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ABSTRACT

Integration of the semi-geostrophic equations in their conservative
finite elements form has hitherto been hindered by the lack of an efficient
algorithm to analyse the topology and metrical parameters of each
instantaneous solution. With existing techniques it has been found that in
large problems the computation of the geometrical configuration of the
elements consumes an overwhelming proportion of the total CPU time, putting
the investigation of three dimensional problems by the finite element
method beyond the reach of even the fastest computers for problems of
sufficient size to be interesting. A new and very different algorithm is
proposed here which is expected to be able to accomplish the geometrical ;
constructions in a reasonable time for even quite large problems. The new
method, which will be referred to as the "Panel-beater" (PB) algorithm,
exploits an adaptive or evolutionary approach rather than a purely
constructive one, relying on an internally consistent previous construction
which is transformed through a sequence of local mutations towards the true
topological configuration. For time-dependent problems the starting point
of the algorithm at each time level is the final construction valid at the
previous time level. 1In this way the relatively minor topological
modifications one might expect during a single time interval should be
reflected in a typically modest computational expenditure on this part of
the code.



1. INTRODUCTION

Following the proposal by Cullen (1983) to use a finite element
technique in the computation of semi-geostrophic (SG) problems, much
progress has been made in this area, notably in the case of two-dimensional
solutions computed by Chynoweth (1987). In a geometrical analysis of the
f-plane SG theory Cullen and Purser (1984) (henceforth denoted (cp)
established that each dynamically stable solution, in either two or three
dimensions, could be uniquely associated with a certain convex function of
the space coordinates in such a way that, by introducing an auxiliary
coordinate measuring the value of this function a generalized curvature of
the manifold constituting the solution in the extended space could be
immediately identified with the SG potential vorticity of the standard
theory (Hoskins and Bretherton, 1972; Hoskins 1975). It was further
recognised that finite element or "geometric" solutions would then take the
form of polyhedral surfaces, convex from the direction of negative
auxiliary coordinate, in the extended space and, it was argued, that the
subsequent evolution of such a solution would be dictated only by each
element's centroid values of geostrophic wind and by boundary constraints
that together could be expressed as a finite coupled set of-ordinary

differential equations.

The geometrical method has been applied in a variety of quasi-static
two-dimensional solutions (Cullen et al., 1987a; Cullen et al., 1987b) and
extended to axi-symmetric solutions by Shutts et al. (1988). However,
attempts to implement the geometric method for large problems, even in only
two dimensions, have demonstrated that the existing algorithms for
constructing the geometry of each solution consume an increasingly
disproportionate amount of the total CPU time as the size of the problem
grows (Chynoweth, 1987). Therefore it appears that the present method is
impractical for investigating the necessarily large geometrical
constructions required to represent interesting three-dimensional flows

such as those associated with evolving large amplitude baroclinic waves.



In any finite element construction for SG theory from "data"
comprising a list of the size, potential temperature and geostrophic
momentum values of each fluid element, the first step is always a
tabulation of the vertices of the solution and their connecting edges.
Fortunately one finds that for typical data possessing no contrived
symmetry the fluid elements or "cells" meet at vertices three at a time in
two-dimensional problems, four at a time in three-dimensions, except for
the fleeting moments at which the connectivity of vertices and edges that
delineate the solution switch as edges vanish or emerge at points. The
exceptional cases containing these singular events can be safely ignored in
practice (since such topologies are not stable to infinitesimal
perturbations of the data their appearance numerically in code that uses 64
bit arithmetic would require an exceptional coincidence). Thus it is
natural to express the connectivity of the polyhedral solution at each
instant by creating a table of vertices, each identified uniquely by its
three or four adjacent numbered fluid or boundary cells (listed in
increasing order) together with entries to point to the three or four
neighbouring vertices one arrives at by following the edges radiating from
this vertex in a direction opposite to each adjacent cell (stored in
corresponding order). A segment of such a tabulation is shown in Figure 1a
together with a schematic depiction of the corresponding portion of the
geometry (Figure 1b) for a two-dimensional construction. The excessive
computation required to create such a tabulation in problems with a large
number, say N, elements is attributed to the fact that to determine the
identity and coordinates of the vertex terminating a newly found edge
involves an exhaustive search of the feasible intersections with all other
element-hyperplanes implied by the data until the nearest intersection in
the positive direction is found — that being the actual one sought.
Assuming the number of edges is roughly proportional to N and each requires
the computation of almost N intersections in order to ascertain the
closest, this basic step of the code will consume order N2 computations.
Elsewhere in the code computational expenditure appears not to exceed order
N log N so the principal bottleneck would indeed appear to be in the

construction of solution-vertices for large problems.



Even if a given solution needs to be perturbed only slightly —
typically providing a new network of edges and vertices that differs
topologically from the old in only a minority of the connections, the
algorithm as discussed above is unable to exploit persisting similarities
to short-cut the new construction. 1In an attempt to avoid the bottleneck
discussed above an alternative approach, which does use prior information
about likely connections, is proposed. The geometrical details will be
given in the next section and it will suffice here to state that the
essence of the new method is to adapt the geometry by a succession of local
reconnections which are interpreted in the Legendre-dual representation of
the problem (Purser and Cullen 1987) as the successive removal of local 2
"dents" or concavities through reconstructions that increase the size of
the extended space "above" (in the sense of increasing auxiliary
coordinate, R) the dual solution surface R(X) (i.e., enlarging the
"epigraph" of R). It is only in the dual representation that the name
"panel-beater" is appropriate as in the physical space the process is
rather one of undoing a tangle of self-intersections of the solution
surface. The most significant feature of the new method is that, If-it
proceeds successfully, the effort involved in performing the transformation
from one feasible solution to the actual solution should in typical
circumstances involve order N log N, not N2, computations, thereby
circumventing. the bottleneck that has so far rendered the solution of large

problems unattainable.

vt Stable properties of finite-element solutions of semi-geostrophic
theory

The notation is that of Purser and Cullen (1987), henceforth denoted PC,
who also discuss at length the physical interpretation of the geometric

duality we refer to. The "data" are defined by N values of dual

coordinates X, and N values of mass M, together with a physical domain D

with exactly the area or volume Ma that contains the given fluid elements.

N
Mp= LM, (2.1)

a=1
The "solution" consists of a continuous function P(x) defined for each
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point x in D which can be divided onto the N fluid elements or "cells"

Ca such that within each cell,

4 S (2.2)

Ta = V_P X (I 0

and the size of the cell is as given by the data, i.e., in three

dimensions:
M, =J dx dy dz = J du . (233)
G

[+ C(!

CP showed that the solution for given data and convex domain D is unique up
to an additive constant for P and that the elements Ca are each convex

polygons or polyhedra. 2

Recall that a convex set is one that wholly contains any line segments
whose end points lie in the set. A convex function P(x) defines a convex

set in the extended space (x, s) by its epigraph,
Epi(P) = {(x, 8): s 2 P(x)} . (2.4)

PC noted the standard result from convexity theory (e.g., Rockafellar 1970)
that the "dual" function
R(X(x)) = x. X -P(x) ~(2.5)

is a convex function of X if P is a convex function of x. Of interest here
is the fact that if the solution P is made up of polygons or polyhedra, the
dual functioﬂ R is also a "polyhedral" function, but the cells of R
correspond to the vertices of P and vice-versa as illustrated in Figure 2.
Note from the definition of R that it is the negative of the P coordinate
at x = 0 of the hyperplane tangent to the solution P at x.

The construction of the polyhedral configuration of P resulting from
specified values of zu and Ra is all that concerns us in this note — the
derivation of the Ra from the masses Ma is a separate problem discussed in
CP and Chynoweth (1987) and involves the inversion of a large non-linear
coupled system, but one which can be satisfactorily handled by standard
numerical techniques. Note that the duality associates with every
hyperplane of the extended physical space (x,P) a point of the extended
dual space (X,R) and vice-versa, including points "at infinity" along given

along given rays if hyperplanes are parallel to the P-axis. In this way
the rigid walls of the boundary of D can be mapped to
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points at infinity in (X, R)-space. With the further modification of the
geometrical solution obtained by imposing a "1id" consisting of an inverted
rectangular or cuboidal element to close off the polytope in (x, P) space
at a suitably large value of P, as shown schematically in cross-section in
Figure 3, we may assert that for typical data containing no intrinsic
symmetry all vertices of the solution are associated with exactly n+1
edges, where n is the dimensionality of the physical domain. To formalise

and justify this assertion requires some further definitions.

Definition 1: An "n-simplex" is generically the shape of the convex hull

of n+1 points not lying on the same hyperplane in e exemplified in

the cases n=2 and n=3 by triangles and tetrahedra respectively.

Definition 2: A "graph" in general is a logical structure comprising a set

V of "nodes" \£1 together with a set E of "pointers™" ej, each comprising an
ordered pair of nodes. Such a pointer, e.g., (vi, vj) is said to "point"
from vy to vj. Here we shall restrict ourselves to pointer connections that
are mutual, i.e., (Vi’ vj) implies the existence of (vj, Vi)’ and also we
assume no node points to itself.

Each geometric solution is associated with a particular graph by
representing vertices of the polyhedral surface (x, P), including the lid,
by nodes and representing edges by mutual pointers. Note that the graph
does not contain metrical information — thus the vertex-nodes vy might be
identified solely by the set of adjacent fluid, boundary or lid elements
that meet there — but not by coordinates. The metrical details are

determined by what we shall refer to as the "configuration".

Definition 3: A "configuration" y is defined to be the vector in

g-dimensional "configuration space" S = RY with components formed

from the values X, and R, at all the fluid elements @. In an n-dimensional
domain with N fluid elements gq=N¥(n+1). Each configuration X is implicitly
associated with a particular graph G(x) formed from the identities of

vertices and edges of the convex geometric solution corresponding to X.




Definition 4: A configuration is defined to be "stable" or "non-degenerate"

if its graph remains the same for all variations of x within a
sufficiently small neighbourhood in S.

We may now formalize our previous assertions:

Theorem 1: For solutions in x € R™ the only stable configurations are

those for which each vertex vy is connected to precisely n+1 others.

Theorem 2: The set of configurations X corresponding to non-stable

graphs has measure zero in S.

Remarks: Theorem 1 identifies stable configurations with solutions whose
elements meet three or four at a time according to whether the problem is
set in two or three dimensions respectively. By implication, the dual
solutions of stable configurations comprise polyhedral surfaces whose cells

are each an n-simplex.

Theorem 2 states that non-stable configurations are "rare" in the
sense that a configurations chosen at random from S will bg stable almost

always.

Proof: Suppose a cell of dual solution R is not a simplex. Then one of its
vertices, not a point at infinity, may be perturbed by an arbitrarily small
amount in the direétion of negative R to displace this point off the plane
determined by the other vertices, thereby requiring a change in
connectivity to re-establish a convex surface. If instead the connectivity
is preserved by manipulating the R or X of other vertices of the cell then
at least one linear constraint among the X and R of the vertices must be
imposed, implying the set of non-stable configurations can at most occupy a
countable set of "flat" patches of dimensionility less than q.

Definition 5: A non-stable configuration Y is defined to be "rth-order

degenerate" if the set S' of configurations with the same graph as G(x)
defines a patch of dimensionality g-r in S. We will denote by Sr the set
of rth order degenerate configurations.



Theorem 3: Every first-order-degenerate configuration contains precisely
one vertex of the solution P (or cell of solution R) that involves n+2
connections, all other vertices (or cells of solution R) being of the

standard (n+1)-type.

Proof: A configuration implying a single (n+2)-connection vertex requires
a single linear constraint among the X and R components to preserve the
co-planarity of the vertices of the non-standard cell of dual space. If
more than n+2 vertices of a cell were required to be coplanar in dual
space, or if more than one cell were required to preserve n+2 vertices

coplanar, one linear constraint in configuration space would not suffice.

Evolutionary aspects of solutions are most conveniently studied by
considering each evolution as a "world-line" or continuous curve in the
augmented space S* I R1 obtained by including the time dimension.
Suppose world-line W is a member of a family of such evolutions with

T1,...Tp = 1 parametrizing the family smoothly in the sense that for

suitable vector norms of the gradient operator 5% -

2 :
12 ol <,

Ha‘ri(dt)” cx x(t) € W(x).

The evolution W(Io) is defined to be "stable" at I, if for all such

parametrizations there exists a neighbourhood in T space about Io
sufficiently small that all evolutions corresponding to parameters 1,
within this neighbourhood give rise to the same sequence of graphs.

Theorem 4: If an evolution is stable, all the degenerate configurations

encountered are first-order and of vanishing duration.

Theorem 5: If the evolution W(To) is non-stable or "degenerate" there

exists a smooth parametrization (in the sense defined above) of
neighbouring evolutions in which the set of T corresponding to the same

sequence of graphs possesses zero measure in T-Space.



Remarks: the consequences of theorems 4 and 5 as they relate to stable
evolutions are analogous to the consequences of theorems 1 and 2 as they
relate to stable configurations. Thus an evolution of a geometric solution
in which a "transition" of the connectivity between one stable form and
another is not by way of a first order degenerate configuration or in which
a transition is not of vanishing duration is regarded as inconceivably

rare.

Proof: We rely on a geometrical result discussed by Gilmore (1981)

concerning the "transversality" of intersections of submainfolds. A curve
w(;o) intersects the patches constituting the prism-set S*1=(S1,t)
"transversally" if it penetrates each patch non-tangentially. Smooth
perturbations of W then do not change the sequences of graphs implied
because the dimensionality of each patch (= q) and the dimensionality of
the curve (=1) sum to the dimensionality of S* (= q+1), i.e., an
intersection is still obtained with each patch regardless of the direction
of the local perturbation in t-space. On the other hand, if W belongs to a
degenerate family of evolutions at least one intersection of the curve W
must be within a patch in Sr*' r>1 of lower dimensionality than q. There
are then infinitesimal, but smooth, perturbations of W that-will éause it
to "miss" this patch, implying a different sequence of graphs. (N.B. an
example of a non-transversal intersection is that of two smooth curves
intersecting non-tangentially in three dimensions since a small
perturbation of either curve can cause them to miss each other. In the
case of a curve intersecting a surface non-tangentially in three dimensions
a small perturbation will merely move the intersection, but will not cause

it to disappear.)

The results thus far have been obtained for configurations defined as
sets of given (R,, X,). In order to show that the same results hold for

"data" defined as given sets of (Ma,xa) it is necessary to show that the

transformation from 8. —Ra to M8 at fixed XY is effectively unique (as
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proved in CP) but also non-degenerate. When these conditions are satisfied
the property of transversality of intersections is preserved. To

demonstrate the non-degeneracy of the mapping we first prove:

Lemma: Suppose a real symmetric matrix J possesses the following properties

of diagonal dominance and connectedness,

J) s Rorcall ay

Jaa 2 I JaB : (2.6)
B#a 3

ii) There exists at least one a for which

JaBiiey | J | 207
B#a

iii) Every distinet pair (a,8) may be linked by a "path",

Ogs Gq o oy

with %y =

1
Q
Q
1
o™

such that
'Jai’ A+ #0 s RS0 Jur [ e oy 58 (2.8)
Then provided condition (i), (ii) and (iii) are satisfied J is
positive definite (all eigenvalues strictly positive)

Proof: Let V be any eigenvector of J, A its eigenvalue, and partition the

set of component indices,

Az o IVGI = max Vg} (2.9a)
8

B = fas lval < max Vg} (2.9b)
8

11



If B is empty then by property (ii) there is an a € A such that,

normalising Va>0,

2 l JaB VB S L |Jaelva < Jua Va (2.10)
B#a B#a
Hence,
L JaBVB = A Va >0 2ot
B8

If B is not empty then by property (iii) there is ana € A and a 8 € B
such that JaB # 0 and hence , with normalisation Va e

AVa s JaB VB o Y JaBVB > SN Jasva =y |Jaslva 20 (2.12)
BeA BeB BeA BeB

Thus in either case, A > 0 and the lemma is proved. =

Theorem 6: For finite element SG problems in a convex domain with positive
measure M allocated to each element and distinct gradients X the vector of
measures M is a unique differentiable function of the vector of intercepts
Sy s Ra provided a single component of the latter, say Sy is fixed.
Moreover, the Jacobian matrix of differentials is non-singular so that

solutions s are implicitly functions of the data M.

Proof: Suppose n=3. As shown in CP the sensitivity of volume Ma to a
change in intercept of neighbouring element 8 is
| oM - a oM
1 o = aB = 8 ’ (2013)
9sg | X ~%g | 95

[+

where ayg is the area of the interface. Diagonal terms are given by

e - T My : (2.14)

9s B#a 388
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where summation includes element N. Choose the constrained element N to be
one that does not divide the remaining domain into disconnected portions.
Then the matrix J of order N-1 formed from the differentials above by
ignoring row and column N satisfy each of the properties of the lemma:
property (i) follows immediately from (2.14), property (ii) from the fact
that element N makes finite contact with at least one other element,
property (iii) from the connectedness of the region of domain D excluding
element N. The corresponding proof for two dimensional problems follows
trivially.

To summarise the significance of the results obtained in this section,
we have shown that instantaneous finite element configurations are almost
always characterised by n+1 elements touching at any vertex. Any exceptions
are atypical and possess tabulations of the connectivity (i.e. graphs)
which are not stable to infinitesimal perturbations of the data. However,
when considering a complete evolution there will be numerous instants when
the connectivity undergoes a transition through unstable states that are of
the non-standard kind, but then these transitional states themselves are
almost certainly of the first-order kind involving precisely one
non-standard vertex where n+2 elements touch. It is therefore fair to
argue that all evolving finite element solutions of interest can be
regarded as fitting the standard pattern of belonging to one particular
connectivity for a period before instantaneously undergoing a first-order
transition to a new connectivity, and so on. The regular "snapshots"
constituting the successive states of a discretized model can then be
assumed to be of standard form. In principle, if the timesteps were
reduced sufficiently one could infer that the change in connectivity from
one step to the next could be explained in each case by a simple
first-order transition but in practice it would be wise to base any
algorithm on the assumption that several transitions have occurred during
any given timestep. The following section will consider the means by which
the old connectivity may be recognised to be in error and, if necessary,
adapted by a succession of first-order transitions to the appropriate

connectivity for the configuration.
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3k Symbolic panel beating

a. The normal case

A cell of a standard dual solution in n-dimensions can be denoted by
the n+1 identifying fluid or boundary elements constituting that cell's
vertices, listed in lexicographic order for easy recognition as illustrated
in Fig la. For example, in a two-dimensional solution two connected
vertices of the physical solution, and hence two adjacent triangular cells
of the dual solution might be denoted ABC and ABD, AB being the Jjoining
edge in physical space or the separating interface in dual space, as
depicted in Figures 4a and 4b respectively. The surface R formed by the
cells is two-sided, allowing each cell to be assigned an orientation. For
the cells in the shape of a simplex this orientation is conveniently
signified by chiral prefix "+" or "-" according to whether the order of the
vertices given is right handed or left handed when the dual coordinates (X,
Y) or (X, Y, Z) are a right-handed set. Thus the oriented triangles of
Figure Y4a would be denoted +ABC, -ABD. With these definitions the proper
chirality may be determined from the Sign of the determinant of the matrix

of columns formed by appending the X-coordinates of successive vertices

(in order) to first row values of unity. For example, in two-dimensions

£oqr g
Ank [?-(A Xp ?SC:I ’

and the sign of |+ABC] = det (UABC) provides the appropriate prefix.

Note that this determinant is proportional to the projected area of the
triangle ABC. By a standard property of determinants the chiral signature
of a given oriented simplex is reversed if, relaxing the lexicographic
ordering convention, we transpose a pair of vertices. In general odd
permutations reverse the chiral signature while even permutations preserve

it. Thus the following six ways of representing the oriented triangle are
equivalent:

14
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+ABC, +BCA, +CAB, (3.2)

=CBA, -ACB, =BAC.

Similarly, an oriented tetrahedron can be presented in 24 different
but equivalent ways.

We now consider the symbolic manipulations that represent first order
transitions of the connectivity of solutions. Suppose the X—-space edge
between vertices +ABC, -ABD of the physical solution displayed
schematically in Fig l4a evolves through the transition (Figure U4c) to a new
connectivity with vertices -ACD, +BCD 1linked by an edge (Figure Ye). The
states in the dual representations corresponding to those of Figure 4 a, Oy
€ are respectively those of Figure 4 b, d, f. If we denote by +ABCD¥* the
oriented tetrahedron in the extended space of coordinates (X,Y,R) then,
because of the necessity for surface R to be convex in (X,Y), the signed
volume of this tetrahedron changes from positive before transition to
negative after transition. This latter volume is proportional to the
determinant generalising (3.1) which we write as ]+ABCD* , the asterisk
denoting the involvement of the R-dimension. This pattern may be made the
basis for the simplest application of the panel-beater algorithm in two
dimensional problems as codified in the following basic steps:

i) Examine the next of dual-space triangles that were adjacent at
the preceding iteration.

ii) Arrange the vertices of the dual space triangles (temporarily)

into the pattern +ABC, -ABD by means of signed permutations of the
form (3.2)

iii) Determine the sign of |+ABCD*| and return to (i) if positive but
iv) if negative, replace +ABC, -ABD by new triangles equivalent to
-ACD, +BCD (making all necessary "housekeeping" alterations to the

various tables needed to record the connectivity). Then return to

step (i) to consider the next untested pair of triangles.
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It may occur that, having made the transition it is found that one of
the new triangles, say —~ACD occupied the space of its chiral opposite, i.e.
+ACD, which already exists, thereby forming what we shall refer to as a
"pocket". In that case the appropriate action is to annihilate both
members of the pair together with dual space vertex A itself. Physically
this might correspond to the transition in which triangular fluid element A
has shrunk to a point and vanished, being replaced by the single remaining
vertex, +BCD in this case, as shown in Fig 5. This pair-annihilation rule
should therefore be appended to step (iv) above.

The generalization of this basic panel-beater algorithm to three
dimensions is fairly straightforward but now the pair-annihilation process
need not be accompanied by the loss of a dual-space vertex. Also, without
annihilation the removal of two tetrahedra is accompanied by the creation
of three new ones, so clearly pair annihilation in the n=3 algorithm is a
natural result of approximately half the transitions of a typical

evolution. The steps of this algorithm are written out as follows:

(i) Examine the next of dual-space tetrahedra adjacent at the
preceding iteration.

(ii1) Arrange the vertices of each pair of dual-space tetrahedra that
were adjacent at the preceding iteration into the pattern +ABCD, —-ABCE
by means of signed permutations.

(iii) Determine the sign of |+ABCDE*| and return to (i) if positive,
but

(iv) if negative, replace +ABCD, -ABCE by new tetrahedra
-ABDE, +ACDE,-BCDE and, if necessary, carry out any pair annihilations

necessary if one or more of +ABDE, -ACDE, +BCDE exist already. Then
return to (i).

16




In the case of both two and three dimensional transitions, the action
of step (iv) in each case is to detect a location on the surface R that is
locally "hollow" and to "fill" it, by adding an (n+1)-simplex to epi(R),
thereby increasing the size of the extended (X,R) space occupied by epi(R)

Figure 6 illustrates the transition from the two tetrahedra to three

implied by step (iv) in "exploded" views of the cells involved.

b Snags and their resolution

It is theoretically possible for the basic panel-beater algorithms
described in (a) to converge to a nonsensical solution if, within the .
preceding time-step the deformation has been such as to cause a relatively
major rearrangement of dual-vertices, implying that actually several
transitions of the graph have occurred. In such cases it is possible for
the algorithm to converge erroneously to a state in which the oriented
surface R has curled in on itself and become self-intersecting even though
the tests of step (iii) applied to each dual-cell interface detect no
concavity. An illustration of the relevant portion of a state of this
kind, with its "shadow", is given in Figure Ta for triangles (n=2). Note
that all "dihedral angles" between adjacent elements are positive as
registered by step (iii). However, at least one of the triangular elements
itself is improperly oriénted with respect to increasing R (i.e, inverted).
It is therefore necessary to check for proper orientation of each simplex
of the dual solution in order to verify that a self-intersecting or

"snagged" solution has not inadvertently been created.

We note that if there is any inverted element in the dual solution, then
the solution function R will be at least three-valued at that location of
X-space. Also, it will be found that at least one of the inverted
element's vertices will correspond to a location of X-space where the
function is at least double valued. The intention is to reduce the
solution by iterative steps to one which is single valued in R by first
removing such a vertex and its neighbouring elements and replacing the gap

by a covering of new triangles or tetrahedra. The edges (interfaces) of
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this new covering can then be checked for positive dihedral and adjusted if
necessary, while the value R of the vertex which was removed can be
compared with the value of the properly oriented element's R at the same
location. If the vertex has a lower value of R, then it is re-inserted
inside the comparison element as the common vertex of three new elements
there. Note that the search for the comparison element is not necessarily
confined to the immediate (topological) neighbourhood of the original

vertex, so this process could be computationally costly.

For brevity we shall drop chiral prefixes and lexicographic ordering
here and write elements of the R-surface using a right-handed ordering of~
their vertices relative to the orientation of this surface. To illustrate
the procedure consider the portion of the two-dimensional solution
illustrated in Figure Ta which contains two inverted elements, BED, CDE and

two vertices, D and E, corresponding to positions X where the surface

is double valued in R. The projected "shadow" of the configuration is shown
in the lower portion of the figure and the six triangular facets comprising
this somewhat convoluted surface are listed (in right-handed notation) at

the left of the figure. We shall illustrate the resolutiog.of this snagged

surface by considering‘two possible strategies.

First, suppose we consider the consequence of removing the offending
vertex D and replace the three adjoining elements by the single new element
BEC. Since R(D) >‘R(D'), where D' is the projection of D on element BFE,
we do not reinstate D as a vertex of the solution. This stage is
illustrated in Figure 7b. However, we have not finished yet as the new
edge BC between ABC and BEC has negative dihedral and so using the standard
method of subsection (a) we replace these two elements by new triangles,
ABE and AEC to complete the solution shown (together with its projected
"shadow") in Figure Tc. Although this sequence turned out to be relatively
painless it was necessary to determine which element contained the
projection D' of D in order to verify that D should not be reinstated.
Although the element BFE was in this case not topologically very distant

18




from D in the original connectivity (Figure 7a) there will be cases in
general where an extensive search may be needed to locate the element in

which the projection D' lies.

Next, consider the alternative strategy we might adopt, eliminating
vertex E first instead of D. Figure 7d shows the result of replacing the
four triangles that met at E in the original configuration by the
triangulation BCD, BFC needed to fill the quadrilateral gap BFCD. At this
stage the structure shown in Figure 7d contains a "pocket" consisting of
the pair BDC, BCD, which will mutually cancel, casting vertex D adrift.
When we compare E with its image E' in ABC we find in this case that

R(E) < R(E')
and hence that E should be reinstated, replacing ABC by the new triangles,
ABE, AEC and BCE. The result, illustrated in Figure Te still contains an
edge (BC) with negative dihedral which, on correction by the standard

method leads at last to the final configuration illustrated in Figure (7c).

The same approach may be adopted to resolve more complicated snagged
configurations than the one illustrated in Figure 7a but it is clearly not
a procedure that we would wish to apply more often than we-have to. In
resolving snags in three dimensional solutions the reinstatement of a
vertex is not significantly more complicated — it involves replacing one
tetrahedron by four others. However, the task of covering the
polyhedral-bounded gap left by the removal of a vertex involves rather
greater complexity and almost certainly several iterative ad justments
before the covering with non-inverted elements and positive-dihedral
interfaces can be found. Probably the simplest gap—-filling procedure is to
choose one vertex from the gap-boundary and create the covering cluster of
tetrahedra by linking this selected vertex to each of the triangular facets
of the rest of the gap-boundary that do no already contain this vertex.
Adjustments towards proper element orientation and positive dihedral-angles
are then made primarily by the standard iteration and, only if necessary,

by further snag-resolving iterations.
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y, Initial conditions

While we have discussed how to advance a solution by small changes,
the question remains: how do we obtain the initial configuration for a
given problem? One solution is to construct initial conditions for the
problem of interest by means of a sequence of configurations corresponding
to a sequence of progressively altered problems in a chain that commences
with a highly regular state whose solution is known and terminates with the
initial state of the actual problem of interest. If the "default" problem
at the beginning of this sequence has a solution of the generic (stable
graph) type, as defined in section 2, then the same code used to adjust the
connectivity in time may also be employed to adjust the connectivity in the
gradual transition between default configuration and intended initial
state. In the majority of the problems we might wish to investigate using
the semi-geostrophic finite element model the exact positions in X-space
of the individual elements at the initial time are not important — rather
it is the general distribution of mass at a scale larger than the typical
element-separation that is important. Thus, there is no reason in such
cases why the pattern of elements should not be chosen to conform in a
smoothly distorted way to the regular deployment of an idezl problem whose

solution possesses a stable graph.

The simplest example of an ideal pattern for two-dimensional problems
in a rectangular domain is the honeycomb arrangement of hexagonal fluid
elements as illustrated for a very small problem in Figure 8a together with
the corresponding triangular-grid deployment of the data in dual space,
shown in Figure 8b. The corner elements are quarter-sized, the remaining
elements on the boundary of the rectangular support-region of X-space are
half-sized and all interior elements are complete hexagons in X-space.

The solution P(x) then conforms at the vertices (except domain corners) to
the quadratic form,

2y

P(x) = %{ax2+by . (4.1)
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where a and b depend on the X and Y spacing of the data elements and their

mass.

The data for the initial state of interest may be a spatially
distorted and non-uniformly weighted version of essentially the same
elements. For example, Figure 8c shows one possible redeployment of these
elements with the linking line segments now put in merely to show the
original connectivity — the new connections for this problem presumably
being quite different and irregular.

If Xsa, Ysa, Msa are the coordinates and mass of element o of the
default configuration and XIa YIa MIa are the corresponding quantities for
the intended initial configuration, then the simplest construction of the
intermediate stages of the evolution from 'S! variables to 'I' variables is

the linearly interpolated sequence of steps:

k k S G R i
£ = (1 K) e K k =0, 1 ..‘fK (4.2)
and similarly for Yg and MZ. Other prescriptions for the evolution might

be more appropriate when the distortion required is fairly severe.

In the case of three-dimensional solutions the simplest pattern of
data that leads naturally to a configuration of elements of the generic
form (i.e., fluid or boundary elements meeting four at a time at each
vertex) is that comprising a "body centred cubic" structure (e.g., see
Ziman, 1972). 1In this structure the data points in dual spaceAcén be

thought of as each belonging to either the "even" rectangular lattice of
points,

__X = (iAX ’ JAY ’ kAZ); (u-3)

where i, j and k are all even integers, or else to the "odd" lattice of
points where i, j and k are all odd integers. Each fluid element then
touches eight nearest neighbours that belong to the alternate lattice, and

six more distant neighbours belonging to the same lattice. Thus the
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elements are 14-sided polyhedra (truncated octahedra) except for those at
the boundary which are reduced to half, a quarter or even an eighth of
their full size according to whether they occupy one, two or three

boundary-planes of the domain.

Figure 9 sketches the arrangement of the bottom half-layer (part of
the even-lattice) together with a view of the odd-lattice element closest
to the corner as it would appear raised above the layer below. The
connectivity of the default problem vertices in physical space, while much
more complicated than in two dimensions, does nevertheless possess a very
regular pattern that allows automatic construction of a table such as that
depicted in Figure la. Thus, three-dimensional initial state
configurations can be evolved in gradual stages from a known stable default

configuration as in the two-dimensional cases.

Although the examples illustrated are of rectangular or cuboidal
domains, it is equally possible to use the evolutionary technique to
initialize solutions requiring single or double periodicity since the
default patterns are already in a form compatible with assumptions of
periodicity. =

5. Concluding remarks

This note has set out to define a broad strategy by which the finite
element (geometric) models of semi-geostrophic theory can be efficiently
implemented to solve time dependent problems in bounded or periodic
domains. The necessity in such a scheme to refer frequently to all the
extries of large tables of vertex and element statistics and to alter these
tables piece by piece requires a data-structure with considerable
versatility. Look-up efficiency implies the need for a tree-like hierarchy
associated with the tables in order bring access time within order Log N,
while the need to update frequently the table entries requires that the
hierarchical structure is of an adaptable form.
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In view of the significant investment in skilled programming that
would be required to develop the necessary software to implement an
efficient version of the panel-beater algorithm it is pertinent to consider
carefully the kind of problems that could be tackled within the geometric
model framework that could not easily be dealt with by more conventional
numerical methods. The distinctive advantage of the geometric method 18
of course, its complete immunity to adverse effects of solution
discontinuities which cause considerable problems in finite difference or
spectral methods. It is therefore appropriate that the problems to which
we might devote our attention are those in which the presence of a
discontinuity, in the form of a definite front or inversion, is an
essential feature. As noted in the introduction, the development of a
mature baroclinic wave through the latter stages of its life-cycle falls
into this category and is a case in which the geometric model, given
sufficient resolution, could supply important insights. Another example
would be the examination of the natural baroclinic modes that can propagate
on an existing frontal interface of realistic structure. Convective
solutions, even of the penetrative kind studied by Shutts and Cullen
(1987), could be modelled by the panel-beater algorithm provided measures
are taken to slow the movement of convecting elements from discontinuous
Jumps to more manageable continuously ascending migrations (e.g. by lagging
the effects of latent heat release.)

The panel-beater algorithm may enjoy advantages over the more
"brute-force" methods of solving the geometric model problem when it comes
to generalising semi-geostrophic theory to accommodate spherically curved
domains or variable Coriolis parameter where the hypersurfaces of the fluid
elements can only locally be represented as Euclidean hyperplanes. Because
the essential operations of the panel-beater algorithm are local, the
restrictions of more general forms of the semi-geostrophic theory, such as

Salmons' (1983, 1985) extensions are unlikely to prove a serious hindrance.
In a domain of variable Coriolis parameter the construction of

solutions using an envelope of hyperplanes must be abandoned. It is argued

in Purser (1988) that the natural and simplest generalisation of the
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geometric model in such a case, and one that turns out to be consistent
with Salmon's approach, is to consider the solution instead as the envelope
of a collection of intersecting concave paraboloidal functions instead,
with the peak-curvature of each paraboloid determined by the local Coriolis
parameter. Thus, although the edges and intersections of cells of the
geometric solution are now curved, in the immediate vicinity of a
topological transition the arrangement still may be given an Euclidean
dual-space interpretation with relative orientations obtained from the

tangents of the edges involved near the locus of the transition in physical
space.

24




References
Chynoweth, S. 1987
Cullen, M. J. P. 1983

Cullen, M. J. P. and 1984

Purser, R. J.

Cullen, M. J. P., 1987a
Chynoweth, S. and

Purser, R. J.
Cullen, M. J. P., 1987b
Norbury, J., Purser, R.J.

and Shutts, G. T.

Gilmore, R. - 1981

Hoskins, B. J. 1975

Hoskins, B. J. and 1972
Bretherton, F. P.

Purser, R. J. and 1987
Cullen, M. J. P,

'The semi-geostrophic equations and the
Legendre transformation'. Ph.D. Thesis, Dept.

of Mathematics, Univ. of Reading, England.

'Solutions to a model of a front forced by
deformation'. Quart. J. Roy. Meteor. Soc.,
109, 565~573

'An extended Langrangian theory of semi-
geostrophic frontogenesis. J. Atmos. Sci.,
41, 1477-1497.

On semi-geostrophic flow over synoptic-scale
topography. Quant. J. Roy. Meteor. Soc., 113,
163-180.

'Modelling the quasi-equilibrium dynamics of
the atmosphere'. Quart. J. Roey. Meteor. Soc.,
11 3 ’ 735_758o

'Catastrophy theory for scientists and
engineers'. Wiley & Sons, 666 pp.

'The geostrophic momentum approximation and
the semi-geostrophic equations'. J. Atmos.
Scd s, 32, 233=2423

Atmospheric frontogenesis models: Mathematical
formulation and solutions'. J. Atmos. Sci.,

29, 11-37.

'A duality principle in semi-geostrophic
theory'. J. Atmos. Seci., 44, 3449-3468.

25



Purser, R. J.

Rockafellar, R. T.

Salmon, R.

Salmon, R.

Shutts, G. J. and
Cullen, M. J. P.

Shutts, G -J.;
Booth, M. and
Norbury, J.

Ziman, J. M."

1988

1970

1983

1985

1987

1988

1972

'Variational aspects of semi-geostrophic
theory'. UK Met. Office Met O 11 Scientific
Note No. 5.

'Convex analysis'. Princeton University

Press, U451 pp.

'Practical use of Hamilton's principle'. J.
Fluid Mechs., 132, 431-444,

New equations for nearly geostrophic flow', J.
Fluid Mechs., 153, 461-477.

'Parcel stability and its relation to semi-
geostrophic theory'. J. Atmos. Sci., 52,
1318-1330.

'A geometric model of balanced, axisymmetric
flows with embedded penetrative convection'.

J. Atmos. Sci., 45 (to appear).

'Principle of the theory of solids' (second

edition). Cambridge University Press U435 pp.

26




Figure Captions

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

(a) A possible format for the tabulation of vertex data
corresponding to the portion of the configuration illustrated in
(b). The Chiral signature in (a) informs whether the adjacent
cells taken in the order given form a right-handed (+) or
left-handed (-) set.

(a) Schematic view of a polyhedral solution and (b) its dual.

Cross-section through a polyhedral solution in the x-P plane
illustrating the possibility of "closing" the polyhedral surface
with a "1id.

Sequence illustrating a first order transition for a
two-dimensional solution, (a) before; (¢) at and (e) after the
transition in physical space correspond to (b), (d) and (f)

respectively in dual space.

Transition associated with the shrinking and extinction of a
triangular element. (a) Initial state; (b) solution dual to
(a); (ec) effect of panel-beater replacement of edge AB with edge
CD; (d) final solution in physical space following
pair-annihilation at +ACD, -ACD; (e) corresponding dual space

result.

Schematic representation of typical transition in a
three-dimensional solution as viewed in X, Y, Z-space. (a) the
polyhedron formed from either (b) two simplices meting at
interface ABC or (¢) three simplices meeting at edge DE. A
typical panel-beater iteration changes the composition (b) to

(e¢) or vice-versa.
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Figure 7:

Figure 8:

Figure 9:

(a) Portion of a two-dimensional snagged solution and its shadow
projected on the XY-plane. Note that all edges possess positive
dihedral angle when the orientation of surface facets is taken
into account. (b) Result of removing vertex D from the
solution. The new element BCE, although inverted, is removed
(c) by the regular panel-beater process acting to replace
negative dihedral-angle at edge BC by positive dihedral edge AE.
(d) An alternative snag-removing strategy begins with the
elimination (temporarily) of vertex E leaving "pocket" BCD; (e)
reinstating E and applying pair annihilation to remove the &

pocket still leaves negatively angled edge BC which is replaced

by new edge EF in a regular panel-beater iteration to give the

result shown in (ec).

(a) Pattern in x-space for a standard "default" problem in two
dimensions. (b) Corresponding pattern in X-space. (c) A
smoothly deformed version of the pattern (b) that might
constitute initial data for a problem of interest. Dashed lines

show the original connectivity. =

Schematic view of lowest half-layer of x-space elements of
déefault problem in three-dimensions, together with view of a
complete element lifted from its positon near the domain corner.
Complete elements are 14-sided truncated octahedra which pack to
give a body-centred-cubic arrangement consistent with the
requirement for a stable graph.
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