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1 Preliminaries

1.1  An outline of transformation theory

In this paper (§(2) - §(4)) we will be concerned with the use of hybrid vertical co-
ordinates in non-hydrostatic, quasi-hydrostatic and quasi-equilibrium models. We
shall also remark (in §(5)) on the work of Holm & Long (1989) and Shepherd (1990),
who have formulated Hamiltonian versions of the hydrostatic and non-hydrostatic

primitive equations respectively.

Before we consider a particular hybrid coordinate system we shall review the
theory of coordinate transformations and remark on the use of the chain rule and
tensor methods in these models. Kasahara (1974) gave a comprehensive review of
the coordinate transformations for various vertical coordinate systems used for the
hydrostatic primitive equations, and much of that work can be used for our purposes
here. However, we need to make some revisions in the case of the non-hydrostatic
equations, to be discussed in the next section, and it is appropriate to comment

on the relative merits and on the outcome of using generalized tensor methods (c.f.

Dutton (1976), Pielke & Martin (1981)) or the chain rule.

If we wish to retain all the properties of a set of equations under a general co-
ordinate transformation then it is, without doubt, sensible to write them out in a
generally covariant way. This means that the equations of motion, written in terms

of tensors, are valid in any coordinate system. However, we frequently consider

approximations to the fully three dimensional version of Newtonian hydrodynamics




and in these cases we must exercise care when applying transformation theory. If we
approximate the Navier-Stokes equations in any way, then we must decide whether
to make this approximation before or after making a coordinate transformation. To
make this point clear, consider the following example: Suppose we write out the
Navier-Stokes equations in spherical polar coordinates and make the assumption
of hydrostatic balance. Then if we wish to transform this set of hydrostatic equa-
tions to another coordinate system (most possibly a non-orthogonal one) then we
may either perform a series of chain-rule calculations on the approximate equations,
assuming that the new coordinates are appropriately well-defined functions of the
old coordinates, or we may start with a covariant form of the full Navier-Stokes
equations, calculate the explicit tensorial relationships (e.g. metric and connection
coefficients), transform the equations and then impose the assumption of hydrostatic
balance. In general, these two methods will give different results. (For instance, the
fully covariant method involves transformation of the rotation or coriolis vector so
that whereas the original vector is comprised of two components, the transformed
vector will have three components. Sometimes one gets some remarkable cancella-
tions between the new terms, however, and this is a crucial point for the hydrostatic
equations, the vertical momentum equation will often be considerably more compli-
cated (see Dutton (1976) or James (1991) for an example.)) Of course, we should
point out that the two sets of equations being considered here, predict the evolution
of two different sets of velocities. That is, the chain rule will yield equations for the
velocities with respect to the original set of coordinates, say (u,v,w), whilst it is
implicit in the definition of a covariant method that the components of the velocity

vector must be with respect to the new coordinate system. Thus if one were to



consider, for example, isentropic coordinates, then the velocity vector would have

components along the isentropic surfaces.

1.2 A review of basic techniques

For the purposes of this paper we shall work exclusively with the chain rule for the
following reasons. First, it is desirable to write the momentum equations in terms
of the local eulerian velocities (u,v,w), rather than velocities relative to the hybrid
coordinates. It is the latter that result in complicated vertical momentum equa-
tions and, as we shall demonstrate, we may diagnose the vertical velocity relative
to the new coordinates. Second, when working with the non-hydrostatic equations,
we avoid any necessity to refer to approximations that would lead to significantly
different equations, that depend on the procedure carried out when ‘transforming’

the approximation to various coordinate systems.

We shall now review some of the basic rules of transformation theory. Let the
independent variables of a geometric or physical height-based coordinate system be
(A, ¢,7,t). Here r = z + a, where a is the mean radius of the earth. We will denote

the generalized coordinates by (A, ¢,7,t), with
n=n(A ¢ rt) .

Assuming a single-valued, monotonic relationship between r and 7, it follows that
= el 0.0ty

The following relationships between partial derivatives exist: Let A be any scalar
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function which may be expressed in either of two ways depending upon whether r

or 7 is chosen as the vertical coordinate

0A Or

94 _oAor
y dr Odc
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_ oA
de
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n

where, throughout this paper, ¢ = A, ¢ or t. We also have

0A  0A0y
o = oqor @)

The material derivative is written in the generalized system as follows

D 0 . O
_t—:gt—n_*-v'v"-i-n%’ (3)
where 17 is the generalized vertical velocity %—Z’ and v & (u,v,0). @ (= % ) and

n

n are related as follows

b A
H—E(w—an—v.v,ﬂ‘) . (4)

The continuity equation in the generalized system may be obtained as follows. The

local eulerian vertical velocity is given by (c.f. ( 4))

Lo .or
w:aﬂ+v.vnr+n—a—; ; (5)
and by the chain rule
00 _ didn
or  Onor’

and thus, from ( 5)
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and thus if we write the continuity equation ( 13) as

Dp Jw
Dt+pv v+pa = 0

we may re-write it for generalized coordinates, using ( 6) and ( 7), as

Dp an v
Di i p(V,,.V o (V i 871)

on On or ov e
o (0 +5;[ (0>+an.vnr]>—0.

This simplifies to

or

), * T (o) + 37 (i) =0
il "V el Hm w®

2 The non-hydrostatic equations

The three components of the Navier-Stokes equations written in spherical polar

coordinates are

Du u ; 1 3dp
T (2Q+rcosq5> (v31n¢—wcos¢)+prcos¢a—/\ i

Dv u : vw 1 9p
Dt +(29+rcos¢>usm¢+7 pr(')d) =
Dw u? + v? 10p

—D—t——zﬂ’U.COS(ﬁ— +g+;§ =

The continuity and thermodynamic equations are

Dp
———+qu =t

Dt
Do 0
o (TC,,)Q’

(12)

(13)

(14)

where () is the diabatic heating rate. Perfect gas behaviour is assumed p = pRT.



We will consider a terrain-following hybrid coordinate based on height, of which

the general form is given by

where s is usually defined as a constant (generally defined as the top of the model),

while E(), ¢) is the terrain height. From this definition the following useful results

may be obtained

LoDy i ] b ol ¥
e (= B)Yb - B) +(r - B)E) (16)
s D
where w = Dt n, and
on. . 8
& a8 7

The momentum equations with all derivatives evaluated on 7-surfaces are

Du u 5 5
L (2Q+ TCOS¢) (vsin g — i cos 4)

1 dp Opor\ _
sl cn
Dv u . v 1 (dp dpory
Dt +(2Q+rcosgé)usmd)_*- r +pr (6¢_8r6_¢) i (9
Dw u? + v? 1dp
E—Zﬂucosd)—— +g+;5;—0 : (20)

The continuity equation, using ( 11) and the (inverse of) ( 17), is

0 ([ s—FE s—F 0 s—F
E(p T )+V,,.<pv——;——)+5;7-(pnss )=0. (21)

The thermodynamic equation ( 14) is essentially in the appropriate form because it is

written in terms of the material derivative. For further discussion of non-hydrostatic

models, refer to White & Bromley (1990).



3 The quasi-hydrostatic equations in n-coordinates

3.1 Transformation of a height coordinate model

The three components of the quasi-hydrostatic equations in spherical geometry may

be written
Du u T Oy ]
rfind s b A
Dt <2Q i T COS QS) g mee gk pr cos ¢ O
Dv u vw -1 dp
kit i el bt e gt Yo 22
Dt+<2Q+rcosqS)usmd)+ r +pr8¢ o )
L
——2Qucos¢-—u i +g+l@ = 0
p or J

The terms on the right represent the frictional force per unit mass. The material

derivative is

D

8 Lo vo
Dt "8t roosdd)  rdo 5

for further explanation of notation see White & Bromley, (1990). The continuity

and thermodynamic equations are the same as ( 13) and ( 14).

Using the transformation theory of §(1) we may write the momentum equations
( 22) in the generalized coordinates as follows:

Du u : . 1 dp Opdr\ ]
Dt _(2Q+rcos¢> (v81n¢—wcos¢)+prcos¢<8/\_87'8)\) = !
2 (29—{— - )usin¢+y—:—u-+——l—(?£—@ﬁ> =y

Dt+ T COS ¢ pr
o
)ucosd)———r +g+—m—=— =10

U

. (2Q+ T COS ¢

7
(23)
We note from ( 23); that we have a modified quasi-hydrostatic relationship that we

will denote as follows

or

)
=—pg+p(2ﬂucos¢+u -:v)Epp, (24)

n




and thus we may re-write ( 23) substituting for the above

Du u 2 E 1 dp or 5 ]
E—<20+rcos¢) (vsin ¢ — w cos ¢) + prcosqS( p;ta/\) =8
| Dv u v 1 dp oy [
Dt - (2Q i T COS d)) nay (6‘(/) oe 3(15) ¢
: o
‘ P
| (25)

n ( 23) and ( 25) the material derivative is given by ( 3).

Thus, by ( 25)s, ( 11) becomes
0110 g, (0] , D (300) _
ot [u 877] L (#317) g )

3.2 Transformation of a pressure coordinate model

In this subsection we are interested in the version of the quasi-hydrostatic equations
used in the unified model. When transforming from height coordinates (A, ¢, r) to
|
} pressure coordinates (A, ¢, p), we find that the pressure gradient terms where the

derivatives are taken with respect to the angular variables, may be expressed as

9
Oc|,

op| _
8c

dp Or
or ac

(27)




where ® = gz is the geopotential and f is equal to —g. We may write the (u,v)

. G wine i
momentum equations, with w = Dil in the form

p

Du u : g 1. 09
o (2Q+rcosq5> (vs1n¢—wcos¢)+prcos¢a—/\ =0

Dv u v 1 09 :
— 4+ [ 20 i —t—=— =0
Dt+( +rcos¢>usm¢+ r +pr0¢

(28)

where the material derivative is given by

£:g+vv+w2
Vo e R

D ;
and w = =2, Observe that the hydrostatic equation may be written

Dt

u? + v?

(—20ucos¢— +g)p—§%+l=0 ;

and thus multiplying by Z—Q gives
T

0® gRT

3 - (29)
where p is defined by ( 24). It turns out that in order to get the expression for
hydrostatic balance that is used in the model we must follow White & Bromley

(1990) and make the approximation that

9.0 .3 g
(—29ucos¢— e :—v )%3= RZ; (—QQuCOSd)—u i—v ) ) (30)

where T, represents a horizontally averaged, hydrostatically balanced temperature

profile. With this approximation ( 29) becomes

i) T.s 2 2
s (—2Qucos¢—u +”)+RT=0 : (31)
dp  gp r

The continuity equation is written

9 ( orop orop\ 0 -3'”31’)_
ot (pap 371) T o (pv0p0n> o (pnapan = (32)
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and thus using ( 24) we get

9 (Llop 1dpy. 9 (.’1.@) i
ot (uan) L (vu 071) o \idn) (84

We should note that the transformation of the pressure coordinate model intro-

duces two hydrostatic assumptions: On the one hand we need the primitive equation
hydrostatic balance to write down the momentum equations ( 28) in pressure co-
ordinates and then we arrive at another version of hydrostatic balance, so-called
quasi-hydrostatic balance in ( 29). It is essentially this latter form that is used in
the (full) continuity equation ( 33), however we find that the primitive equation
hydrostatic balance is used in the forecast model equations. This amounts to selec-
tively neglecting certain small (in the sense of scale analysis) terms in the hydrostatic
balance, depending upon where in the equations they occur. The reason behind this
procedure is that one can demonstrate that the resulting inertial, metric and coriolis
terms in the equations ( 28) and ( 31) are isomorphic to the corresponding terms
in the height coordinate version ( 22). The pressure coordinate version also retains
the energy, potential vorticity and axial angular momentum principles. For further

details of these matters see White & Bromley (1990).
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4 The quasi-equilibrium model in 7-coordinates

4.1 The equations of motion and the transformation of a height-
based model

The quasi-equilibrium equations in spherical polar coordinates are usually written

in pressure coordinates as

Du, : uvg 1. ad - !
Dt — 2Qusin ¢ tan ¢ + e Tl 0
Dv, 100
e = ¥l 34
Dt +2Qusm¢+ tan¢+ 8(75 0 (34)
a1
dp P )

The material derivative in ( 34) is given by

2+Li+ra+ 6
Ot acos¢pd\ add

Il

-
D

The potential temperature is conserved in this model

Do
=0 (35)

In order to study integration schemes that may be used for both the non-hydrostatic
equations and the quasi-equilibrium equations it will be convenient to write ( 34) in

terms of a height based coordinate. To do this we note the result

b0 _ ow| o0dp
ocl, o del . dpdel
i 0% dp
=0 e (36)

and use the hydrostatic relationship




n ( 36) to obtain

0P 1 dp
5% 7 = ; Be : (37)
With this result we may write ( 34) in the form
Du, 1 -dp )
—B-t—-—?stqu———tan(b apcosgbb—x =0
Dy, Uy 1 dp g
o i el A : 38
Dt +2Qusm¢+ tan ¢ + iy 0 (38)
1 dp
(5~

Here, the material derivative is defined by

ey L 0

i acos¢8_)\+aa¢+w8r ;

L <
RN 0

To transform this set into hybrid coordinates with 5 given as in ( 15) we proceed as

in §(1) and §(2) and obtain

Du, Vg 1 dp ory o ]
Dt g —ta.nqS g2 ap cos ¢ (8/\ +gpa)\) =
Dv, Ug 1 [dp or
=3 i e = 2 39
Dt +2Qusm¢+ tan ¢+ (a¢+gpa¢) 0 (39)
1dp
g+;5—; = 0 :

with the understanding that the derivatives with respect to ¢, A and ¢ are evaluated

at constant 7, and that the material derivative is now given by

u O r 0 i0
il a0l T (19)

L
Dt = ot

The continuity equation is given by ( 21).
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4.2  Transformation of the pressure coordinate model

Using the same hybrid vertical coordinate 7, as in the previous subsection, the

equations ( 34) with a suitable representation of the hydrostatic balance, become

Dy, ol 1. (00 90y .
D1 —2(2031ng{>—-——tan<;5+acosqS (0)\ S 0
Dy, Uy o® 0% or
- A - r 41
Dt + 2Qusin ¢ + — tan¢+ (BqS 6¢> 0 (41)
G
aT‘ 5 90 )

We may substitute the hydrostatic relationship into the momentum equations and

obtain

Dug—Qstin¢—z—ll’£ta,n¢+ : (3_@_@27;) ==

Dt acos¢ 0o O (42)
Doy | 90 sn¢+ o 1 ¢+ o 0
Dt i 5 96 0o 09

The thermodynamic equation remains unaltered as it is expressed entirely in terms
of the invariant material derivative which is given by ( 40). The continuity equation,

written in the form

a [ or or 0 .Or
o [”a—n],, Y (’”%) 5 (”"55) s e

becomes

9 [ 9% 0, 90\ , 0 [ 0006 _
3 ovan), T (W)t (o) 0 W

One may wish, however, to use the form of the continuity equation ( 21). The

vertical velocity 7, may be diagnosed as in §(1.2) ( 16), where the eulerian vertical

Dr
Dt z

velocity is given by ¥ =

14



4.3 A version of the quasi-equilibrium equations retaining metric
and coriolis terms

The material covered in subsections §(3.1) and §(3.2) incorporated the shallow at-
mosphere approximation in the quasi-equilibrium model and the ‘usual’ metric and
coriolis terms were neglected. In this subsection we shall derive a set of quasi-
equilibrium equations that include a complete representation of the coriolis and
metric terms. The end result may be thought of as a ‘quasi-hydrostatic, quasi-

equilibrium’ model.

In order to generalize the results of the two previous subsections we introduce
a ‘geostrophic vertical velocity’, which is denoted by w,. Let u, < (u,, vy, wy).
Then following a similar calculation to that given in Dutton (1976), we have for the

material derivative of the geostrophic flow

Py Dw. oDy, Dw, Di Dj Dk

e o ot e e
where
ﬂi i .tan ¢ E
i 3 r r
Dy i tang kv
o r r
Dk _ u o
e o R
which may be substituted back into ( 45) to obtain
Du, L Du,  uv,tan ¢ o uw,
Dt Dt r r
.(Dv, wuugtang vw,
+ ) ( Dy 2o T * e
Dw uu VY
k L 22 4
* < Dt r r ) 9



We may now use ( 46) together with the cos ¢ coriolis terms, in ( 38), to obtain

)

Duy, uv uw, 1., O0p

Dt 2Qv sin ¢ tan¢ + 2Qw cos ¢ + = + e 0
Dv Uy vwy, 1 0p
Dt +20usm¢+ an ¢ + : +rp(9¢ 0 (47)
—90uicos ¢ — (w)+ sl
r por X

We remark that we may now set w, = 0. In order to write the equations in 7-

coordinates (with n given by ( 15)), we use the chain rule as before and obtain

o — 2Qusin ¢ — ﬁtancb+2§2wcos<,z$+ ot
Dt r "
1 dp ,0r
o+ hoos (— 8)\) 0 (48)
D, oy 1 f0p oy
Dt + 2Qusin ¢ + tan¢+ . + <6¢ Pl 3(]5) w0 (49)
a !
a—f = pp', (50)
where
f = 2Qu cos ¢ + (__uug -: vvg) -g . (51)

The material derivative is given by

u _8_+v3+ a
rcos¢dN  rd¢ "a

.
ot

b| S
If

(52)

and 7 may be diagnosed from ( 16). The continuity equation is the same as the

non-hydrostatic model ( 21).
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5 Hamiltonian Structure

5.1 The non-hydrostatic equations

We consider equations ( 12), ( 13) and ( 14) for adiabatic, frictionless flow. We follow

Shepherd (1990) and write the thermodynamic equation in terms of the entropy S

e

where py is a constant reference pressure, C, is the specific heat at constant pressure,

S = C,logh = C,log (53)

and kK = —. The system is Hamiltonian in the variables o' = (u,v,w,p, S), with

&

Hamiltonian functional

1
W= / |:§p (u® +v* + w?) + E(p, S) + pgr| dr d\ d¢ , (54)
where F is the internal energy. If we write the absolute vorticity as
(w,wy,w3) =w=0+VAu , (55)

with © = (0,29 cos ¢, 2 sin ¢), then the equations of motion ( 12) and ( 13), with

the conservation of entropy replacing ( 14), may be written in the Hamiltonian form

k /5
ai=/dx56!.‘]£j6_7‘[_ J
ot ¢

e Sad

(56)

where dx is a measure on configuration space. Summation on repeated indices is

used and the bilinear, skew-symmetric matrix J* is given by

( 0 lw 1 -1 _Q. 1 8_5 \
p . pw2 rcos ¢ ON  rpcos ¢ O\
e e
Pl P r 9¢ rp 94
i 1 1 d 198
I = il koS et fatbchl 57
o Gl 2 ar p Or s
nk 0 =ld 0 0 0
rcos¢p 0N r 0¢ or
—1 (9_5’_ —_195 —_IQS'_ 0 0
\ prcos¢p N pr 0 p Or }



It should be noted that the generic form of J* is skew despite the above, where,
in fact, an integration by parts has been performed in ( 56) (this is not obvious
from the result quoted in Shepherd (1990)). For an ideal gas £ = pC,T (where

C, = Cp — R, is the specific heat at constant volume), whence

§E =0T ép4C.pbT

and using
Té6S RT ép
ol = + :
Co,—R  (C,—R)p
we get
1 RT
OE=Cypl—=-06 ) :
CP(C,, S+Cvp p) (58)

Using (58) we may verify the functional derivatives that are required in ( 56) are

§H SH OF

m e .
§H 1 0E 1
5o eyt ol e RG] (60)

Using ( 53) we may verify that

aT oS —10p

and thus demonstrate that ( 56) is precisely equivalent to the conventional form of

the non-hydrostatic equations.

5.2 The hydrostatic primitive equations

Holm & Long (1989) formulate the ideal Boussinesq model with hydrostatic balance
as a Hamiltonian system. They key idea is to use an isopycnal vertical coordinate,
together with the continuity equation, to eliminate the explicit representation of

18




vertical advection. In other words, under this transformation, the density becomes
an independent variable whilst the height of an isopycnal surface becomes a de-
pendent variable. Here, we invoke a similar idea, using isentropic coordinates in
spherical geometry (Holm & Long worked with cartesian coordinates), and apply
the method to the hydrostatic primitive equations. Like Holm & Long, we assume
for our purposes here, that the potential temperature increases monotonically with
height, although we do not rule out the possibility of the existence of a multi-region

model with piecewise monotonicity.

We will start from the equations of motion written in isentropic coordinates

o ou o
ot acosp N  add

u : 1 dp o) -
i (2Q + acos¢) vsin ¢ + (m +gpa—)‘> = (61)

pa cos ¢
v u Ov vOov
B T GcospOr T adp
5 (ZQ+ 2 )usin¢+—1—<@-+gpﬁ)=0 (62)
a cos ¢ pa \ 0¢ 0¢
10p
U+ ;E_O’ (63)

with the thermodynamic equation

00 u 00 v0b

% " acesg O Tadg "’ i
and the continuity equation
o (0, 1 0(0p\ 10 (3 _
ot (00) * a cos ¢ O\ <u80) . ad¢ (039) =9 6%
The isentropic potential vorticity is given by the expression
1ol : 1 v O(ucos ¢)
< gap <2nsm¢+acos¢ (8/\ e >) ' o
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We may identify a Hamiltonian functional

S e e
H= - 80(2(u +v)+gr+CpT)d/\d¢d0 (67)

with functional derivatives taken with respect to the independent variables (u,v)
; . O
and the inverse of the static stability e

oM < —ulp 6H  vop
u g 00’ Sv  gdb o

1
Pl o = (5 (v® +v?) +gr + C,,T) ; (69)
(3%)

and write the equations of motion ( 61), ( 62)and ( 65) in the following explicit

Hamiltonian form

du ( 0 1 _8_\ ( :ﬁ@
ot . acos ¢ O\ g 00
ot : 004 g 00
9 (10p e a0 L3 9
ot (gaa) \acosqbg;\- ad¢ . / \_(E(u +v)+gr+C’,,T))

(70)

noting that we will need the result

of  10p
r%c = poc

which may be derived from
Vg log g =1 y

in order to obtain the form ( 61) and ( 62). The eulerian vertical velocity w may be

diagnosed from

_&_*_ b ?1_*_22 (71)
T Ot acos¢pd\  ad¢

w

Holm & Long (1989) have shown that their formulation shows an interesting
analogy between the hydrostatic Boussinesq model and the equations for two dimen-
sional, compressible barotropic flow. It is inappropriate to extend our discussion to

20




such matters here, but we note that if the same analogies exist for the primitive

equations then the (non-) linear stability theory for equilibrium solutions to the
two-dimensional barotropic model, can, in principle, be carried over to the hydro-
static equations. We also note that the formulation ( 70) highlights the functional
dependence of the skew-symmetric bilinear form (the symplectic structure) on the

isentropic potential vorticity.

5.3 The Quasi-Hydrostatic Equations

In this subsection we give a heuristic account of what can be achieved using an
isentropic formulation of the quasi-hydrostatic equations, together with the use of
the zonal and meridional components of angular momentum on phase space. The
ramifications of the functional methods will be presented in a more complete account

elsewhere.

We begin by writing the equations ( 22) and ( 13) in isentropic coordinates. In
the results that follow the local derivatives with respect to time and the angular
variables are evaluated on 0 surfaces. Note that extensive use is made of ( 22)3
in the transformation that has taken place for the pressure gradient terms and for

clarity we write everything out in full.
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Equation ( 22); becomes

ou u Ou vou ; uv
'5—{ + mﬁ+;%—2QUSID¢——TtaH¢

dr-  vor udr uvor
+ 2Qcos¢( +_8_¢)+r8t+;35(;
L &t
prcosp AN r2cosdpdN  rcos¢ A

+ =0 . (72)

Equation ( 22), becomes

ov u Ov v6v u?
) + ma/\ a¢+2Qusm<,15——tan¢

v [ Or u Or 1817 1 u? 87‘

and the continuity equation becomes

2 _3_7_‘ _}_—1-_?_ ?ﬁ +l£ _61 =0 (74)
9IN'D8) remen\" 98] roo\" 0] @

In the Hamiltonian formulation of ( 72)-( 74) we need the zonal and meridional
angular momentum coordinates; thus
miy = ru+ Qr?cos¢
my, = rv

We also require the isentropic potential vorticity which is given by

i (__ZQc;osqbar 2 cin b 4 1 (8(7'1)) i 8(rucos¢))) 20 . (6)

0¢ r2cos¢ \ O 0¢ or
Consider an energy functional (Hamiltonian), written in terms of the angular mo-

menta and isentropic coordinates:

H [ml,mz,pg—g,T] /dAd(j)dOga {% [(_.__ L ¢) (T:»z) ] iC T+g'r}

(77)
This functional has the following variational derivatives,
dH udr..  AH v adr
T T E (78)

22




(u® +v*) + C,T + gr . (79)

DN =

We may now use ( 76), ( 78) and ( 79) to formulate the following result:
Proposition The equations of motion ( 72)-( 74) may be written in the following

Hamiltonian form

l_aﬂ ( 0 2 -1 _8__\ ( ré_H \
r O p rcos ¢ O omy
16m2 q sl 0 oH
i — i el — 80
r Ot p : r 0¢ T6m2 (80)
p_(pg) -1 9 -19 ; A
ot \" 90 \ rcosgdX 1 99 ) \ 605
Proof.

Explicit expansion of the matrix formulation and use variational derivatives given

by ( 78) and ( 79). O

This form of the equations, as with the primitive hydrostatic equations, empha-
sizes the role of the potential vorticity in the Hamiltonian structure. In order to
accommodate the extra terms included in this approximation to a non-hydrostatic
model, we have utilized a novel relationship between the angular momentum rep-
resentation and the isentropic description. The important difference between these
equations and the hydrostatic primitive equations from the point of view of a Hamil-
tonian formulation is that the local eulerian vertical velocity appears in the momen-
tum equations. This means that blindly following the methods of Holm & Long as in
§(5.2) leads nowhere. The use of angular momentum coordinates appears to be the
key to solving this difficulty. As we mentioned at the beginning of this subsection,

further details will be given elsewhere.
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