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Abstract

The Met Office’s volcanic ash inversion system uses satellite observations of volcanic ash

clouds and results from the NAME dispersion model to estimate volcanic ash source characteris-

tics. This report describes a number of changes made to the system. The main changes are in the

method of coarse-graining the satellite data, in the algorithm used to find the optimal source char-

acteristics, and in the a priori emission model. This report focuses on describing the changes,

with examples of the results presented in a companion report (Webster H. N., D. J. Thomson

and M. C. Cooke, Developments in the Met Office InTEM volcanic ash source estimation system

Part 2: Results. Forecasting Research Technical Report 618, Met Office, UK). The change to the

coarse-graining of the satellite data concerns the way pixels assessed as containing ash and clear

sky pixels are combined onto a coarser grid for input to the inversion computation; the changes in

the solution algorithm involve expressing the cost function in a form which is cheaper to evaluate

and also replacing the simulated annealing approach with an ‘active set’ method; and the change

in the a priori emission model involves introducing a stochastic model for the emissions with un-

certainties in the plume rise height, in the total emission rate, and in the vertical profile of the

emissions all represented separately. Some possible further developments are also discussed.

1 Introduction

An inversion method for volcanic ash source estimation was implemented operationally in January

2015 to assist the Met Office and the London Volcanic Ash Advisory Centre in providing guid-

ance (Pelley et al. [12]). The approach uses the atmospheric dispersion model “NAME” (Numerical

Atmospheric-Dispersion Modelling Environment) together with observations of the rise height of the

volcanic plume and satellite retrievals of ash column load, and adjusts the emissions in the atmo-

spheric dispersion model to obtain the best (in some sense) agreement with the available data. The

inversion method used to adjust the emissions is implemented in the “InTEM” system (Inversion

Technique for Emissions Modelling).

This note and a companion note (Webster et al. [18]) describe the development of a number of

revisions to the inversion method, with this note focusing on the concepts and the companion note

describing the results. There are three key revisions concerning:

• The method of coarse-graining the satellite data

• The algorithm for the solution of the optimisation problem

• The a priori emission model.

The revised approach was adopted operationally in December 2015.
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2 Outline of approach and notation

The general approach of Pelley et al. [12] is retained. In particular our approach is Bayesian and

seeks to estimate a single ‘best’ value by finding the peak of a Gaussian pdf (or minimum of a

quadratic cost function) over the quadrant of non-negative emissions, with the emissions used as the

primary variables rather than, e.g., considering the logarithm of the emissions as a way of avoiding

the problem of negatives. Although this choice implies a potentially significant lack of consistency

arising from truncation of negative values, this approach allows us to retain the advantages arising

from the linearity of the dispersion model and allows the use of efficient solution methods. We note

that, for a Gaussian pdf (or quadratic cost function) there is a unique local peak (or local minimum)

in any closed convex set and, in particular, in the non-negative quadrant, so that there is no problem

arising from multiple local peaks (or minima).

The use of a Bayesian approach, and in particular the use of a prior distribution, reduces the

risk of over-fitting to the satellite observations and enables knowledge of the general behaviour

of volcanic eruptions to be used to constrain the results. The main aspect of general volcano

behaviour used here is the typical relationship between the plume rise height and emission rate,

and the variability in this. In addition we choose to use near source observations of the rise height

of the plume to constrain the prior distribution (as opposed to, e.g., using such observations in the

same way as the satellite data to determine the a posteriori distribution from the a priori distribution).

We (mostly) follow the notation of Pelley et al. [12]. The variation of the emissions with height

and time is represented by discretising the source into source elements covering different height

and time ranges. The emissions from the various source elements are represented as a vector e of

effective emissions. The emissions are ‘effective’ because they account for the net effect of a range

of near source processes (plume rise etc.). Satellite retrievals of ash column load as a function of

horizontal position and time are given by a vector oa. This vector describes not the raw retrievals but

a coarse-grained version with a resolution which matches that chosen for the NAME model output

grid. The dispersion resulting from the source elements is represented by the NAME model with the

dispersing ash represented as a passive (but sedimenting and depositing) tracer. The NAME model

gives model predictions om for ash column loads at the retrieved locations as a linear function of

the emissions which we write as om = Me. The matrix M is obtained from the NAME model by

separately simulating the dispersion from each source element with a unit source strength. We

make estimates for (aspects of) the a priori distribution of emissions (in the Bayesian sense) using

estimates of the plume rise height and various modelling assumptions. The mean emission vector

and covariance matrix of the emissions in this a priori distribution (which are the aspects that we

estimate) are written as eap and B. We also use information from the satellite retrievals to make

estimates for the covariance matrix R of the errors in the coarse grained satellite data. There is

no explicit accounting for errors in the transport and dispersion (i.e. errors in M). Conceptually

one could regard such errors as being wrapped up in R, but the true correlation structure of the
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transport and dispersion errors is complex and difficult to model.

Using the above notation, the problem is to find the minimum of the cost function

J = (Me− oa)TR−1(Me− oa) + (e− eap)TB−1(e− eap)

subject to the constraint ei > 0 ∀i.

We use E to denote the expectation of random quantities and P to denote the probability of

events. Also IA (sometimes written I[A]) is the indicator function defined by

IA =

 1 if event A occurs

0 otherwise.

3 Coarse-graining of the satellite data

The way in which satellite pixel column load values are combined into lower resolution data for

comparison with NAME predictions has been revised. NAME’s output for operational volcanic ash

inversion currently uses output grid squares representing approximately 40 km × 40 km horizontal

averages and hourly time averages. To produce satellite data with matching resolution, the various

pixels available within a particular NAME grid square and one hour period need to be combined.

For simplicity in the following we will often just refer to ‘a NAME grid square’ with the time interval

being understood.

Each pixel is classified by the retrieval algorithm as having ash detected (“ash pixels”), as having

no significant ash – i.e. no significant ash detected and no significant cloud which could hide ash

(“clear sky pixels”), or as falling into neither category (“unclassified pixels”). The original approach

for coarse-graining the satellite data is described by Pelley et al. [12]. In the revised approach,

the mean ash column load for a NAME grid square is taken as the mean column load of the ash

and clear sky pixels within the NAME grid square (with the clear sky pixels taken as having zero

load). The standard deviation of column load for the NAME grid square is taken to be the average of

the standard deviations of the ash and clear sky pixels within the NAME grid square with the clear

sky pixels taken as having a standard deviation of 0.5 g m−2, based on estimates of the minimum

detectable column load. (In ideal conditions it is possible to detect column loads of order 0.1 g m−2

[19]. However, the retrieval method of Francis et al. [7], as used here, uses a conservative detection

method to avoid excessive noise in less than ideal situations and does not often give column loads

less than of order 0.5 g m−2.)

Errors in satellite retrievals are likely to be correlated over nearby pixels and averaging the stan-

dard deviations represents this pragmatically by assuming in effect perfect correlation of errors

between pixels in the same NAME grid square. To justify this we consider n pixels with actual col-

umn loads ci and with column load retrievals (with errors) yi = ci + εi, and we assume E[εi] = 0,

E[ε2i ] = σ2
i . Then the error in the mean over the pixels is 1

n

∑
i εi and the variance of the er-
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ror is 1
n2

∑
i

∑
j E[εiεj ]. With perfectly correlated errors the standard deviation of the error equals√

1
n2

∑
i

∑
j σiσj which equals the average of the standard deviations 1

n

∑
i σi. Covariances be-

tween NAME grid squares are assumed zero, assuming in effect zero correlation of errors between

pixels in different NAME grid squares. Clearly this sharp cut-off is not ideal but represents a conve-

nient pragmatic choice while respecting the idea of correlation decreasing with distance.

Note that although this approach treats retrieval errors it ignores representativity errors. These

occur when not all pixels in a NAME grid square are ash or clear sky pixels and the actual ash load

varies between pixels. The representativity error will be larger when fewer pixels are classified as

ash pixels or clear sky pixels. To partially treat this problem we only use retrievals for the NAME

grid squares in which either 50% of pixels are ash pixels or 90% of pixels are either ash or clear sky

pixels. The different thresholds reflect the fact that if the classified pixels in a NAME grid square are

dominated by clear sky pixels then the amount of ash could be underestimated, possibly significantly

so if ash is hiding in the unclassified pixels, and so the mean over the NAME grid square may be

biased. Viewed another way we don’t want to use grid squares with zero or small estimated column

load unless we are reasonably confident that there is not a lot of ash concealed in the unclassified

pixels. The different thresholds are also a pragmatic way to limit the number of clear sky grid squares

which, at least for some solution methods, may have a significant impact on the computational cost

of the inversion. We also ignore errors caused by the assumptions about the ash properties such

as the ash refractive index. It seems possible such errors will lead to retrieval errors which are

correlated between widely separated pixels.

The NAME grid squares for which column loads have been calculated are then classified into

squares containing some ash pixels (‘ash grid squares’) and squares containing only clear sky and

unclassified pixels (‘clear sky grid squares’). This allows the differences between using only the ash

grid squares and including the clear sky grid squares too to be studied.

Although this approach is similar to before, there are significant differences of detail. For example

previously it was possible to classify a grid square as clear sky and assign it a zero column load,

even if there were a few pixels with ash within it, provided clear sky pixels dominated.

4 Algorithm for solution of the optimisation problem

The optimisation method implemented operationally in January 2015 used a hybrid simplex plus

simulated-annealing method and assumed that the covariance matrices were all diagonal. The

approach used the method of Press et al. [13, pp. 443-447] with some modifications to ensure

emissions are greater than zero. [Note we do mean greater than zero and not greater than or equal

to zero – the method cannot give exactly zero emissions although it can give small values.] The

simplex-annealing method was chosen originally because of experience with this method within the

Atmospheric Dispersion and Air Quality team and because it does not make strong demands on the

cost function having particular properties.
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The optimisation method has been revised in two respects.

The first revision is to pre-calculate the sums over satellite observations so that the cost function

is expressed as a quadratic function of the emissions with known coefficients, rather than as a

quadratic function of both the emissions and the satellite observations. This increases the speed of

the code for cases with many satellite observations and many cost function evaluations. In addition,

expressing the cost function as a quadratic function of the emissions only is necessary for the

second step.

The second revision is to use the more direct “NNLS” (non-negative least squares) solution

method from Lawson and Hanson [8, chap. 23, sec. 3]. This is designed for finding the x which

minimizes |Lx−f |2 subject to the constraints xi > 0, but is easily adapted to more general quadratic

cost functions xTGx + dTx with positive-semi-definite G (by, e.g., using Cholesky decomposition

of G to find values of L and f which make the first problem equivalent to the second). It is an

“active-set method” (see Nocedal and Wright [11]) that iterates over possible choices for the set of

the xi which are equal to zero, i.e. for which the non-negative constraint is active. The method

is guaranteed to converge to the true minimum in a finite time. Also each iteration improves the

solution, so that stopping before complete convergence normally gives a reasonable approximation

to the true solution. A negative aspect of this choice is that it offers no flexibility for altering the

optimisation problem to anything that isn’t a non-negative quadratic optimisation problem. However

any development of our inversion modelling beyond quadratic cost functions might well involve other

radical changes, such as the use of Monte Carlo Markov Chain methods. The NNLS algorithm has

been previously used in atmospheric dispersion source determinations (see Boichu et al. [2], [3]).

For our problem the NNLS method is essentially the same as Algorithm 16.1 of Nocedal and

Wright [11] and the “Fast-NNLS” method of Bro and De Jong [4]. The key difference is that these

algorithms work directly with G rather than with L. This is potentially a large advantage if working

with an L where the number of rows is much greater than the number of columns; converting from

L to G amounts in effect to performing the sum over observations which we have discussed above.

However for our problem we are calculating L from G and would naturally choose to make L a

square matrix; in this situation there is unlikely to be a large performance gain from these alternative

approaches. Some gain may be possible from the avoidance of the need to pre-calculate L from

G (and to recalculate G from L within the algorithm itself, depending on exactly what method is

used for the unconstrained optimisations needed within the algorithms). Other differences between

the algorithms include the question of what happens when an iteration step leads to more than

one previously non-zero variable being set equal to zero and the range of options for initialising the

algorithm. The former question seems of little significance in that such events are expected to be

rare and, while the difference will lead to different routes to the solution, it seems unlikely to have

much systematic impact on the computational cost. However the options for initialising the algorithm

may be of value to us in a “rolling framework” context (see Pelley et al. [12]) where, instead of having

a single optimisation problem, the optimisation problem needs to be repeated as new observations

c© Crown Copyright 2017 6



become available. Here it seems likely that making use of the previous solution as a starting point

could reduce the cost significantly. This is similar conceptually to the situations considered by Bro

and De Jong [4]. We don’t consider these possibilities further here, but they could be considered in

due course as possible further improvements.

The optimisation method implemented operationally in January 2015 used a sparse matrix rep-

resentation for aspects of the cost function in cases where this was likely to be beneficial. The matrix

G occurring in the cost function will have non-zero off-diagonal components only for components

corresponding to two source elements for which either of the following conditions hold:

• the two source elements can both contribute to the model prediction of column load at a

common location for which there is a satellite retrieval of column load;

• the a priori emissions are conditionally correlated, i.e. the a priori emissions for the two

sources are correlated when conditioned on the values of the other emissions (this amounts

to the relevant off-diagonal component of B−1 being non-zero – see Rue and Held [14, p. 22]).

This means that although the matrix G is fairly sparse when the source elements are uncorrelated a

priori, the introduction of correlations between the source elements (which is discussed in the next

section) will reduce the sparseness of G. Hence we have not attempted to make use of sparse

representations in the revised approach.

5 A priori emission model

5.1 Motivation

The aim is to introduce a more probabilistically consistent model for the a priori distribution of emis-

sions. Conceptually we aim to achieve this by a stochastic model which can generate an ensemble

of emission scenarios, with the emission statistics being computed by averaging over the ensemble.

However, for our stochastic model, it turns out to be possible to calculate the required statistics by

numerically evaluating some integrals, without the need to actually generate the ensemble of emis-

sions. The ‘consistency’ arises because all the statistics emerge from a single conceptual model.

For example variations in rise height within the ensemble give rise to a complicated behaviour of

the mean and variance of emissions near the mean rise height. This is because the ensemble

includes cases where the emissions are zero at a particular height because the plume does not

rise high enough, and also cases where the emissions are large because the plume rises above

the height in question and because the total emissions increase strongly with rise height. Also the

correlations between the emissions from the various source elements can be calculated from the

stochastic model and can take account of, for example, the fact that variations in rise height can

affect emissions at all heights. These aspects were treated differently previously and, in particular,

no a priori correlation was assumed between the emissions from the various source elements.
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The ability to include correlations is one of the main benefits of the approach. With no corre-

lations the a priori description allows for a lot of small scale variability but the implied large scale

variability, e.g. variability in the total emissions integrated over all heights and over some time period,

will be too small. Hence the a priori distribution will overly constrain the integrated emissions and/or

allow too much small scale ‘noise’ (allowing over-fitting to the satellite data on the small scales). In

contrast, if we assumed high a priori correlations, the implied small scale variability in emissions will

be too small; the ‘shape’ of the height-time profile of emissions will be over constrained and/or the

integrated emissions will be under constrained. Including correlations will also reduce the sensitivity

of results to the way the emissions are discretised into source elements in time and height. The

inclusion of correlations in time also means that the inversion estimates for the very latest emissions

(which are generally unconstrained directly by satellite observations) do not simply revert to the a

priori mean. Including correlations can be regarded as seeking a midway position between the pre-

vious approach of assuming independence and the approach of describing the source through a

small number of parameters with many aspects of the source assumed perfectly correlated at the

outset (see Denlinger et al. [5] and Zidikheri and Potts [20]).

In our stochastic model we want to include correlations induced by variations in plume rise height

H or variations in the total mass release rate M for given H. These variations will affect releases at

all heights and so should induce correlations in the vertical. However, conditional on H and M , we

want to allow for quite a lot of variability in the shape of the profile. This variability in profile shape

should be specified separately from the uncertainties in H and M as there is no physical reason

why they should be related. [Previously the variability in profile shape came about as a result of

allowing the emission for each source element to vary in a way which reflects the uncertainties in

H and M with no correlation between the source elements – if there was no variability in H and M

then there would have been no shape variability.]

In the absence of an inversion calculation our operational configuration assumes a uniform emis-

sion profile from the volcano summit to the best estimate, Hb, of the plume rise height made from

local observations (Webster et al. [17]). The emission is based on a power law relationship between

emissions and plume rise height of the type proposed by Sparks et al. [15, section 5.2] and Mastin

et al. [9]. We want the a priori mean to agree with what we would use operationally in the absence

of an inversion calculation, in order to ensure that the inversion result will be the usual operational

emission choice for the special case of no satellite data (at least for the bulk of the source profile –

it’s not possible near the top of the plume if we are to account properly for uncertainties in plume

rise height which are ignored in the usual operational emission choice). This precludes calculating

the mean of the emission rate per unit height M/H by (i) taking the mean of M conditional on the

rise height H to follow the power law (which has E[M |H] ∝ Hα with α close to 4), (ii) dividing by H

to get the conditional mean of the emissions per unit height, E
[
M
H |H

]
, and (iii) integrating over the

probability distribution of H. This is because the non-linearity of H → E
[
M
H |H

]
will alter the mean.

As a result we linearise the power law (expressed in the form of emission rate per unit height as a
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function of rise height) about Hb.

Because we are going to solve a (constrained) Gaussian optimisation problem we want a stochas-

tic emission model for which the emission means and covariances (but not necessarily higher order

statistics) are calculable reasonably easily. The higher order statistics in the stochastic emission

model needn’t be Gaussian, but these higher order aspects of the model will be ignored and Gaus-

sian assumptions made in the optimisation problem.

We note that in principle the inclusion of correlations in time will allow us to make estimates

of future emissions within the inversion calculation by including them in the optimisation process.

However this either would require an assumption that Hb remains constant in the future perhaps

with an increased variability of H about Hb or would require an additional model for the stochastic

evolution of Hb.

5.2 Model description

Here we describe our a priori emission model in detail. The model is based on the ideas and

requirements discussed above.

We consider a model for H with H being uniformly distributed in [Hb − δH,Hb + δH] where

δH is an error estimate. (H −Hb)/δH is assumed to be exponentially correlated in time with time

scale TH , with (H − Hb)/δH remaining constant between jumps to independently chosen values

with exponentially distributed waiting times. We did consider an alternative model in which H is a

Gaussian process with mean Hb, with standard deviation σH , and with (H −Hb)/σH exponentially

correlated in time with time scale TH . However this model cannot completely exclude the possibility

of H going negative and, more significantly, cannot prevent H going below the (positive) threshold

at which the linearised version of the power law formula (Sparks et al. [15], Mastin et al. [9]) gives

negative emissions. More complex models are possible which would ensure the H fluctuations are

suitably bounded and also ensure H, (H − Hb)/δH, or (H − Hb)/σH vary continuously. However

because the input Hb will normally not vary continuously and because the additional complexity

does not seem justified, we do not consider this further.

The (conditional on H) mean E
[
M
H

∣∣H] of the emission rate per unit height is determined by

linearising the power law estimate cMHα3 about Hb to get

cM (Hα3
b + α3H

α2
b (H −Hb)) = cMH

α3
b

(
α3

H

Hb
− α2

)
.

Here α3 ≡ α − 1 and α2 ≡ α − 2. This notation is intended to reflect the fact that α ' 4 and so

α3 ' 3 and α2 ' 2. Note also that α3 − α2 equals 1. We need H
Hb

> α2
α3

, and hence δH
Hb

6 1
α3

, to

avoid negative emissions.

We note that, although we have chosen the models for H and E
[
M
H

∣∣H] to avoid the possibility

of negative emissions, negative emissions may not matter as only the 1st and 2nd order moments

of the emissions will be used. However we will see below that negative emissions can have some
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unsatisfactory consequences which supports the choices we have made here.

We then take M
H = E

[
M
H

∣∣H] (1 + r) where r is a random function of time t, independent of H,

with mean zero and covariance function σ2
re−

|t2−t1|
Tr . Here r represents the fractional variability in

the total emission rate for a given plume rise height.

The emission rate per unit height at height z(> 0) above the summit and at time t, e(z, t), is then

assumed to be given by

e(z, t) =
M

H
(1 + s)Iz6H

where s is a random function of z and t representing the variability in the shape of the vertical

emission profile. While we could model s as a random function of height and time, perhaps with

exponentially decaying correlations, this would alter the total mass emission rate M . This may not

be a problem and could be compensated for by reducing the variability in r. However it is clearer to

keep the variability in the shape completely separate from the variability in the total mass emission.

We do this by modelling s as q− 1
H

∫H
0
q dz where q is modelled as a random function of z and t with

exponentially decaying correlations. More specifically we model q, conditional on H, as a random

function of z and t, independent of r, with mean zero and with covariance function

σ2
qe−

|t2−t1|
Tq e−

|η2−η1|
Lq Inot J(t1,t2).

Here η = z/H and J(t1, t2) is the event that (H −Hb)/δH jumps between time t1 and time t2. We

have introduced a factor Inot J so that q is uncorrelated either side of a jump in H. The inclusion of

the factor Inot J seems qualitatively plausible and also turns out to have advantages in the analysis.

The covariance function of s is derived in appendix A together with a discussion of some other

possible ways of ensuring that s does not alter the total mass emission.

Combining the above yields

e(z, t) = E
[
M

H

∣∣∣∣H] (1 + r)(1 + s)Iz6H = cMH
α3
b

(
α3
H(t)
Hb
− α2

)
(1 + r)(1 + s)Iz6H .

The factor r represents the randomness in the total mass release rate while the factor s represents

the randomness in the shape of the emission profile.

We note that the 1st and 2nd order moments of the emissions depend on r and s only through

the 1st and 2nd order moments of r and s conditional on H. As a result we do not need to make

any assumptions about the higher order moments of r and s. Generally we have chosen correlation

functions to be exponential decays rather than e.g. Gaussian functions. This is because exponential

decays (unlike Gaussians) correspond to broad spectra and so allow variability on scales much less

than the decay scale. This should also make the inversion more robust to numerical errors as, by

avoiding having correlations very close to 1, there is less danger of, e.g., a supposedly positive

definite matrix failing to be positive definite due to numerical errors.

While the model is conceptually fairly simple, it is quite complex to calculate with. However
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it is not clear that a simpler model could be devised with the desired properties. Many aspects

of the approach use simple pragmatic assumptions which are not robustly established and the

model has quite a lot of constants which need to be specified but are not well known. However

including a poorly known correlation is likely to be better than neglecting the correlation completely

and should ensure that the inversion is better behaved. In addition the inclusion of the poorly

known parameters helps to make explicit what it is that we don’t know. This contrasts with e.g.

determining the uncertainty in the shape of the emission profile implicitly from the uncertainty in

H and M and the assumption of uncorrelated emissions in different height ranges as was done

previously. While the previous approach reduces the number of explicit assumptions it really hides

the implicit assumptions about profile shape uncertainty. The various constants provide scope

for adjustment (either empirically or based on volcano theory/models/observations or on expert

judgement/elicitation). Automatic tuning of the parameters (through giving them a distribution and

optimising the values within the Bayesian framework) is also a possibility but is not considered here.

It is likely that the results will not be overly sensitive to the details of the model. One reason

for this is that we are only using the model to fix the 1st and 2nd order moments of the a priori

emissions. Another reason is that, with enough observed data for the inversion, the observed

data should provide a stronger constraint on the emissions than the a priori model. However the

assumptions still need to be plausible. For example a complete lack of correlations with a finely

resolved source distribution in space and time – i.e. many source elements with each having a

small height-time extent – is likely to constrain the total emissions integrated over space and time

much too much unless the individual source elements have a very large variance.

5.3 Choice of parameters

The values assumed for the various parameters are as follows.

α = 1/0.241 = 4.15, cM = 0.05× 140.84 kg s−1 km−4.15,

TH = 12 h, σr = 1, Tr = 12 h, σq = 1, Tq = 3 h, Lq = 0.3.

δH is not included here because, like Hb, it is treated as an input parameter which can be input as

a time series rather than as a single value. However we note that for all the examples shown in the

companion report, Webster et al. [18], δH is chosen to be the estimate of rise height error given

by Pelley et al. [12] for the Eyjafjallajökull 2010 and Grı́msvötn 2011 eruptions, namely δH = 2000

m. This value is broadly consistent with the size of the discrete steps in the estimated rise height

time series for those eruptions (see Pelley et al. [12] and Webster et al. [18]) and with the tendency

of the raw radar estimates of rise height for those eruptions to cluster around certain values which

reflects the discrete scanning elevation angles available (see Arason et al. [1]).

α and cM are derived from Mastin et al.’s [9] relationship between emissions and rise height,
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assuming a magma density of 2500 kg m−3 to convert from volume to mass emission rate, and

with an additional factor of 0.05 (the ‘distal fine ash fraction’) which is an estimate of the fraction

of ash which forms the far field effective source due to it being finer than 100 µm in diameter and

not depositing rapidly due to aggregation (see Webster et al. [17]). TH is based on experience of

the rate of change of observations of plume height during Eyjafjallajökull with the assumption that

the errors evolve on a similar time scale to the plume height itself. Tr is chosen to reflect the idea

that the mass emission is likely to evolve on a similar time scale to the plume height (due to large

scale changes in the volcano state) and/or on a time scale related to changes in meteorology (which

will influence the relationship between M and H). σq, Tq and Lq are chosen to allow considerable

variations in the profile shape on a time scale which is somewhat faster than TH and Tr.

Before discussing σr we note that the assumed errors in H induce uncertainty in the total mass

released. With a rise height of 10 km and the default δH giving a rise height range of 8 to 12 km, the

uncertainty in the total mass released induced by the uncertainty in H ranges between 0.4 and 2.1

times the central estimate based on a 10 km rise height. Now Mastin et al. [9] estimate the errors in

their M -H formulae as giving a 50% chance of errors greater than a factor of 4. However Mastin et

al.’s height estimates, which often involve single values for a whole eruption, are likely to have errors

at least as large as, and probably significantly larger than, the 2000 m estimated for well-monitored

Icelandic volcanoes. Hence part of the scatter in the M -H relationship seen by Mastin et al. is likely

to be due to height errors which we allow for through δH. Hence their error estimate should be

compared with the total error induced by δH and σr. As a result σr = 1 seems a reasonable choice.

It allows a reasonable chance of having a total emission rate which is several times the Mastin et al.

value calculated from Hb + δH and also a reasonable chance of having a very small total emission

rate. With our Gaussian assumptions we cannot reflect the symmetry of Mastin et al.’s estimates for

the error in the log of the emissions (i.e. a factor of 4 up or down). We probably underestimate the

error on the upside, especially if we also consider that the errors in the distal fine ash fraction should

be included in σr, and overestimate the error on the downside. However, once the error in the rise

height is accounted for, the error on the upside will not be grossly underestimated. Also larger

values of σr would increase the inconsistencies caused by imposing the non-negative constraint.

In part 2 (Webster et al. [18]) a number of tests of the sensitivity of the inversion calculations to

some of these parameters is presented.

We noted above that we need δH
Hb

6 1
α3

to avoid negative emissions in the model but that this

might not matter because we only use the 1st and 2nd order moments from the model together with

a Gaussian assumption and a non-negative constraint. Here we show that violating this inequality

does have some unsatisfactory consequences and we describe how we adjust the parameters to

avoid this. From equation (2) in appendix B we note that

d

dẑ
E[e(z, t)] =

 cMH
α3
b

(
− 1

2 − α3
δH
Hb

ẑ
2

)
if ẑ ∈ [−1, 1]

0 otherwise
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where ẑ is z−Hb
δH . This should be less than or equal to zero because, conditional on H, the mean

emissions are uniform with height between the summit and H, and so, as z increases, E[e(z, t)]

should stay the same or decrease because the probability of the emissions reaching the height z

will stay the same or decrease. However d
dẑE[e(z, t)] can be greater than zero if δH

Hb
> 1

α3
. This

is because, if δH
Hb

> 1
α3

, then we have the possibility of negative values of E
[
M
H

∣∣H]. Increasing

ẑ (i.e. increasing z) eliminates contributions from values of H with E
[
M
H

∣∣H] < 0 which allows

E[e(z, t)] to increase. This is probably undesirable and certainly against the spirit of the model,

and so it is probably best to ensure δH
Hb

6 1
α3

. If δH is larger than this allows, then we can either

reduce δH or reduce the sensitivity of E
[
M
H

∣∣H] to fluctuations in H around Hb, by reducing α3 in

its multiplicative role in E
[
M
H

∣∣H] = cMH
α3
b

(
α3

H
Hb
− α2

)
while retaining its value in the exponent

(and maintaining the relationship α2 = α3 − 1 between the constants in their multiplicative roles).

We choose to do the latter, but only for the duration of the period with δH
Hb

> 1
α3

. More precisely we

put α3× = min(α3, Hb/δH), α2× = α3× − 1, and E
[
M
H

∣∣H] = cMH
α3
b

(
α3×

H
Hb
− α2×

)
. This is not

ideal, but reflects the need to balance competing requirements within the framework adopted here.

We have not accounted for this modification in the analysis presented in appendix B; however the

modifications required are straightforward.

5.4 Evaluating the first and second order moments

The 1st and 2nd order moments have been evaluated in two ways. The first involves obtaining

closed form expressions for the moments as described in appendix B. To evaluate the expressions

for the 2nd order moments, some numerical integrations need to be performed. The second ap-

proach involves simulating many random realisations of e(z, t) and computing the moments from

these realisations. Both approaches have been programmed and satisfactory agreement between

the two approaches has been obtained, with results agreeing to the extent expected given the sam-

pling noise arising from the use of a finite number of realisations and the numerical errors arising

from the numerical integration. This provides a reasonable degree of assurance that the analysis in

appendix B and the computer code are both correct. The use of the closed form expressions from

appendix B avoids the sampling error issue and is quicker (assuming the number of realisations in

the second approach is chosen to ensure that the sampling error is not too big). Hence we have

adopted the appendix B approach. A potential drawback of this is that the appendix B results are

only valid for this specific form of model and could not be easily adapted to models that have more

than minor differences in form.

6 Possible further developments

Here we discuss a range of possible improvements, from relatively straightforward adjustments to

extensive developments requiring significant effort. We focus mainly on possible developments in
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the inversion technique itself and do not give much consideration to the improvements that will come

about from advances in the quality of the meteorological data, satellite data, dispersion modelling,

model resolution etc., except where these have the potential to interact with the inversion technique.

As discussed by Pelley et al. [12], the satellite retrievals only detect ash particles with diameters

between about 1 µm and 30 µm. This is treated by releasing the normal default particle size

distribution with sizes up to 100 µm and by scaling down the NAME predicted column loads by 5%.

This 5% factor is sufficiently small in comparison to the other uncertainties that it should not make

much difference. However the treatment method is not correct in general. For example the particles

with diameters larger than 30 µm may have mostly fallen out in NAME before reaching the location

of interest and, in this situation, the column load should not be reduced by as much because it has

already been reduced by the sedimentation processes in NAME. A better approach would be to

only release particles in the relevant size range or to produce output just from particles in this size

range.

Altering the starting point for the iterations in the NNLS solver, as discussed in section 4, may

reduce the computational cost further when the inversion is carried out repeatedly as more data

becomes available. It is also possible that the solver could be altered to work directly with G without

the need to calculate L first, as discussed in section 4.

An obvious possible improvement is to increase the resolution of the satellite data and the NAME

model output. For example, the ‘representativity errors’ (in the sense discussed in section 3) in the

satellite data could be reduced by reducing the amount of resolution degradation caused by coarse

graining. However this may require developments in the treatment of satellite error correlations.

This is because the assumption that the satellite retrieval errors are uncorrelated between NAME

grid squares may become poorer at higher resolution. In addition, higher resolution may mean that

the model plume, or certain small scale features within the plume, will, due to errors in modelling

the plume position, not match the satellite data as well. Methods of addressing these are discussed

below and may be necessary to fully realise the benefits of increased resolution.

Including meteorological uncertainty and potentially altering the model ash cloud state to better

match the observations (as well as adjusting the emissions) is a possible direction of development.

Using meteorological ensembles is relatively straightforward conceptually although computation-

ally expensive. One would assign the ensemble members equal a priori probabilities, but would

calculate different a posteriori probabilities. This would require time-coherent ensembles of meteo-

rological analyses which are in principle available in some approaches to ensemble generation and

ensemble data assimilation. One could also use the rather crude approaches of either enhancing

the model diffusion so that the model better reflects an ensemble average over the meteorological

uncertainties and/or considering a range of plume displacements/distortions as a substitute for an

ensemble of meteorology. Alternatively, these techniques could possibly be used in addition to us-

ing an ensemble of meteorology, in order to better sample the variability which is not fully captured

by an ensemble with a small number of members. One could either select a best choice member
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of the meteorological ensemble and/or best choice displacement/distortion using the a posteriori

probabilities, or one could obtain an ensemble of such choices with various probabilities. Of course

the meteorology interacts strongly with the emission estimation process and the use of ensembles

could in principle improve cases where the inversion is poor because the model plume is displaced

from the actual plume. This may be more significant when clear sky satellite data is used; the results

presented in the companion report by Webster et al. [18] suggest that sometimes the clear sky data

can remove too much ash due to a displacement of the model plume.

More use could be made of other information available from satellite. A measure of ash cloud

height and effective particle diameter is obtained in our retrieval method (Francis et al. [7]) and could

be included in the cost function. One could also consider extending the range of parameters which

are estimated by the inversion model if there is a reasonable prospect of the available data con-

straining these parameters. Examples might include the effective source’s particle size distribution

or possibly the ash refractive index. Optimising over possible values for the refractive index might

require closer integration with the satellite retrieval calculations, but might allow an extra source of

uncertainty to be properly accounted for. It also seems likely that there is quite a lot of information

in the satellite data which is not currently used. This includes low grade information, especially in

the large regions which are currently not assessed as either containing ash or as being clear of

ash, and also qualitative information from visible pictures and estimates of cloud top height at the

volcano. It would be interesting to explore whether some of this information could be used effec-

tively by integrating even more closely with the satellite retrieval calculations, e.g. by estimating the

radiances implied by the model (as in Millington et al. [10]) and performing the optimisation on the

raw radiances rather than the retrieved column loads etc.

The correlation scale of errors in the satellite data deserves more attention. Currently this is

treated simply by assuming correlated errors within a NAME output grid square and ignoring longer

range correlations. Improvements in the treatment of this may be beneficial, especially with higher

spatial resolution satellite data. The adoption of a correlation function with more than one character-

istic scale (e.g. reflecting errors due to the ash plume structure, the meteorology, and the refractive

index errors) might be worth consideration.

Currently our main source of satellite data is the SEVIRI instrument on the geostationary MSG2

satellite. There is a lot of scope for making use of other instruments and platforms such as hyper-

spectral resolution instruments, active instruments such as lidars, other geostationary satellites, low

earth orbiters, limb sounders etc. However it is not possible to do justice to this topic here; the topic

really deserves a separate discussion.

Ground and aircraft based instruments such as lidars are a further source of data. This will often

be in the form of ash concentrations rather than column loads. There are challenges in making

use of such data as a result of small scale variability in the concentration field and the possibility of

vertically thin plumes combined with errors in the modelled plume height.

The use of deposition data is also a possibility, although it is likely to be more useful for post
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event analysis than for emergency response. Deposition processes also interact in a complex way

with near source aggregation. This is a barrier to the straightforward use of deposition data in

estimating the distal airborne plume, but including such data in the inversion could be an effective

tool for diagnosing aggregation.

With the use of a wider range of observation data types, there is probably little reason to maintain

the current approach of regarding the near source observations of rise height as part of the a priori

description; instead they could be regarded as just more observations. The a priori description

would then of course need to include a wide range of possible volcano behaviours, e.g. a wide

range of possible rise heights.

The a priori model could be developed in various ways. For example the effect of meteorology

on the plume rise versus mass emission rate relationship could be included by linking to plume

rise models (Devenish [6]). The a priori model could also move away from the assumption of,

on average, having a uniform emission with height. A more top heavy profile is likely to be more

probable, but it would be important to include the possibility of significant releases at all heights.

Avoiding the linearisation of the relationship between the emission per unit height and the variation

of rise height within it’s uncertainty range could also be beneficial, either by using the Mastin et al.

formula [9] directly without linearisation, or by running a plume rise model for a range of possible

emissions and/or rise heights. Similarly the sharp edged top-hat distribution forH could be improved

or the correlation decay shapes refined (e.g. it may be beneficial for the correlation of r to not decay

completely, reflecting variability from volcano to volcano or from eruption to eruption and allowing

more freedom on the total mass emitted for a long eruption). It is also possible that some of the

parameters in the a priori model (e.g. TH , σr etc. for the model described in this note) could be

further tuned, either by hand or by giving them uncertainty probability distributions and optimising

them in a Bayesian fashion. Assessing the values by hand could include looking at the extent

to which the probabilistic assumptions and the data are consistent, along the lines of the work

presented in section 6 of the companion report (Webster et al. [18]).

Avoiding the assumption of Gaussian distributions may be beneficial, although this is likely to

require more expensive solution algorithms. The large variability seen in eruptions means that

there can be substantial negative-emission tails to the Gaussian distributions, and the need to

truncate these negative values is a significant inconsistency. It would be better to impose the non-

negative emission constraint directly through the a priori assumptions rather than through the so-

lution method. Simply switching to log-normal distributions is unlikely to be a good solution to this

as the model should allow a significant probability for a source to be exactly zero. In any case, the

use of a log-normal distribution removes some of the computational advantages of the Gaussian

assumptions because the relationship between emissions and the log of concentration or the log

of column load is non-linear, and so there is little reason not to consider more general approaches.

Non-Gaussian distributions would probably also be beneficial or necessary in connection with some

of the other possible developments considered above (e.g. assuming distributions for TH , σr etc.). If
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a single best-fit description of the emissions is needed then, with non-Gaussian distributions, some

care is needed in choosing this as the mode, mean and median will all be different. When combined

with the desire to quantify uncertainty better, this leads naturally to considering more sophisticated

solution methods such as using Monte Carlo Markov Chain (MCMC) approaches to compute an

ensemble of volcano emissions and of ash cloud states. This would involve a significant increase in

the computational cost, but the benefits may well make this worthwhile. We note that an advantage

of such an approach would be that, with intermediate variables like H, r and q included in the model

of the volcano state, it would not be necessary to carry out the type of calculation described in

appendix B; this calculation is already rather complex and it is unlikely that it would be cost effective

to carry it out for significantly more complex models. Hybrid approaches which mix Gaussian and

non-Gaussian elements and/or which mix NNLS or direct solvers with MCMC methods are also

possible.

It is currently rather unclear which of this large choice of options is likely to lead to the most

benefit for the effort expended and, even after some of the ideas have been implemented, it will

be a significant effort to assess the benefits. Currently most of the effort on inversion has been

limited to the Eyjafjallajökull 2010 and Grı́msvötn 2011 eruptions and it would be worthwhile using

data from a larger set of eruptions to avoid making conclusions that are too strongly biased to these

two eruptions. Extending the approach to the inversion of volcanic SO2 sources and potentially

to other dispersion problems will provide a wider range of case studies for assessing the various

approaches.

7 Conclusions

We have described a number of developments that have been implemented in our volcanic ash

source inversion system. In part 2 (Webster et al. [18]) we will present a range of tests of the

system.

Appendices

A Methods of ensuring s does not alter M

To ensure s does not alter M we need to impose the constraint
∫H
0
s(z, t) dz = 0. In this appendix

we discuss various possible ways to achieve this.

As in the main text we write η = z/H and we will regard s and q as functions of η and t. It is

convenient to work in terms of η because the covariance function assumed for q is expressed in

terms of η. However, everything in this appendix is conditional on H, and so there is no essential
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difference between working with z or η.

The constraint can be imposed by considering q(η, t) which is generated without the constraint

and then defining s(η, t) = q(η, t) − a(η, t)
∫ h
0
q(η′, t) dη′ with

∫ h
0
a(η′, t) dη′ = 1 to ensure that∫ h

0
s(η′, t) dη′ = 0. Here h, the upper limit of η, is 1 but is written as h to enable dimensional-

analysis checking – it is a spatial coordinate value and if we define η = z/(H in metres) then η

and h have dimensions. We will write the vertical covariance functions of q and s as σ2
qQz(η

′ − η)

and σ2
qSz(η

′, η) (note we use the same σ2
q in both cases which is the variance of q not s and so

Sz(η, η) 6= 1). The temporal correlation functions of q and s will be written as Qt(t′, t) and St(t′, t).

Using the shorthand qηt ≡ q(η, t) etc.,
∫
η
≡
∫
dη and an overbar for E, we have

sηtsη′t′ = qηtqη′t′ − aη′t′ qηt
∫
η′′
qη′′t′ − aηt qη′t′

∫
η′′
qη′′t + aηtaη′t′

(∫
η′′
qη′′t

)(∫
η′′
qη′′t′

)
.

With qηtqη′t′ = σ2
qQz(η

′ − η)Qt(t′, t) and a (as a function of η) independent of t, this gives

sηtsη′t′ = sηtsη′tQt(t′, t),

which shows St = Qt, as well as

sηtsη′t = qηtqη′t − aη′ qηt
∫
η′′
qη′′t − aη qη′t

∫
η′′
qη′′t + aηaη′

(∫
η′′
qη′′t

)2

and

s2ηt = q2ηt − 2aη qηt
∫
η′′
qη′′t + a2

η

(∫
η′′
qη′′t

)2

.

For our choice Qz(η′ − η) = e
|η′−η|
Lq we have

qηt

∫
η′′
qη′′t = σ2

q

∫ h

0

e−
|η−η′|
Lq dη′ = σ2

qLq

(
2− e−

η
Lq − e−

h−η
Lq

)
and (∫

η′′
qη′′t

)2

= σ2
q

∫ h

0

∫ h

0

e−
|η′−η′′|
Lq dη′ dη′′ = 2σ2

qL
2
q

(
h

Lq
− 1 + e−

h
Lq

)
.

(For those familiar with Taylor’s (1922) turbulent dispersion result [16], we note the analogy between

that and the last result above.)

There are clearly many possible methods of choosing a(η, t). The simplest is a = 1/h (as

adopted in the main text) leading to

Sz = Qz −
Lq
h

(
4− e−

η
Lq − e−

h−η
Lq − e−

η′
Lq − e−

h−η′
Lq

)
+ 2

L2
q

h2

(
h

Lq
− 1 + e−

h
Lq

)
. (1)

As a check, we note that Sz → 0 for Lq/h → ∞ and Sz → Qz for Lq/h → 0. We also note that,

for Lq much smaller than h and away from the top and bottom of the emission, the variance of s is
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reduced from that of q by ∼ 2σ2
qLq/h.

A second possibility is to consider a conditioned Gaussian process. We consider this first in

the abstract and then apply it to our problem. If we have correlated Gaussian random variables xi

with mean zero then we can consider the distribution of the xi conditional on a number of linear

constraints of the form Aαj xj = 0 being satisfied. Here α ranges over the number of constraints

and the summation convention for repeated indices applies. We will also consider how to gener-

ate samples of xi conditional on Aαj xj = 0. Consider the distribution of yi = xi − aαi Aαj xj where

the aαi are chosen to ensure there is no correlation between yi and the Aαj xj . This is always

possible and, if the constraints are non-degenerate, possible uniquely (e.g. could choose uncor-

related linear combinations of the Aαj xj and decorrelate the xi from each in turn). Then we have

that E[Aαj yjA
α
kyk] = Aαj A

α
kE[yj(xk − aβkAβmxm)] = Aαj E[yjAαkxk] − Aαj Aαka

β
kE[yjAβmxm)] = 0 (using

the absence of correlation twice). Hence Aαj yj = 0. Also the distribution of the xi conditional on

Aαj xj = 0 equals that of the yi conditional on Aαj xj = 0 (because xi = yi if Aαj xj = 0) which equals

the unconditional distribution of the yi (because the yi are uncorrelated with, and so independent

of, the Aαj xj). Hence the distribution of the yi gives us the required distribution and the yi them-

selves provide a method of generating samples. The equation which needs to be solved for the

aαi is AβkE[xixk] = aαi A
α
j A

β
kE[xjxk]. We note also that this choice of aαi minimises the variance of

xi − aαi Aαj xj . Any other choice of aαi amounts to adding a random variable which is uncorrelated

with yi to yi and so must increase the variance.

For orientation we consider the special case with a single constraint
∑
i xi = 0. Then the

equation for the ai is
∑
k E[xixk] = ai

∑
jk E[xjxk], ai =

∑
k E[xixk]/

∑
jk E[xjxk], and yi = xi −∑

j xj
∑
k E[xixk]/

∑
jk E[xjxk].

Now consider q(η, t) ≡ qηt with the constraints
∫ h
0
q(η, t) dη = 0. The equation for a(η, t, T ) ≡ aTηt

(there is one constraint for each time T ) is

ATη′t′E[qηtqη′t′ ] = aT
′

ηtA
T ′

η′t′A
T
η′′t′′E[qη′t′qη′′t′′ ]

in discrete form with summations, where ATηt = 1 when t = T and is zero otherwise. This translates

to the continuous form with integrals given by

∫
η′

E[qηtqη′T ] =
∫
η′,η′′,T ′

aT
′

ηtE[qη′T ′qη′′T ],

i.e. ∫ h

0

E[qηtqη′t] dη′Qt(t, T ) =
∫ h

0

∫ h

0

E[qη′T qη′′T ] dη′ dη′′
∫ ∞
−∞

aT
′

ηtQt(T
′, T ) dT ′

or ∫ h

0

e−
|η−η′|
Lq dη′Qt(t, T ) =

∫ h

0

∫ h

0

e−
|η′−η′′|
Lq dη′ dη′′

∫ ∞
−∞

aT
′

ηtQt(T
′, T ) dT ′.
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This is satisfied by aT
′

ηt = a(η)δ(t− T ′) where

a(η) =

∫ h
0

e−
|η−η′|
Lq dη′∫ h

0

∫ h
0

e−
|η′−η′′|
Lq dη′ dη′′

=
Lq

(
2− e−

η
Lq − e−

h−η
Lq

)
2L2

q

(
h
Lq
− 1 + e−

h
Lq

) .

This leads to

Sz = Qz −

(
2− e−

η
Lq − e−

h−η
Lq

)(
2− e−

η′
Lq − e−

h−η′
Lq

)
2
(
h
Lq
− 1 + e−

h
Lq

) .

As before, we check that Sz → 0 for Lq/h → ∞ and Sz → Qz for Lq/h → 0. We also note that, for

Lq much smaller than h and away from the top and bottom of the emission, a ∼ 1/h and, as before,

the variance of s is reduced from that of q by ∼ 2σ2
qLq/h.

We will also explore a third option with the aim of making s2 constant with height. We have

s2ηt = q2ηt − 2a qηt
∫
η′
qη′t + a2

(∫
η′
qη′t

)2

so that, writing the variance reduction q2ηt − s2ηt as A, we require

a2

(∫
q

)2

− 2a q
∫
q +A = 0

or

a =
q
∫
q ±

((
q
∫
q
)2

−A
(∫
q
)2)1/2

(∫
q
)2 .

It isn’t possible to satisfy
∫
η
aη = 1 with a consistent choice of sign (because

∫
η
aη > 1 for the plus

sign and
∫
η
aη < 1 for the minus sign). It is in fact possible to satisfy

∫
η
aη = 1 if we allow the sign

choice to vary with η (and it’s even possible with no reduction in variance). However this seems

unsatisfactory and so we conclude that it is not possible to satisfactorily ensure that the variance of

s is constant with height.

There seems no clear physical or mathematical reason to choose between the a = 1/h model

and the conditioned Gaussian process value of a (or other approaches). Hence we chose the

simpler model a = 1/h.

B Closed form expressions for the first and second order mo-

ments of the a priori emission distribution

In this section we will derive closed form expressions for the 1st and 2nd order moments of the

emissions. In doing this we consider slightly more general models than considered in the main
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text. This is because our initial analysis considered different models and it is useful to record that

analysis because (i) it may be useful in the future, (ii) some of these models give moments that do

not require numerical integration to evaluate them, and (iii) the similarities and differences between

the different approaches help to give confidence that the analysis is correct. The generalisations

concern the form of the covariance functions for r and s. Before describing these generalisations,

we need to introduce some notation for the covariance functions.

The covariance function of r will be written as σ2
rR(t2 − t1). In the model in the main text we

have R(t2 − t1) = e−
|t2−t1|
Tr . The covariance function of s (conditional on H) will be written as

σ2
qS(z2, z1, t2, t1) = σ2

qSz(z2, z1)St(t2, t1) = σ2
qSz(z2, z1)S

∗
t (t2, t1)(Inot J(t1,t2) + λIJ(t1,t2)). For the

model in the main text we have λ = 0 and S∗t = e−
|t2−t1|
Tq . Sz(z2, z1) is given by (1) where Qz(z2, z1),

the vertical correlation function of q, is equal to e
|η2−η1|
Lq with η = z/H. This notation is consistent

with that used in appendix A, except for the use of z instead of η as the independent variable in

the vertical correlation functions. While the use of z is less convenient for the model in the main

text (as it implies a hidden dependence on H through η) there is no particular advantage for the

generalisations considered here (as hidden dependencies are possible with both z and η). The

purpose of introducing λ is so that, by setting λ = 1, it is possible to remove the factor Inot J(t1,t2)

(using the fact that Inot J(t1,t2) + IJ(t1,t2) = 1).

The main generalisations concern the form of the covariance function for s. Firstly we allow

the form of Sz to be different, provided it still depends on H(t), for fixed z1 and z2, only through

H1 ≡ H(t1) and H2 ≡ H(t2) (and remains independent of r). One reason why one might want to

use a different form is that one might want to alter the way s is calculated from q and hence the way

Sz is calculated from the vertical correlation function Qz for q (see discussion in appendix A). Also

one might want to alter the way, for fixed z1 and z2, the value of Qz depends of H1 and H2. In the

main model it depends on H through η = z/H but this could be changed, e.g., to depend instead

on ζ = z/Hb so that, for fixed z1 and z2, Sz is independent of H. This change also allows Qz to be

altered from an exponential decay to any desired correlation function shape. Secondly we allow λ

to equal either 0 or 1. As noted above setting λ = 1 removes the factor Inot J from St. Finally (and

trivially) we allow S∗t and R to be altered from exponential decays to any desired correlation function

shapes. We note that the analysis in appendix A remains valid except in the case of some possible

generalisations to Sz.

Moments conditional on H

We start by evaluating moments conditional on H. The mean emission rate per unit height at height

z (conditional on H) is given by

E[e(z, t)|H] = E
[

E
[
M

H

∣∣∣∣H] (1 + r)(1 + s)I
∣∣∣∣H] = E

[
M

H

∣∣∣∣H] I = cMH
α3
b

(
α3

H

Hb
− α2

)
I
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where I = IH>z. Similarly, with e1 ≡ e(z1, t1) etc., we have

E[e1e2|H1, H2] = E
[

E
[
M1

H1

∣∣∣∣H1

]
E
[
M2

H2

∣∣∣∣H2

]
(1 + r1)(1 + r2)(1 + s1)(1 + s2)I1I2

∣∣∣∣H1, H2

]

= E
[
M1

H1

∣∣∣∣H1

]
E
[
M2

H2

∣∣∣∣H2

]
(1 + σ2

rR)(1 + σ2
qS)I1I2

= c2MH
α3
b1 H

α3
b2

(
α3

H1

Hb1
− α2

)(
α3

H2

Hb2
− α2

)
(1 + σ2

rR)(1 + σ2
qS)I1I2.

Integration over H

We can now take the expectation over H to give

E[e] = E[E(e(z, t)|H)] = cMH
α3
b E

[(
α3

H

Hb
− α2

)
I

]

and

E[e1e2] = E[E(e1e2|H1, H2)]

= c2MH
α3
b1 H

α3
b2 (1 + σ2

rR)E
[(
α3

H1

Hb1
− α2

)
I1

(
α3

H2

Hb2
− α2

)
I2(1 + σ2

qS)
]
.

We now need to evaluate the various expectations which occur in these expressions starting

with the expectations needed for the 1st order moments. We have

E[I] = P[H > z] =


1 if 0 6 z 6 Hb − δH
Hb+δH−z

2δH if Hb − δH 6 z 6 Hb + δH

0 otherwise

and

E[HI] = E[HI|H > z]P[H > z] =


Hb if 0 6 z 6 Hb − δH
Hb+δH+z

2
Hb+δH−z

2δH if Hb − δH 6 z 6 Hb + δH

0 otherwise

= Hb


1 if 0 6 z 6 Hb − δH
(Hb+δH)2−z2

4HbδH
if Hb − δH 6 z 6 Hb + δH

0 otherwise.

Before considering the other expectations required for the 2nd order moments, we re-evaluate

E[I] and E[HI] in a slightly different way. This is for consistency with the way we will treat some of the

other expectations and also serves as a check on the calculations. Let us define Ĥ ≡ (H−Hb)/δH.

Then

H = Hb + δHĤ and I = I

[
Ĥ >

z −Hb

δH

]
.
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If we put ẑ ≡ z−Hb
δH then I = IĤ>ẑ. To avoid to many ‘if’s in the following we also use ŷ to denote a

version of ẑ which is limited to lie in [−1, 1], i.e. ŷ ≡ (ẑ∧1)∨−1 where ∧ denotes min and ∨ denotes

max. Now, because Ĥ is uniformly distributed in [−1, 1], we can deduce that

E[I] = P[Ĥ > ẑ] =
1− ŷ

2

and

E
[(

H

Hb
− 1
)
I

]
= E

[
δH

Hb
Ĥ

∣∣∣∣ Ĥ > ẑ

]
P[Ĥ > ẑ] =

(
δH

Hb

1 + ŷ

2

)
1− ŷ

2
=
δH

Hb

1− ŷ2

4
.

using the fact that the mean of a random variable which is uniformly distributed in [ŷ, 1] is 1+ŷ
2 . It is

easily checked that this agrees with the previous calculation.

We now consider the expectations needed for the 2nd order moments. These terms involve

values of H (and I which depends on H) at two times, both directly and through the value of S.

We consider the two events corresponding to whether or not a jump occurs in Ĥ ≡ (H − Hb)/δH

between t1 and t2. If J denotes that a jump occurs, then we have

E[· · ·] = E[· · · |J ]P[J ] + E[· · · |not J ]P[not J ] = E[· · · |J ]
(

1− e−
|t2−t1|
TH

)
+ E[· · · |not J ]e−

|t2−t1|
TH .

If a jump occurs, H1 and H2 are independent and we can write Hi = Hbi + δHiĤi etc. If a jump

doesn’t occur then Ĥ1 = Ĥ2 and, with the common value denoted by Ĥ, we have

Hi = Hbi + δHiĤ and Ii = I

[
Ĥ >

zi −Hbi

δHi

]
.

If we put ẑi = zi−Hbi
δHi

and ẑm = ẑ1 ∨ ẑ2 then Ii = IĤ>ẑi
and I1I2 = IĤ>ẑ1∨ẑ2 = IĤ>ẑm

. Like before,

we also use ŷi and ŷm to denote versions of ẑi and ẑm which are limited to lie in [−1, 1].

We now consider the required expectations conditional on J and not J . These can be expressed

in terms of integrals as

E[· · · I1I2|J ] =
1
4

∫ 1

ŷ1

∫ 1

ŷ2

· · · dĤ2 dĤ1,

E[· · · I1I2|not J ] =
1
2

∫ 1

ŷm

· · · dĤ,

E[· · · I1I2S|J ] = λS∗t E[· · · I1I2Sz|J ] = λS∗t
1
4

∫ 1

ŷ1

∫ 1

ŷ2

· · ·Sz dĤ2 dĤ1

and

E[· · · I1I2S|not J ] = S∗t E[· · · I1I2Sz|not J ] = S∗t
1
2

∫ 1

ŷm

· · ·Sz dĤ

for “· · ·” equal to H1H2, H1, H2 and 1. In the integral over Ĥ1 and Ĥ2, it is implied that H1 and H2

within the integral are to be expressed in terms of Ĥ1 and Ĥ2, including for any dependency of the

value of Sz for fixed z1 and z2 on H1 and H2. Similarly, in the integral over Ĥ, it is implied that H1
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and H2 within the integral are to be expressed in terms of Ĥ = Ĥ1 = Ĥ2 (which is valid for the

not-J case). The factors of 1/4 and 1/2 arise from the pdfs of (Ĥ1, Ĥ2) (for the J case) and Ĥ (for

the not-J case) which are uniformly distributed over [−1, 1] × [−1, 1] and [−1, 1] respectively. The

two expectations involving S are not easily evaluated analytically (except where Sz is independent

of H or, for the first expectation, where λ = 0) and are best treated by numerical integration.

However the quantities not involving S can be expressed more simply. Because H1 and H2 are

conditionally independent given J , the expectations of H1H2I1I2, H1I1I2, H2I1I2 and I1I2 given

J are straightforward to express using the already evaluated E[HI] and E[I]. Also, because Ĥ is

uniformly distributed in [−1, 1], we can deduce that

E[I1I2|not J ] = P[Ĥ > ẑm] =
1− ŷm

2
,

E
[(

Hi

Hbi
− 1
)
I1I2

∣∣∣∣not J
]

= E
[
δHi

Hbi
Ĥ

∣∣∣∣ Ĥ > ẑm

]
P[Ĥ > ẑm]

=
(
δHi

Hbi

1 + ŷm
2

)
1− ŷm

2
=
δHi

Hbi

1− ŷ2
m

4

and

E
[(

H1

Hb1
− 1
)(

H2

Hb2
− 1
)
I1I2

∣∣∣∣not J
]

= E
[
δH1δH2

Hb1Hb2
Ĥ2

∣∣∣∣ Ĥ > ẑm

]
P[Ĥ > ẑm]

=
δH1δH2

Hb1Hb2

[(
1 + ŷm

2

)2

+
(1− ŷm)2

12

]
1− ŷm

2
=
δH1δH2

Hb1Hb2

1− ŷ3
m

6

using the fact that the mean and variance of a random variable which is uniformly distributed in

[ŷm, 1] are 1+ŷm
2 and (1−ŷm)2

12 .

We can now give expressions for E[e] and E[e1e2]. In doing this it is often convenient to use the

equality α3
H
Hb
− α2 = α3

(
H
Hb
− 1
)

+ 1 = α3
δH
Hb
Ĥ + 1 etc. For the mean we have

E[e] = cMH
α3
b E

[(
α3
δH

Hb
Ĥ + 1

)
I

]
= cMH

α3
b

(
1− ŷ

2
+ α3

δH

Hb

1− ŷ2

4

)
. (2)

For the 2nd order moments we have

E[e1e2] = c2MH
α3
b1 H

α3
b2 (1 + σ2

rR)

×
{(

1− e−
|t2−t1|
TH

)
E
[(

α3
δH1

Hb1
Ĥ1 + 1

)
I1

(
α3
δH2

Hb2
Ĥ2 + 1

)
I2(1 + σ2

qS)
∣∣∣∣ J]

+e−
|t2−t1|
TH E

[(
α3
δH1

Hb1
Ĥ + 1

)
I1

(
α3
δH2

Hb2
Ĥ + 1

)
I2(1 + σ2

qS)
∣∣∣∣not J

]}
.

While this could be simplified without making further assumptions, the expression will be quite

complex. Hence we now restrict attention to the cases where either λ is zero or Sz is independent

of H. This includes the model described in the main text (λ = 0) and the case where the result

can be evaluated without numerical integration (Sz independent of H) but excludes cases involving
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double integrals. With this restriction we have

E[e1e2] = c2MH
α3
b1 H

α3
b2 (1 + σ2

rR)
{

(1 + λσ2
qSzS

∗
t )
(

1− e−
|t2−t1|
TH

)

×E
[(
α3
δH1

Hb1
Ĥ1 + 1

)
I1

]
E
[(
α3
δH2

Hb2
Ĥ2 + 1

)
I2

]

+e−
|t2−t1|
TH E

[(
α3
δH1

Hb1
Ĥ + 1

)
I1

(
α3
δH2

Hb2
Ĥ + 1

)
I2(1 + σ2

qSzS
∗
t )
∣∣∣∣not J

]}

= (1 + σ2
rR)

{
(1 + λσ2

qSzS
∗
t )
(

1− e−
|t2−t1|
TH

)
E[e1]E[e2]

+e−
|t2−t1|
TH c2MH

α3
b1 H

α3
b2 E

[(
α3
δH1

Hb1
Ĥ + 1

)
I1

(
α3
δH2

Hb2
Ĥ + 1

)
I2(1 + σ2

qSzS
∗
t )
∣∣∣∣not J

]}

= (1 + σ2
rR)

{
(1 + λσ2

qSzS
∗
t )
(

1− e−
|t2−t1|
TH

)
E[e1]E[e2]

+e−
|t2−t1|
TH c2MH

α3
b1 H

α3
b2

1
2

∫ 1

ŷm

(
α3
δH1

Hb1
Ĥ + 1

)(
α3
δH2

Hb2
Ĥ + 1

)
(1 + σ2

qSzS
∗
t ) dĤ

}
.

For the special case where Sz (for fixed z1 and z2) is independent of H we have

E[e1e2] = (1 + σ2
rR)

{
(1 + λσ2

qSzS
∗
t )
(

1− e−
|t2−t1|
TH

)
E[e1]E[e2]

+(1 + σ2
qSzS

∗
t )e
− |t2−t1|TH c2MH

α3
b1 H

α3
b2 E

[(
α3
δH1

Hb1
Ĥ + 1

)
I1

(
α3
δH2

Hb2
Ĥ + 1

)
I2

∣∣∣∣not J
]}

= (1 + σ2
rR)

{
(1 + λσ2

qSzS
∗
t )E[e1]E[e2]

+e−
|t2−t1|
TH c2MH

α3
b1 H

α3
b2

[
(1 + σ2

qSzS
∗
t )
(

1−ŷm
2 + α3

(
δH1
Hb1

+ δH2
Hb2

)
1−ŷ2

m

4 + α2
3
δH1δH2
Hb1Hb2

1−ŷ3
m

6

)
−(1 + λσ2

qSzS
∗
t )
(

(1−ŷ1)(1−ŷ2)
4 + α3

δH1
Hb1

(1−ŷ2
1)(1−ŷ2)
8 + α3

δH2
Hb2

(1−ŷ2
2)(1−ŷ1)
8 + α2

3
δH1δH2
Hb1Hb2

(1−ŷ2
1)(1−ŷ2

2)
16

)]}

= (1 + σ2
rR)

{
(1 + λσ2

qSzS
∗
t )E[e1]E[e2]

+e−
|t2−t1|
TH c2MH

α3
b1 H

α3
b2

[
(1 + σ2

qSzS
∗
t )

1−ŷm
2

(
1 + α3

(
δH1
Hb1

+ δH2
Hb2

)
1+ŷm

2 + α2
3
δH1δH2
Hb1Hb2

1+ŷm+ŷ2
m

3

)
−(1 + λσ2

qSzS
∗
t )

(1−ŷ1)(1−ŷ2)
4

(
1 + α3

δH1
Hb1

1+ŷ1
2 + α3

δH2
Hb2

1+ŷ2
2 + α2

3
δH1δH2
Hb1Hb2

(1+ŷ1)(1+ŷ2)
4

)]}
.

We note (as a check) that E[e1e2] > E[e1]E[e2] because

(1− ŷ1)(1− ŷ2)
4

6
1− ŷm

2
, 1 + ŷi 6 1 + ŷm,

and
(1 + ŷ1)(1 + ŷ2)

4
6

(1 + ŷm)2

4
6

(1 + ŷm)2

4
+

(1− ŷm)2

12
=

1 + ŷm + ŷ2
m

3

c© Crown Copyright 2017 25



with the last inequality having a nice probabilistic interpretation in terms of the 1st and 2nd order

moments of uniform distributions on [ŷ1, 1], [ŷ2, 1] and [ŷm, 1]. Of course E[e1e2] > E[e1]E[e2] is not

required probabilistically, but the model design seems likely to ensure all correlations are > 0.

If e′ ≡ e − E[e] denotes the departure from the mean, then, with the restriction that either λ is

zero or Sz is independent of H, we have

E[e′1e
′
2] = (σ2

rR+ λσ2
qSzS

∗
t + λσ2

rRσ
2
qSzS

∗
t )E[e1]E[e2] + (1 + σ2

rR)e−
|t2−t1|
TH

[
c2MH

α3
b1 H

α3
b2

×1
2

∫ 1

ŷm

(
α3
δH1

Hb1
Ĥ + 1

)(
α3
δH2

Hb2
Ĥ + 1

)
(1 + σ2

qSzS
∗
t ) dĤ − (1 + λσ2

qSzS
∗
t )E[e1]E[e2]

]
.

For the model in the main text, this becomes

E[e′1e
′
2] = σ2

rRE[e1]E[e2] + (1 + σ2
rR)e−

|t2−t1|
TH

[
c2MH

α3
b1 H

α3
b2

×1
2

∫ 1

ŷm

(
α3
δH1

Hb1
Ĥ + 1

)(
α3
δH2

Hb2
Ĥ + 1

)(
1 + σ2

qSzS
∗
t

)
dĤ − E[e1]E[e2]

]
.

Moments of discrete source elements

The above moments are for point emission values. However we require moments for the discretised

source elements which cover rectangular regions in the z-t plane. Hence the formulae need to

be integrated over the source regions. If the source regions are small compared to the scales on

which e(z, t) varies, it may be acceptable to just consider a single point within each source element.

A better approximation is to sum over a number of points, in effect doing a numerical integration,

although we note that for each pair of points a numerical integration over Ĥ is needed to calculate

E[e1e2] which will make the approach expensive if used with a large number of points. Here we

integrate E[e] over the source regions analytically and, for E[e1e2], switch the order of integrations

so as to do the integration over the source regions analytically and then do the integration over Ĥ

numerically.

For a source element occupying [z, z] × [t, t] (with z 6 z, t 6 t) the source strength is E ≡∫ z
z

∫ t
t
e(z, t) dt dz. In calculating the moments of the E’s, we consider only the model described in

the main text and ignore the various generalisations discussed near the start of this appendix. In

addition we assume that Hb and δH change only in discrete jumps. The analysis which follows also

assumes that these jumps don’t occur within a source element; when a jump does in fact occur

within one or more source elements, these source elements are divided and the results for the

subdivisions are combined to obtain the moments for the original choice of source elements.

To calculate the moments of the E’s, we need to integrate the moments of e(z, t) over the re-

gions occupied by the source elements. In doing this it’s convenient, in considering the 2nd order

moments, to replace
∫ 1

ŷm
· · · dĤ by the equivalent expression

∫ 1

−1
· · · IĤ>ẑm

dĤ which can also be

written as
∫ 1

−1
· · · IĤ>ẑ1

IĤ>ẑ2
dĤ. The latter form is easier to use here because the varying bounds
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of the Ĥ integral can be exchanged for varying bounds in the z integrals.

For the 1st order moments we have

E[E] =
∫ z

z

∫ t

t

E[e(z, t)] dt dz =
∫ z

z

∫ t

t

cMH
α3
b

(
1− ŷ

2
+ α3

δH

Hb

1− ŷ2

4

)
dt dz

= cMH
α3
b (t− t)

(∫
[z,z]∩[0,Hb−δH]

+
∫

[z,z]∩[Hb−δH,Hb+δH]

)(
1− ŷ

2
+ α3

δH

Hb

1− ŷ2

4

)
dz

= cMH
α3
b (t− t)

[
(z ∧ (Hb − δH))

∣∣∣z=z
z=z

+ δH

∫ ŷ

ŷ

(
1− ŷ

2
+ α3

δH

Hb

1− ŷ2

4

)
dŷ

]

= cMH
α3
b (t− t)

[
(z ∧ (Hb − δH))

∣∣∣z=z
z=z

+ δH

(
ŷ

2
− ŷ2

4

)∣∣∣∣ŷ=ŷ
ŷ=ŷ

+ α3
(δH)2

Hb

(
ŷ

4
− ŷ3

12

)∣∣∣∣ŷ=ŷ
ŷ=ŷ

]
.

For the 2nd order moments we first consider some integrals of exponentials. We have

∫ t

t

∫ t

t

e−
|t2−t1|
T dt2 dt1 = 2T 2

(
e−
|t−t|
T − 1 +

|t− t|
T

)
≡ 2T 2f

(
t− t
T

)

with f(x) = e−|x| − 1 + |x|. Also we have

∫ t1

t1

∫ t2

t2

e−
|t2−t1|
T dt2 dt1 =

1
2

(∫ t2

t1

∫ t2

t1

+
∫ t2

t1

∫ t2

t1

−
∫ t2

t1

∫ t2

t1

−
∫ t2

t1

∫ t2

t1

)
e−
|t2−t1|
T dt2 dt1

= T 2

[
f

(
t2 − t1
T

)
+ f

(
t2 − t1
T

)
− f

(
t2 − t1
T

)
− f

(
t2 − t1
T

)]
≡ Ft1,t1,t2,t2(T )

where F is defined by the last equation. One way to derive this is to write the integrals as e.g.
∫ t1
t1

=∫ t1
t0
−
∫ t1
t0

and proceed by analogy with (t1−t1)(t2−t2) = 1
2 [(t2−t1)2+(t2−t1)2−(t2−t1)2−(t2−t1)2].

For disjoint intervals with t1, t1 6 t2, t2 or t1, t1 > t2, t2 we have

∫ t1

t1

∫ t2

t2

e−
|t2−t1|
T dt2 dt1 = T 2

[
f

(
t2 − t1
T

)
+ f

(
t2 − t1
T

)
− f

(
t2 − t1
T

)
− f

(
t2 − t1
T

)]

= T 2
(

e−
|t2−t1|
T + e−

|t2−t1|
T − e−

|t2−t1|
T − e−

|t2−t1|
T

)
and for identical intervals with t1 = t2 and t1 = t2 we recover the result for

∫ t
t

∫ t
t

e−
|t2−t1|
T dt2 dt1

given above. In addition we have

∫ Y 1

Y 1

(
1− e−

η1
Lq

)
dη1 = Y 1 − Y 1 − Lq

(
e−

Y 1
Lq − e−

Y 1
Lq

)
= Lq

[
f

(
Y 1

Lq

)
− f

(
Y 1

Lq

)]

for Y 1, Y 1 > 0.

In evaluating E[E′1E
′
2] we will need to calculate the two integrals

∫ z1
z1

∫ z2
z2
IĤ>ẑ1

IĤ>ẑ2
dz2 dz1 and∫ z1

z1

∫ z2
z2
IĤ>ẑ1

IĤ>ẑ2
Sz dz2 dz1. To do this, we write y

i
and yi for zi ∧Hi and zi ∧Hi and Y i and Y i
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for y
i
/Hi and yi/Hi. Then we have

∫ z1

z1

∫ z2

z2

IĤ>ẑ1
IĤ>ẑ2

dz2 dz1 =
∫ y1

y
1

∫ y2

y
2

dz2 dz1 = H1H2(Y 1 − Y 1)(Y 2 − Y 2)

and

∫ z1

z1

∫ z2

z2

IĤ>ẑ1
IĤ>ẑ2

Sz dz2 dz1 =
∫ y1

y
1

∫ y2

y
2

Sz dz2 dz1 = H1H2

∫ Y 1

Y 1

∫ Y 2

Y 2

Sz dη2 dη1.

With our form of Sz, namely

Sz = e−
|η2−η1|
Lq − Lq

(
4− e−

η2
Lq − e−

1−η2
Lq − e−

η1
Lq − e−

1−η1
Lq

)
+ 2L2

q

(
1
Lq
− 1 + e−

1
Lq

)

(see (1)), we can evaluate the parts of
∫ Y 1

Y 1

∫ Y 2

Y 2
Sz dη2 dη1 as follows:

∫ Y 1

Y 1

∫ Y 2

Y 2

e−
|η2−η1|
Lq dη2 dη1 = FY 1,Y 1,Y 2,Y 2

(Lq),

∫ Y 1

Y 1

∫ Y 2

Y 2

Lq

(
1− e−

η1
Lq

)
dη2 dη1 = (Y 2 − Y 2)L

2
q

[
f

(
Y 1

Lq

)
− f

(
Y 1

Lq

)]
and ∫ Y 1

Y 1

∫ Y 2

Y 2

Lq

(
1− e−

1−η1
Lq

)
dη2 dη1 = (Y 2 − Y 2)L

2
q

[
f

(
1− Y 1

Lq

)
− f

(
1− Y 1

Lq

)]
with similar results when indices 1 and 2 are swapped, and

∫ Y 1

Y 1

∫ Y 2

Y 2

2L2
q

(
1
Lq
− 1 + e−

1
Lq

)
dη2 dη1 = (Y 1 − Y 1)(Y 2 − Y 2)2L

2
qf

(
1
Lq

)
.

It follows that

E[E′1E
′
2] =

E[E1]E[E2]
(t1 − t1)(t2 − t2)

[
σ2
rFt1,t1,t2,t2(Tr)− Ft1,t1,t2,t2(TH)− σ2

rFt1,t1,t2,t2

(
1

1/TH + 1/Tr

)]

+
[
Ft1,t1,t2,t2(TH) + σ2

rFt1,t1,t2,t2

(
1

1/TH + 1/Tr

)]

×c2MH
α3
b1 H

α3
b2

1
2

∫ 1

−1

(
α3
δH1

Hb1
Ĥ + 1

)(
α3
δH2

Hb2
Ĥ + 1

)
H1H2(Y 1 − Y 1)(Y 2 − Y 2) dĤ

+
[
σ2
qFt1,t1,t2,t2

(
1

1/TH + 1/Tq

)
+ σ2

rσ
2
qFt1,t1,t2,t2

(
1

1/TH + 1/Tr + 1/Tq

)]

×c2MH
α3
b1 H

α3
b2

1
2

∫ 1

−1

(
α3
δH1

Hb1
Ĥ + 1

)(
α3
δH2

Hb2
Ĥ + 1

)
H1H2

(∫ Y 1

Y 1

∫ Y 2

Y 2

Sz dη2 dη1

)
dĤ
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with ∫ Y 1

Y 1

∫ Y 2

Y 2

Sz dη2 dη1 = FY 1,Y 1,Y 2,Y 2
(Lq)

−(Y 2 − Y 2)L
2
q

[
f

(
Y 1

Lq

)
− f

(
Y 1

Lq

)]
− (Y 2 − Y 2)L

2
q

[
f

(
1− Y 1

Lq

)
− f

(
1− Y 1

Lq

)]

−(Y 1 − Y 1)L
2
q

[
f

(
Y 2

Lq

)
− f

(
Y 2

Lq

)]
− (Y 1 − Y 1)L

2
q

[
f

(
1− Y 2

Lq

)
− f

(
1− Y 2

Lq

)]

+(Y 1 − Y 1)(Y 2 − Y 2)2L
2
qf

(
1
Lq

)
.

This leaves two integrals over Ĥ to evaluate. The second of these integrals in particular is difficult

to evaluate exactly and so we have chosen to use numerical methods for both integrals over Ĥ.
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