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In recent years, numerous papers have been addressed towards the under-
standing of the source mechanisms and propagation of gravity waves in the
lower atmosphere. Different studies suggest gravity waves can be generated
by either flow over mountains, convection, Kelvin-Helmholtz instability, or
geostrophic adjustment (see, for example Gossard and Hooke 1975 or Einaudi
1980). Non-linear wave-wave interaction, suggested by some aunthors (Fritts
1982, 1984) can only modify the wave spectrum and cannot be considered as

Abstract

This paper attempts to explain the properties of a gravity wave
event observed on Mallorca (Balearic Islands) using an array of mi-
crobarographs. The waves propagated coherently for a relatively long
distance with a speed of about 29 m/s without any clear presence of a
continuous forcing and were non-dispersive. A general matrix method
to find the properties of unstable and neutral modes associated with
observed atmospheric profiles is introduced. The method is first tested
with some idealized cases and afterwards used on the observed profile.
The role of shear in the wind profile near the ground is examined and
three distinct neutral mode types are found. In the absence of a con-
tinuous forcing, long-lived atmospheric gravity waves can only exist if
some mechanism prevents the vertical leakage of energy through wave
propagation, trapping the gravity wave in a duct layer near the sur-
face. Lindzen and Tung (1976) showed the necessary conditions for
trapping and discussed the properties of ‘almost-free’ waves for con-
stant stability and wind in the duct. Here the free neutral modes of
the layer are first computed. Those free neutral modes in the sheared
duct which have critical levels within the stable duct will, applying the
wave theory given by Booker and Bretherton (1967), be absorbed at
their critical level. Therefore they will not be observed in surface pres-
sure measurements. On the other hand neutral modes with a critical
level above the top of the duct will be reflected and so will constitute
the main signal in the surface observations. This appears to explain
the observations in Mallorca.

Introduction

a source of wave activity itself,

A forcing mechanism is, of course, necessary to trigger gravity waves but,
on some occasions, remarkable large amplitude atmospheric disturbances
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have been recorded in regions where a continuous forcing is not observed,
or far away from the suggested source region. On these occasions, what-
ever the energy source for these waves may be, long-lived gravity waves can
only exist if some mechanism is able to trap the wave energy near the sur-
face throughout wave propagation. Otherwise they would lose their energy
through vertical propagation, normally before traveling a complete wave-
length in the horizontal.

In summer 1390 some gravity wave events were detected on the Balearic
Islands (western Mediterranean) by measuring surface pressure with a tri-
angular array of microbarographs (Monserrat and Thorpe 1992). The waves
were registered far away from any significant orography which might be con-
sidered responsible for the wave generation and no convection was normelly
reported. On the other hand, the gravity waves were observed to be long-
lived, traveling long distances without significant loss of coherence. The
presence of some mechanism trapping the energy near the surface must have
occurred in order to explain the good correlations observed.

Lindzen and Tung (1976), hereafter referred to as LT, provided one of
the most complete works on gravity wave trapping. They show the neces-
sary conditions for the existence of an efficient wave-duct from which little
wave energy leaks. The duct must be a stable layer adjacent to the surface,
deep enough to maintain at least a quarter of the vertical wavelengih of the
ducted mode, and capped by a good reflector. An unstable layer, where the
Richardson number is less than 0.25, containing a critical level optimizes the
reflection. This latter layer above the wave duct would reflect the wave en-
ergy and would allow the wave propagation for several waves cycles without
significant loss of energy.

Vertical profiles of the atmosphere observed on the Balearic Islands at
the time of the gravity wave events exhibit a level at about 4 km where the
wave trapping condition given by LT is satisfied. This indicates the possible
presence of a wave duct trapping the energy at lower levels. The LT results
are based on a model of ‘almost free’ waves with constant wind and Brunt-
Vaisald frequency in the duct. Such waves exist assuming a wave source at
the ground and so do not satisfy the zero vertical velocity condition at the
ground. Radiosonde ascents made from the Balearic Islands clearly show
that wind increases with height in the stable layer near the ground. Here the
role of these variable atmospheric profiles on free modes is described. We use
the trapping conditions given by LT to suggest which of these modes will be
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trapped and so be observed at the ground. This constitutes the main aim of
this paper.

In general, if we assume wave solutions of the form W = W(z)e
where W is a scaled vertical velocity, k the horizontal wavenumber, the x-
axis is in the direction of the wave phase propagation, and c the phase speed,
the perturbation two-dimensional governing gravity wave equations can be
reduced to a single equation for W with the form

ik(x-ct),

(g + «\z(z)) W(z)=0 (1)

known as the Taylor-Goldstein equation (Goldstein 1931, Taylor 1931).

Any study of the stability or propagation of gravity waves in the at-
mosphere is based on computing the eigenvalues ¢ and eigenfunctions W
satisfying equation (1) fulfilling some given boundary conditions at the top
and the bottom of the domain. Complex eigenvalues are related to unstable
modes and real ones to neutral modes. In general A(z) is a function of the
vertical profiles of wind and Brunt-Vaisila frequency and of the wavenumber
and phase speed. It takes on different forms depending on the approxima-
tions assumed in the model. On some occasions, when A(z) has a simple
form, it is possible to solve the equation analytically. However, in realistic
situations A(z) is commonly a complicated function of z and (1) must be
solved numerically.

Lalas and Einaudi (1976) used a method for obtaining the eigenvalues and
eigenfunctions of the Taylor-Goldstein equation and presented the results for
an hyperbolic-tangent wind profile with constant Brunt-Vaisild frequency.
Later this method, with some modifications, has been used to analyse actual
radiosonde ascents (Lalas and Einaudi 1980, Mobbs and Darby 1989). The
method, which has been referred to as ‘the shooting method’, is applicable to
both neutral and unstable modes, and basically consists of solving equation
(1) by successive iterations, beginning with a first guess for the eigenvalue
c. The major problem associated with this method is the presence of critical
levels where the phase speed of the wave is equal to the wind speed. Some
technique is necessary to deal with such levels as some terms in A(z) tend
to infinity and Eq. (1) is not applicable. Another problem is the sometimes
observed tendency of the method to converge to one particular mode and
other modes are never found. If the first guess is far from the real solution



the model may not converge or does it very slowly. In any case, the necessity
of this first guess clearly introduces an unavoidable bias in the final results.
Different techniques have been used in order to minimize these problems and
the method has been successfully used on many occasions, particularly for
stability analysis.

Another method for solving the Taylor-Goldstein equation, which has
been used much less in the literature is the so-called ‘matrix method’. The
method consists in reducing the solution of the Taylor-Goldstein equation to
finding the eigenvalues and eigenfunctions of a given matrix., The method is
more expensive in computer time but it has the advantage of not requiring a
first guess, avoiding any biased result, and no special technique is necessary
to deal with the critical levels. This method is then very useful when seeking
neutral modes.

In this paper we solve the Taylor-Goldstein equation using the matrix
method. In particular we study the influence of the wind shear on neutral
free modes. The results are used to explain the properties of the gravity
waves observed on the Balearic Islands in summer 1990. In section 2 the
matrix method to find free modes is described and then in section 3 the
method is used to reproduce some results associated with simple idealized
profiles. In particular results are obtained when constant wind shear in
the duct is present. Then in section 4 an attempt is made to relate the
modes found with those observed in Mallorca: an interpretation in terms of
wave reflection and absorption is given. In section 5 the method is used to
obtain the nentral modes of a real radiosonde ascent made in the Balearic
Islands during an episode of gravity waves in summer 1990. Evidence that
the observed gravity waves were neutral modes trapped in a duct is given
by invoking the trapping conditions suggested by LT. The results obtained
with this model are in very good agreement with the observations giving an
explanation for the non dispersive nature of the waves. Finally in section 6
a summary of the main results and the conclusions are presented.

2 The matrix method

The matrix method assumes the atmosphere to be built up from M layers
of depth h within which the parameters are considered to be constant. We
can then express U and N? as vectors of M components, each component



being the value of I/ and N? at this layer, assumed constant. Similarly, the
function W(z) is also a vector of M components

U(z) - I_j = (UI!U%' T :UM) (2)
Nz(z) - N‘2=(N]?1N223"'1N§l) (3)
wW(z) — W= (W1, Wy, -+, W) (4)

On the other hand the second derivative can be approximated by the
expression

d*W(z) Wip + Wiy = 2W;
dz h? (5)

In general, A(z) in Eq. 1 is a complicated function of ¢, k, U(z) and N?(z),
however in order to simplify the algebra in describing the method, a simple
version of A is here assumed
N? i
w-a "
valid when neglecting compressible terms and those involving the second

derivative of U.
On this basis, Eq. (1) can be rewritten in the form

A(z) =

{cz[g - K+ c[—2U(% — k)] + [Uz(;;; - k) + N’]} W =0, (6)
or, by using (2)-(5)

{czA—cB—D}W=0 (7

where A, B and D are matrices of M rows and M columns which, with the
boundary conditions Wy = 0 and W)y, = 0, would have the form

A =M (8)
B = 2UM (9)
D = —UM-N?T (10)



where 7 is the identity matrix and M is a tridiagonal matrix

o d2 2
M = (ﬁ*")

[ —2-kRT 1 0 0 0 \
1 —2 — k%h? 1 0 0
1 0 1 —2—kh% 1 O
= 3 0 0 1 1 (11)
0 0 0 | .
(12)
Defining now a new vector
Wl = CW (13)
Equation (7) becomes
A'DW + A'BW, = cW, (14)
and using the definition of W, (12), and (13) we can write
0 1 W w
=c (15)
40 48 ) \ W W,

or

Hp =cp (16)

Here 15 is a 2M components vector where the first M values are the
components of W and the second M values are the components of W;. Matrix
H is a matrix with 2M rows and 2M columns including all the information
about the vertical structure of the atmosphere.

The solutions of the Taylor-Goldstein equation are the eigenvalues and
eigenvectors of this specified matrix H. Equation (15) can be solved by
using any commercial subroutine available. The results shown in this work



has been obtained by using a subroutine from the NAG-library. The output
of the method is a set of M eigenvalues and eigenfunctions of the problem.
Criteria to select some of these modes are then necessary and we will discuss
these in more detail in the following sections.

For simplicity, in this section a simple form for A has been used, however
no restrictions on A are really imposed by the method and in the following
sections, the model is applied using the fully compressible version of A. The
complete form of the matrices used can be found in Appendix A.

It should be noted that for a given vertical resolution M, there will be
M modes. Some of these will be of a purely numerical origin and to find the
true solutions one needs to compare results for several values of M to be able
to discard these non-physical solutions. As well as having the advantage of
not requiring an initial guess the method also requires no special treatment
in the vicinity of critical levels.

3 Free modes in stable duct profiles

The method introduced in section 3, but with the fully compressible ver-
sion of A(z), has been tested when applied to some idealized profiles. The
performance is very good when obtaining unstable modes. In particular, the
results obtained with the matrix method have been compared with the shoot-
ing method results for some idealized profiles presented by Mobbs and Darby
(1989). Both eigenvalues and eigenfunctions found with the two methods are
identical and they are not shown here.

In this section other idealised profiles are used to determine the character-
istics of the neutral and growing modes in a layer near the ground. Research
to which this is related is Lindzen and Rosenthal (1976) (LR hereafter) and
Monserrat and Ramis (1990). Instead of attempting to describe the complete
parameter space of the dependence of the growth rate and phase speed as a
function of the determining non-dimensional parameters describing the pro-
file we set typical dimensional values suggested from the observations from
Mallorca. Here we concenirate on the horizontal wavenumber dependence
of the growth rates and phase speeds with special attention to the neutral
modes and the dispersive nature of the waves. This will be compared with
and without shear in the layer near the ground.

The results shown throughout the paper have been obtained using M =



100 and selecting the top of the model at a height of 6000 m implying a
resolution of 60 m. When the top of the model is selected at a higher level
or the value of M is increased, the results obtained are very similar. We
apply the method to the case of a constant wind in a layer with R; = oo (the
lower layer) capped by a dynamically unstable (intermediate} layer where the
R; < 0.25 above which the wind returns to being constant with height (the
upper layer) (Fig. 1a). A further analysis is to use the same profiles except
that the wind in the lower layer has constant shear (Fig. 1b). This will allow
the simplest description of the modification of the results due to shear in the
duct.

The profile in Fig. 1a is similar to the one used by LR although there the
depth of the intermediate layer is set to zero and the vertical velocity is not
forced to be zero at the upper boundary. It also can be compared with that
used in Monserrat and Ramis (1990) but now no discontinuity in the wind
profile is considered and the Brunt-Vaiisila frequency is not set to zero in the
intermediate sheared layer.

We first apply the method to find the unstable modes that the profile
in Fig. la can support. The wind (U) in this profile is symmetric about a
mean value of Uy = 27.5 m/s in the middle of the intermediate layer. To
describe the modes it is useful to refer the results to this value. A number of
unstable modes selected by their phase speed are found. The phase speeds
of the unstable modes range between 25 m/s and 30 m/s: the minimum and
maximum wind speed for this profile. This is consistent with Miles-Howard
semicircle theorem (Howard 1961) which restricts the phase speed relative
to the mean wind (¢ — Up) for unstable solutions to a semicircle of radius
8U where 8U = U — Uy. We can divide the unstable modes into two types,
one with phase speeds greater than U; and the other with phase speeds less
than Uj,. For each mode with phase speed ¢; < Up, another mode with phase
speed ¢ = Uy + ¢; and the same growth rate is found. Only the first type
was found by LR. The second type appears as a consequence of having a
rigid upper boundary. In Fig. 2 the growth rate and the phase speed for
the two most unstable pairs of modes are shown. The differences observed
in the growth rate curve for each pair of modes become smaller when using
a larger M however, we keep these results here in order to use a single M for
all calculations throughout the paper.

The neutral modes can be divided into two basic categories: modes with
significant pressure response at surface and modes located at higher levels
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without any such response near the ground. We are particularly interested
in the former so no more comments will be made on the latter. So as to com-
pare the different modes we give the maximum vertical velocity ar arbitrary
magnitude of unity. The results for neutral modes with significant response
at the surface have a resemblance with those shown in Fig. 3 from LR. These
are the only modes found by LR. The reason why other modes are found here
can be attributed to the presence of the upper boundary and the thickness of
the intermediate layer. Lindzen and Rosenthal (1976) analytically found an
infinite number of neutral modes (m = 1,2,3,...) each having m/2 vertical
wavelengths in the lower layer. For each mode number, two types of solutions
were found, one with —I/ < ¢ < 0 and the other with ¢ < —U/ when the wind
in the lower and the upper layer was assumed to be —U and U, respectively.
A similar result is reproduced here: two modes with half vertical wavelength
in the lower layer (m = 1 in LR), one with ¢ < 25 m/s and the other with
c > 25 m/s, together with a number of other higher order modes are found.
The phase speeds of the ‘m = 1 modes’ are the smallest and the largest
phase speed the profiles can support and this range of allowed phase speeds
decreases when the wavenumber increases. In Fig. 3a the normalized vertical
velocity of three of these neutral modes for k¥ = 0.002m~1(A = 3km), are
plotted versus height. The phase speed of the two ‘m = 1 modes’ are for
this case, cmin = 21.3 m/s and ey = 28.7 m/s; only the mode with speed
Cmin = 21.3 m/s is shown in Fig. 3a. In Fig. 3b the normalized vertical ve-
locity for these modes but now for k = 0.00005m~1 (A = 125km) are shown.
The vertical structure of the modes is similar but the range of allowed phase
speeds is greater than for the case in Fig. 3a, now ¢y, = 16.8 m/s and
Cmaz = 32.4 m/s.

Another result, already pointed out by LR, is that higher order modes are
non dispersive, and also, for large enough k the phase speeds of all the modes
are essentially independent of k. The value of the wavenumber at which the
phase speed noticeable changes with k depends on the parameters in the
model (i.e. wind and Brunt-Vaisild frequency) so, from a practical point
of view, the observed waves would appear to be essentially non-dispersive if
one of the higher order modes dominates or if the observable wavelengths
are small enough to be in the non-dispersive region even when no mode is
dominant.

No other comments about how these modes are modified with other values
of wind and Brunt-Viisila frequency are made here. On the other hand one
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of the aims of this work is to show how the presence of wind shear in the
lower layer can modify these results.

First we look at the unstable modes for the profiles in Fig. 1b, to be com-
pared with the results found with constant wind in the lower layer. The re-
sults are similar to those found without shear in the lower layer, although now
the growth rates are larger and the most unstable wavelengths are shorter.
Also the phase speeds of the unstable modes range between 0 m/s and 30 m/s
although small phase speeds are associated with small growth rates. Five un-
stable modes, including the most unstable mode the profile in Fig. 1b can
support (A = 722 m,c = 25.37 m/s) are shown in Fig. 4.

On the other hand, the profile in Fig. 1b can support a number of neutral
modes which have a clearly different behaviour to those found with constant
wind in the lower layer. We can divide these modes into three different types:

o type A, located at higher levels without a significant response near the
ground.

e type B, with phase speeds less than the wind speed at the top of the
lower layer but greater than that at the ground: in other words these
waves have a critical level in the lower layer.

e type C have a phase speed equal to the wind speed in the intermediate
layer: these waves have a critical level somewhere in the intermediate
layer.

Examples of the vertical siructure of these 3 modes for k¥ = 0.0008m 1
(A = 7.85km) are given in Fig. 5.

Type B modes have a response restricted between the ground and the
critical level. This kind of mode did not appear when constant wind was
assumed in the lower layer. Another difference is that now a full range of
phase speeds between the surface wind and the wind speed in the upper
layer is found. This means that a non dispersive nature of the observed
waves cannot be explained in terms of having a short range of allowed phase
speeds as before. So when wind shear is present in the lower layer, a broad
range of phase speeds is in principle allowed for any k, and the waves would
be non-dispersive only if some mechanism causes waves with certain phase
speeds to dominate.
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4 Interpretation of modes in terms of wave
trapping

In the case of the sheared lower layer we have found modes which fall into the
3 categories described above as A, B, and C. If appears, from the observa-
tional evidence from the Mallorcan microbarographs, that the waves observed
at the ground are essentially non-dispersive. This suggests that only some
of these three types are observed at the surface. Here we attempt to give
a physical explanation of this observation in terms of wave absorption and
reflection as described by Booker and Bretherton (1967) and Lindzen and
Tung (1976) respectively.

Lindzen and Tung (1976), analysing the necessary conditions for the pres-
ence of ducted waves in the atmosphere, basically discussed the necessary
properties of an effective reflecting layer able to maintain wave energy near
the surface.. They showed that the presence of a critical level or at least
a nearly critical level either in or above an unstable layer capping a stable
duct is optimal for reflecting the waves. If we assume the reflecting layer
is present, the ducted wave properties will be governed by the duct charac-
teristics. Assuming simple atmospheric profiles for wind and Brunt-Viisild
frequency in the duct, some general comments can be made. Some of these
have already been noted by LT.

In the Taylor-Goldstein equation {Eq. 1) A%(z) is normally written as

A(z) = 8(2) - k? (17)

where £2(z) is known as the Scorer parameter.

The vertical propagation of the gravity waves is basically controlled by
£2(z) which can be approximated (neglecting compressible terms and the
terms including the second derivative of U) by the expression

.N?
(U —cp
When the Scorer parameter is larger than k? the vertical wavenumber is
real, representing oscillatory waves, on the other hand, when it is smaller than

k?, the solutions are imaginary, the wave is evanescent, and its amplitude
decays exponentially with distance away from the source height. Therefore,

£(z) = (18)
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an oscillatory ducted mode can only exist in a stable layer and N? must be
large enough for the Scorer parameter to be larger than k2.

Another important aspect related to the vertical propagation of the waves
is the presence of critical levels where the Scorer parameter approaches infin-
ity for neutral modes. The vertical velocity of neutral modes becomes zero
at these levels and the energy is reflected if the layer is unstable or absorbed
if it is stable (Booker and Bretherton 1967).

As LT indicate in their paper to be a ducted mode a wave should not
have a critical level in the duct because if it did then wave energy would be
absorbed rather than reflected. However if there is wind shear in the duct
then it is clear that different modes (or different phase speeds) will have a
critical level at different heights. This is likely to be important in determining
the dominant mode in the duct. The dominant ducted mode was considered
by LT to be the one with largest phase speed because the other ones, related
to shorter vertical wavelengths, would be more significantly attenuated by
any dissipative process. In a duct with constant wind shear there will be
modes with phase speeds equal to the wind at some level inside the duct.
These will, following the reasoning of Booker and Bretherton (1967), be
absorbed at their critical level. This means that in the presence of wind
shear, the duct has another mechanism aside from dissipation for selecting
the dominant trapped mode.

This analysis suggests that wind shear, or any other vertical variation in
A, plays an important role in determining the expected ducted modes.

We can now summarize these conclusions for the 3 wave types found:

e type A, have no response near the ground and they are confined in
some upper layer. The wave energy is expected to remain aloft and so
the waves are not going to be observed at surface.

e type B, are modes confined between the surface and a critical level sit-
uated within this layer. This implies, using the Booker and Bretherton
(1967) criterion, that the wave energy would be absorbed at this level
and these modes are therefore expected to be short lived.

» type C have a phase speed equal to the wind speed in the intermediate
layer, and so using the LT argument, these waves would be trapped
between the surface and a critical level situated in a layer where (R; <
0.25). The wave energy would be reflected at this level and remain
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trapped in the layer near the surface. We are expecting then that this
mode is going to be the dominant one at the surface.

This means that we expect the dominant modes at the surface, for any
wavelength, to be type C modes. These will have a phase speed in the range
of the wind speed over the intermediate layer. If this range is not large then
the waves will be observed at the surface to be essentially non-dispersive. -

The type C modes for constant wind shear in the lower layer have a
structure with a half wavelength in the vertical, see Fig. 5. In contrast the
trapped ‘almost free’ modes of LT have a structure with a quarter wavelength
in the vertical. This difference is clearly related to the crucal difference
between free and ‘almost free’ modes. Of course in the case of free modes
we can only surmise the trapping conditions as we do not directly describe
the reflection process. Here we have taken the trapping condition from the
Booker and Bretherton (1967) and LT analyses.

5 Use of the method in a case study

Time series of surface atmospheric pressure from three microbarographs sit-
uated on Mallorca (Balearic Islands) were used by Monserrat and Thorpe
(1992) (MT hereafter) to obtain the horizontal properties of some traveling
gravity wave events observed in summer 1990. The measured waves propa-
gated with a phase speed of about 29 m/s and were basically non dispersive.
Wavelength, phase speed and wave direction of propagation for one of the
episodes presented by MT is given in figure 13 of that paper. Both phase
speed and wave direction are basically independent of frequency. In this sec-
tion we are going to refer mainly to this episode, the one with largest pressure
oscillations, which is referred to as case 3 in MT.

The non dispersive nature of the waves is an indicator suggesting that
the waves could be generated by dynamic instability. Waves generated by
dynamic instability tend to travel with phase speeds and directions match-
ing the wind speeds and directions at the level of the minimum Richardson
number and they are non dispersive. MT found that, although this was not
the case in every episode, in case 3, the phase speed of the wave were very
similar to the wind speed at the level of minimum Richardson number, and
the direction of propagation of the wave was just about 20 degrees differ-
ent from the wind direction. On the other hand, although in case 3 the
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Richardson number is actually zero in a layer of about 500 m, in some of
the other observed cases, the Richardson number is not small enough for
dynamic instability. If we consider that just one mechanism is responsible
for the generation in every gravity wave episode, we cannot prove at this
point that this is dynamical instability. Whatever the source mechanism the
non dispersive nature of the waves has to be explained. Another point to be
considered is that maybe the available soundings are more representative of
the propagation region of the wave rather than of the generation region and
they are not adequate to find evidence of dynamic instability.

On the other hand, good correlation between two instruments situated
at a relatively long distance (more than half the measured horizontal wave-
length) were observed. So, whatever the source mechanism is, the good
correlations found can only be explained if the wave becomes neutral and
the energy remains trapped near the surface.

The vertical profiles of wind and Brunt-Viisila frequency fulfill the con-
ditions suggested by LT in order to have an effective duct trapping the waves
but, the idealized vertical profiles used by LT in the stable duct cannot be
applied to our case. The vertical profiles of Brunt-Viisild frequency, wind
speed resolved in the measured direction of propagation of the waves (230°),
and Richardson number corresponding to the radiosonde ascent made at
Palma de Mallorca on 25 Sep 1992 at 0000 GMT, the closest one in time to
the observation of the most energetic waves is shown in Fig. 6. It can be
seen that the wind rapidly increases from calm at the surface to a maximum
value of about 29 m/s at a height of about 3800 m, suggesting that assuming
a constant wind profile in the stable layer near the ground may introduce
spurious results. It is expected then that the presence of wind shear in the
duct will introduce some modifications as discussed in the previous sections.

First we use the method to compute the unstable modes that the profile
shown in Fig. 6 can support. A number of unstable modes with phase speed
ranging between 0 m/s and 29 m/s are found.The most unstable mode has
a phase speed of about 6 m/s and a maximum growth rate of 0.0027 s~!
at a wavelength of 450 m. This wavelength is too short to be observed
with the array used by MT. For the range of observable wavelengths, say
4 — 200 km, the maximum growth rate is for A = 4 km with a maximum
growth rate of 0.0004 s~1, this corresponding to an e-folding time of about
45 min. Consequently for other observable wavelengths the growth rates are
lower, for example the maximum growth rate for a wavelength of 15 km is
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0.0002 57! (e-folding time greater than an hour). We do not really know the
time scale of the processes maintaining the unstable profiles in Fig. 6, but
it is perhaps unlikely than any unstable profile could be maintained for so
long. Therefore we do not expect these unstable modes have much influence
in the surface measurements.

We are interested in knowing if the real atmospheric profile corresponding
to this case can support neutral waves with the observed phase speed and if
these waves are non-dispersive. Therefore, the method introduced in section 3
is applied to the profile shown in Fig. 6 for different values of the wavenumber
k corresponding to wavelengths ranging between 4 and 200 km in order to
compare the results with the observations.

When the method is applied to real atmospheric profiles, for each wave-
number a number of neutral modes with different phase speeds are obtained.
In Fig. 7 the modulus of the vertical velocity, related to the trapped neutral
mode with the largest phase speed, is plotted versus height for two different
wavelengths, 125 km and 4 km. The phase speed of the mode is also indi-
cated in the figure. The mode is clearly confined between the surface and a
layer situated at about 4000 m and hence is a type C mode. The vertical
structure for both wavenumbers is somewhat different near the surface as can
be expected if considering the value of the Scorer parameter. Instead of the
quantity £2, the value of A; = 2a(U — ¢)/N = 2= /L for ¢ = 29 m/s is plotted
in Fig. 8. For short wavelengths the quantity (£2 — k%) becomes negative (or
Az > A), especially in the lowest kilometres and the wave is expected to be
evanescent in this layer, as is actually found. This can be seen in Fig. 7b
where the wave, with a wavelength of 4 km, has its amplitude maximized at
around 3 km where A, < A.

The other mode types A and B with different phase speeds are also found.
Type A modes have response restricted to upper layers and then they are
not expected to be relevant in surface measurements. Type B modes, with
smaller phase speed, are observed to be confined in the vertical. Figure 9a
shows the modulus of the vertical velocity plotted against height for A =
10 km and ¢ = 16.5 m/s. We clearly see the fact pointed out in section
4: modes related with smaller phase speeds reach a critical level at a lower
height. For these modes the ‘top of the duct’ is marked by a critical level
sitnated in a layer where the Richardson number is greater than (.25, with
the only exception of a narrow layer situated at a height of about 1800 m.
We expect then, that the wave energy is going to be absorbed rather than
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reflected at this level and the mode is going to be short-lived. Some other
modes, with larger phase and response in the whole domain, are also found.
These waves are non-trapped and can propagate freely between the bottom
and the top of the model. This can be seen in Fig. 9b, where the modulus
of the vertical velocity for A = 10 km and ¢ = 32.6 m/s is plotted versus
height. The presence of the upper rigid lid in the model is artificial and then
we do not expect a wave trapped in the entire domain is realistic. In this
case we assume the wave energy will be rapidly lost from the surface layer
into the upper troposphere.

Another aspect which cannot be separated from the propagation of the
waves is the height at which they are actually generated. If we assume that
the waves are generated by dynamic instability, they would be generated
at a height of about 4000 m, where R; < 0.25. It is clear then that the
energy would never reach the surface if the wave finds its critical level on
its way down. When the phase speed of the mode is smaller than about
28 — 29m /s (Type B modes) this is going to happen at some height between
the generation height and the surface and the waveis not going to be observed
at the surface.

Therefore, from the different modes that the actual atmospheric profile
can support we should observe the modes which are trapped by the layer
where the Richardson number is less than 0.25 which, in our case, are also the
confined modes with the largest phase speed. The phase speed of these modes
range between 28 m/s and 29/s and are independent of the wavenumber k (we
can observe in Fig. 7 that the phase speed for the two wavenumbers is similar)
and then they are clearly non-dispersive. The results suggest then, we should
observe a range of wavelengths each one traveling with phase speeds around
28-29 m/s, in very good agreement with the actual observations.

We can conclude then that the observed waves in this case are probably
trapped modes in a duct. The source mechanism is unclear but could be
associated with dynamic instability of the wind shear as suggested by MT
but cannot be confirmed without a good knowledge of the vertical structure
of the atmosphere upstream.
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6 Summary and conclusions

The presence of a stable layer capped above by a good reflector is the general
condition for the presence of ducted waves in the lower atmosphere. Provided
the existence of an efficient reflecting layer, the ducted wave properties are
governed by the characteristics of the stable layer.

When constant wind and Brunt-Vaisali profiles are considered, a number
of free modes can be present in the duct and their structure can be obtained
solving the Taylor-Goldstein equation analytically.

Some simple arguments show that when wind shear is present in the duct,
the number of modes are clearly reduced by wave absorption at critical levels.
However, in general, when wind and Brunt-Viisild frequency are functions
of height, the gravity wave properties have to be found numerically.

A method able to find the neutral modes associated with given atmo-
spheric profiles: the matrix method, is introduced and applied to the case of
constant wind shear in a stable duct. The matrix method does not require
any first guess and the only difficulty is reduced to select the mode of your
interest from all the modes result of the given vertical profiles. The method
can be applied to any real atmospheric profiles and no limitations are pre-
sented by the complexity in A(z). As an example, it has been used to study
the waves properties in a case study on the Balearic Islands.

The model results suggest that the dominant mode associated with the
vertical atmospheric profiles observed during the gravity wave episode has a
phase speed similar to the measured one. Also, the non dispersive nature of
the gravity wave is reproduced by the model so the dominant phase speed is
essentially independent of the wavelength.

We consider the interpretation given in this paper of the non-dispersive
nature of the observed waves to be speculative in the sense that we have not
described the dynamics of wave absorption and reflection explicitly. Rather,
results from theoretical studies of Booker and Bretherton (1967) and Lindzen
and Tung (1976) have been applied to the case studied here. Research isin
progress to describe these processes in a non-hydrostatic numerical model
simulation. In such simulations a source of gravity waves is imposed at
various levels and the horizontal (and vertical) propagation is examined.
Then the hypothesis suggested herein concerning wave trapping and surface
pressure fluctuations can be fully tested.
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APPENDIX A

When the fully compressible version of A(z) is used in (1), still a matrix
equation as (14) is obtained but now .4, B and D have a more complicated
form.

A = M+VZ (19)
B = 2UM+ VT (20)
D = M+ VI (21)
where M has the same form than in (11) and
L1 () 1 (&) | N
W= (%) w(@) 5 (22)
. &2 v|-1 d.c;; : dz—;’u ’
B (%)% [ﬂ(a—) (3
du [1(dpo\ 29 20N
B} Loof@r\ 01 (dee\t (dZpe
-_ — 2 ——— ™ e— JE— — — R ——
> N+v ( iz ) 2% |27 ( 2z ) iz
-d-(‘] 1 d;o 2g - [ﬁ!ﬁz
U [,6‘0 ( dz) t o 1] K (24)

Here, po is the basic state density, C, the speed of sound and I the unity
vector.
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When compressible terms and those involving the second derivative of U
are neglected, V4, V5 and Vp have the simple form given in section 2, i.e.

Vi =0 (25)

ﬁg = [-). (26)

V» = —N? (27)
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FIGURE CAPTIONS

Figure 1. Wind (U) and Brunt-Vaisild frequency (N) for the profiles used in
section 3, with constant wind in the lower layer (a), and with constant wind
shear in the lower layer (b). The name of the different layers and the value
of the Richardson number in each layer are also indicated.

Figure 2. (a) Phase speed and (b) growth rate plotted against wavenumber
of the four most unstable modes for the profiles in Fig. 1a. The growth rate
for modes 1 and 3 and for modes 2 and 4 are almost identical.

Figure 3. The modulus of the normalized vertical velocity for three neutral
modes supported by the profiles given in Fig. la. The wavenumber is & =
0.002m~! in (a), and k = 0.00005m~! in (b). The phase speed of the modes
are indicated in the figure.

Figure 4. (a) Phase speed and (b) growth rate plotted against wavenumber
of five unstable modes for the profiles in Fig. 1b. Mode 1 corresponds to the
most unstable mode that this profile can support. The growth rate for mode
2 has a different behaviour, probably because it is formed by two different
modes overlapped

Figure 5. The modulus of the normalized vertical velocity for the three
types modes that the profiles from Fig. 1b can support. The wavenumber is
k = 0.0008m™1.

Figure 6. Wind speed resolved in the measured direction of propagation of
the waves (230°) (solid line) and Brunt-Viisila frequency (dashed line) (a)
and Richardson number (b), corresponding to the radiosonde ascent made at
Palma de Mallorca on 25 Sep 1992 at 0000 GMT.

Figure 7. The modulus of the normalized vertical velocity for the trapped
neutral mode with the largest phase speed for A = 125km (a) and A = 4km
(b). The values of the phase speed of these modes are indicated in the figure.

Figure 8. The wavelength associated with the Scorer parameter A, = 27(U —
¢)/N for ¢ = 29m/s corresponding to the radiosonde ascent made at Palma
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de Mallorca on 25 Sep 1992 at 0000 GMT.

Figure 9. The modulus of the normalized vertical velocity for a neutral
mode type B (2) and a mode non-trapped, occupying the whole domain (b)
ford = 10km. The values of the phase speed of these modes are indicated in

the figure.
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