wealth of forecast information is reduced to a fore­
cast probability for an event to occur. In the case of 
a deterministic forecast a contingency table with four 
entries may be constructed as is shown in table I. For 
a perfect forecast (and error-free observations) only 
hits and correct rejections would be seen. Innumer­
able skill scores may be derived from a categorical 
forecast (Stephenson, 2000) and their popularity lies 
in the simplicity of the verification method. 

Accounting for observation errors by perturbing 
the forecast value by the observation error would not 
be acceptable, since this would reduce the measured 
skill of the forecast. Instead, the effect of observation 
errors must be accounted for by treating the error 
as a perturbation to the observations, and trying to 
remove the effect of this perturbation. Bowler (2006) 
performed this using a deconvolution method. 

Consider the instance when some event has 
been forecast to occur. For a large number of such 
cases, one may consider the true value of the quan­
tity being forecast to have been drawn from some 
distribution, Pt. Similarly, the observations may be 
taken as being drawn from another distribution, Po. 
Finally, we define the observation errors to be taken 
from a third distribution, Pe. If the errors in the obser­
vation are independent of the true value of the quan­
tity being observed, then the distribution of the obser­
vations may be written as the convolution of the dis­
tribution of the truth with the pdf of the observation 
errors 

∞ 

Po(x|F = 1) = Pt(y|F = 1)Pe(x − y|F = 1)dy 
−∞ 

(3) 
where x is the observed value, y is the true value 
and the distributions have been conditioned on the 
event being forecast to occur (F = 1). This formula 
can be equally applied for forecasts of the event not 
occurring (F = 0). No assumptions have been made 
about the shape of the distributions and these may 
be different for forecasts of the event to not occur. 
Once the distribution of the truth has been estimated 
via the deconvolution, the correct contingency table 
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Figure 4. The distribution of observed values, not conditioned on 
the forecast 
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Figure 5. The distribution of observed values, given that the wind 
speed was forecast at T+72h to be at least 10 m/s by all ensemble 

members. 

values may be estimated by calculating what fraction 
of this distribution lies above the event threshold. 

Results for the MOGREPS ensemble are shown 
in figures 4 and 5. Each figure shows the distribution 
of observed values, before and after the deconvo­
lution has been applied. Figure 4 shows the distri­
bution of observed values without any conditioning 
on the forecast value. As can be seen, most of the 
observed values lie below the 10 m/s threshold, indi­
cating that the wind speed is often observed to be 
below this threshold. Similarly, figure 5 shows the 
observed distribution, given that all the ensemble 
members forecast the wind speed to be greater than 
10 m/s. In this case, most of the observations are 
above the threshold. 

In both figures 4 and 5, the dashed line shows 
the distribution of observations after the deconvolu­
tion has been applied. These distributions are close 
to the original distribution of the observations, indi­
cating that observation error has a relatively small 
effect. However, the removing the effect of observa­
tion errors narrows the distribution, decreasing the 
number of events that were observed to occur when 
the forecast said they would not, and vice-versa. 
Thus, the system is judged to be more skilful when 
account is taken of the effect of observation errors. 

Crown Copyright c� 2007 

The deconvolved distribution in figure 4 is noisy for 
low wind speeds. This is because the observed dis­
tribution drops-off sharply at low wind speeds, and it 
is difficult for the deconvolved distribution to replicate 
this behaviour. This suggests that the error model of 
additive noise is inappropriate at these wind speeds. 

The kink in the distribution of observations (see 
figures 4 and 5) at wind speeds of around 16 m/s 
is due to problems with fitting the data into discrete 
bins. Many of the radio-sondes report the wind speed 
in whole numbers of metres per second. However, 
many of the radio-sondes report the wind speed 
in whole numbers of knots. These two conventions 
mean that there is no binning method which will be 
well suited to both types of data, and hence the 
kink observed. This rounding has been reproduced 
in the code used in this study, so should not affect 
the results presented. Given the observations are 
believed to have errors of around 1.6 m/s, it is 
strange that some reports only contain information 
to the nearest 1 m/s! 

Plots of the relative operating characteristic 
(Mason & Graham, 1999) show the hit rate (H) 
against the false alarm rate (F ) for different con­
fidence levels (such as probability of precipitation 
greater than 50%). The hit rate and false alarm rate 
are defined as follows 

a 
H = (4) 

a + b 
c 

F = (5) 
c + d 

where a, b, c and d are the standard contingency 
table values shown in table I. Values at different prob­
ability thresholds define a series of points, which are 
often joined by straight lines. Observation errors can 
be accounted for by calculating the distribution of 
observations for each probability threshold, then per­
forming the deconvolution, giving results as shown 
in figures 4 and 5. From these the contingency table 
values may be calculated, and therefore H and F . 

Figure 6 shows the relative operating charac­
teristic (ROC) for MOGREPS forecasts, before and 
after account is taken of observation errors. The 
system is noticeably more skilful when observation 
errors are accounted for. This may appear surpris­
ing, after having noted that observation errors have 
a small effect on the distribution of observed values. 
However, the quality of a forecast system is typi­
cally judged on the small number of misses and false 
alarms that it is verified to have, and these numbers 
are much more sensitive to the effect of observation 
errors. 

The area under the ROC curve gives a single-
figure summary of the information contained in the 
ROC plot, and can be taken as a skill score of the 
forecast. For simplicity the area is calculated using 
a series of straight-line segments, rather than the 
superior method advocated by Wilson (2000). The 
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Figure 6. Relative operating characteristic (ROC) for 72h ensemble 
forecasts of the event of the wind speed being greater than 10 m/s. 
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Figure 7. Area under ROC curve as a function of lead time for 
forecasting the event of the wind speed being greater than 10 m/s. 

ROC area for MOGREPS forecasts of wind speed of 
10 m/s is plotted as a function of lead time in figure 
7. This indicates that the effect of observation errors 
is equivalent to a degradation of forecast quality of 
around one day. 

Although much of the focus of this paper has 
been on the performance of probabilistic forecasts, 
the deconvolution method outlined above can be 
used for deterministic forecasts. This allows the cal­
culation of the contingency table (see table I) before 
and after the correction for observation errors has 
been applied. A popular skill-score for the determin­
istic forecast is the odds ratio (Stephenson, 2000), 
and is plotted in figure 8 for the MOGREPS con­
trol forecast. The effect of observation errors is clear, 
implying a degradation in forecast quality equivalent 
to a lead time between 12 and 24 hours. 

The deconvolution algorithm is based on a sim­
ple optimisation routine. An initial deconvolved dis­
tribution is considered, which is convolved with the 
distribution for the observation error, and this distri­
bution is compared with the distribution of the obser­
vations. A small change to the initial deconvolved 
distribution is then tested. The modified distribution is 
convolved with the observation error distribution, and 
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Figure 8. Log of the odds ratio of the control forecast of the 
ensemble, for forecasting the event of the wind speed being greater 

than 10 m/s. 

this is compared with the distribution of the observa­
tions. If the small change brings the convolved dis­
tribution closer to the observed distribution, then the 
change is accepted, and the process repeats. 

5 Verification against analysis 

It is quite common in numerical weather prediction to 
perform verification against an analysis of the atmos­
pheric state. This can pose problems, since the 
errors in the analysis are not easily found, and those 
errors may be related to the errors in the forecast 
being verified. The analysis is typically calculated 
by combining information from a forecast from the 
previous analysis cycle (background forecast) and 
the latest observations. Clearly, errors in the back­
ground forecast will propagate into the new analysis, 
although their impact will be reduced by the use of 
the latest observations. Simmons & Hollingsworth 
(2002) estimated the the correlation between anal­
ysis and forecast error is between 0.37 and 0.5 for 1­
day forecasts of geopotential height at 500 hPa. Any 
persistent model errors will, by definition, be present 
in the forecast, but therefore also in the analysis. This 
makes the use of the analysis for verification very 
troublesome indeed! 

Figure 9 shows the RMSE of the MOGREPS 
forecasts, as displayed in figure 1, but also with verifi­
cation against analysis, where the analysis has been 
interpolated to the location of the radio-sonde obser­
vations. The RMSE of the forecast, when measured 
against analyses, is less than the RMSE measured 
against observations, even after observation error 
has been accounted for. This indicates that either 
errors in the analysis are highly correlated with fore­
cast errors or that the observation errors are larger 
than the value used here - probably both are true. 
Another point to note is that the rate of growth of the 
RMSE measured against analyses is larger than the 
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Figure 9. The root-mean-square error, and RMS spread, of forecasts 
of wind speed at 850 hPa, verified against radio-sonde observations 

and analyses. 
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Figure 10. Rank histogram of 72h forecasts of wind speed at 850 
hPa, verified against radio-sonde observations and analyses 

rate of growth of RMSE measured against observa­
tions. As mentioned earlier, this may lead to erro­
neous conclusions about the rate of growth of the 
ensemble spread. 

It is also instructive to look at the rank histogram 
verification of the MOGREPS ensemble using anal­
yses. Figure 10 shows the same as figure 2, but 
with verification against analyses. A lower RMSE is 
normally consistent with seeing a lower outlier fre­
quency in the ensemble verification. However, the 
verification against analysis gives a lower RMSE, but 
higher outlier frequency than the corrected verifica­
tion against observations. This may be explained by 
the results of Candille & Talagrand (personal commu­
nication) who showed that accounting for the effect of 
observation error, by perturbing the ensemble fore­
casts, can compensate for a lack of spread in the 
ensemble. This suggests that the number of outliers 
seen after correcting for observation errors may be 
an under-estimate. 

6 Methods to estimate observation error 

The source of observation errors changes dramat­
ically depending on the type of observation. For 
example, radar-based estimates of surface rainfall 
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rate are affected by the height of the radar beam 
above the ground and the size distribution of the 
raindrops, amongst other things. On the other hand 
the principal source of error in a rain-gauge mea­
surement is that the measurement at that point is 
not necessarily representative of the rainfall rate 
at other points - so called representativity errors. 
Since Numerical Weather Prediction (NWP) models 
are formulated to forecast area-averaged quantities, 
representativity errors are ascribed as observational 
errors, rather than being seen as an inability of NWP 
models to represent sub-grid-scale variability. 

Verification of short-range forecasts provides an 
immediate estimate of the value of the observation 
error. The observation error cannot be larger than 
the RMSE of the forecast measured against obser­
vations (assuming forecast and observation errors 
are uncorrelated) as is dictated by equation 1. A 
commonly used method to estimate the observation 
error is provided by Daley (1993) plotting the covari­
ance between forecast errors as a function of the 
distance between observations. This, extrapolated 
to zero distance provides an estimate of the obser­
vation error, under the assumption that observation 
errors are uncorrelated in space. Another method 
for diagnosing observation error is provided by the 
data assimilation system (Desroziers et al., 2005). 
The differences between the observed values, the 
background forecast and the analysed values can be 
used as a consistency check on the values of the 
supplied observation and background errors. 

7 Conclusion 

In this paper a number of methods for accounting for 
observation error in verification statistics have been 
examined. In each case the effect of observation 
error has had a clear effect on the verification statis­
tics, and may change the conclusions one draws 
about how the forecast system should be improved. 

For the RMSE, accounting for observation errors 
is a simple post-processing procedure. The reduc­
tion in RMSE of 850 hPa wind speed for forecasts 
between 0 and 3 days when accounting for observa­
tion errors was between 10% and 20%. The effect of 
observation errors was even more dramatic for rank 
histograms with a halving of the frequency with which 
the verification lies outside the range of the ensem­
ble. The behaviour of the number of outliers as a 
function of lead time also appears sensitive to the 
effect of observation errors. The frequency of outliers 
reduces rapidly with forecast lead time when veri­
fication is performed against raw observations, but 
is approximately constant when account is taken of 
observation errors. 

For categorical verification of forecasts, account 
was taken of observation errors using a deconvolu­
tion approach. The binning of observations posed 
problems and care was needed to replicate the 
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method used in the raw data. Observation errors 
have a clear effect, which is again most substantial 
in the short range. Verification against analysis was 
examined and it was shown that interpretation is dif­
ficult for this due to correlations between the errors 
in the analysis and forecast. 

Central to this work is an accurate estimate of 
the observation errors. A number of methods exist 
for these estimates, and it is advisable to use a 
combination of approaches. 

There are some verification statistics (such as 
continuous rank probability skill score Hersbach 
(2000)) for which the effect of observation errors is 
still unquantified. However, there are now a large 
range of scores for which the effects are understood 
to some degree. 
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