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Orientation calculations for the
Cardington turbulence probe

A.J. Lapworth

17 May 1993

Abstract

This note is a reference for the calculation of orientations which has been standard
on the Cardington turbulence probe.from about 1984. The design of the probe is
briefly discussed, plus some results. Some additional notes have been added on
correcting an ambiguity which arises when the cable is laid back towards the south.

1 Introduction

The ‘new’ Cardington turbulence probe was designed and developed during the Mason
era, in the period 1981-1984, by members of the Meteorological Research Unit at Card-
ington. It is a balloon mounted instrument consisting of three Gill propeller anemome-
ters rigidly attached to a three-magnetometer set and two inclinometers mounted at
right angles to each other. A pressure sensor, and temperature and humidity sensors
are included.

The outputs are telemetered to the ground and stored on magnetic disc. The data
processing routines then use algorithms based on results derived in this note to deter-
mine the mean wind and turbulence quantities.

In this note the probe is described and features of the spectra obtained with it
discussed. A formula is derived for converting the Gill outputs into instantaneous
winds relative to orthogonal axes fixed relative to the probe. This is followed by a short
discussion on the orientation problem. The transformation matrix is then calculated to
determine the winds relative to a ground based system. Finally the rotations necessary
to align the components into the mean wind are given.

In the next two sections the angle of dip is calculated from the probe outputs and a
diagnostic result is derived using the inclinometer outputs together with separate Gill
readings.

An approximate method of determining the translational motions of the probe using
only probe derived information is described, and finally a method of combining the
angles obtained by this calculation with a new transformation to remove the effect of
inclinometer accelerations is given.



2 Probe description

The new Cardington turbulence probe consists of a package freely rotating and balanced
about the balloon cable as an axis, and constrained to point roughly into the mean wind
by a vertical vane separated by a tubular boom from the probe body.

Three Gill propeller anemometers are mounted on the wind-ward face of the package,
their axes lying at 120° intervals on the surface of a cone with a 30° half angle and its own
axis drooped by 20° from the probe horizontal. The Gills are symmetrically positioned
with one uppermost, one to port and the other to starboard. The vane keeps the mean
wind within the Gill cone for motions having a length scale greater than ten metres and
is separated from the body in order to avoid distortion of the up-wind flow by the tail
and to give leverage. The Gills are drooped as the balloon cable tends to lie back in a
wind, and as updraughts are stronger than downdraughts in convective situations. The
bearings about the cable axis are designed to avoid rattle and allow free rotation.

Two inclinometers are mounted as close to the cable as possible in order to minimise
accelerations due to probe rotational motions. Both inclinometers measure the com-
ponent of gravity perpendicular to a given axis in a specific plane, one being oriented
to detect pitching motions, the other to detect rolling motions. These instruments are
affected by accelerations other than gravity and are electronically filtered with a time
constant of two seconds to remove spurious, vibration-induced signals. A three axis
magnetometer is used to measure yawing motions and great care has to be taken to
mount this in a position remote from magnetic effects due to the probe itself. A three
axis rather than two axis device is used in order to allow the total field and dip angle
to be calculated as these may vary due to local effects.

Also included in the package are a pressure transducer, a platinum resistance ther-
mometer for high frequency temperature measurements, and dry and wet bulb ther-
mistors with long term stability. The thermistors are mounted in a downward facing
radiation shield and are aspirated by a fan. The probe is earthed by a brush to the
cable to avoid the effects of static discharge on the CMOS logic. Care is taken to secure
all parts mechanically to aircraft standards, with redundant fittings as the package is
heavy and operates at heights of over a mile up.

The probe analogue outputs are digitised, Manchester encoded, and transmitted to
a ground receiver where the data is decoded and stored by a PDP 11/34 computer on
magnetic disc.

3 Spectra obtained with the new turbulence probe

The spectra obtained from the turbulence probe are affected by several sources of error.
However the errors can be minimised by optimising the processing algorithm provided
their sources are understood. A series of tests with the probe mounted on a fixed mast or
a balloon at 20 metres and above and intercompared with a sonic anemometer gave the
following results. On a fixed mast the spectra compare well with those of the sonic apart
from a small peak in the V?' spectra at around 10 metres and a drop off in frequency
response below a wavelength of ~ 10 metres due to the inherent limitations of the Gills,
The frequency fall-off is greater if the Gills are set at larger angles to the mean wind.
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The V?' spectra peak is at the length constant of the probe and is most probably due to
phase lags between the Gills and main vane in the region of the spectrum where their
contributions overlap. Experiments with Gill extensions indicated that the peak was
probably not an upwind effect of the probe body or the tail. The effect is worse close to
the ground where the energy in this part of the spectrum is enhanced and is sensitive
to errors in the measured cosine response.

The spectra of the inclinometers show three peaks when mounted on the balloon
cable at heights up to ~ 100 feet. The main peak is at wavelengths greater than ~
70 metres and is due to balloon motions. There is a secondary peak at 10 - 15 metres
(ie. a period of 2-3 seconds) which is mainly due to a transverse vibration of the
balloon cable excited by the mass of the probe. This peak unfortunately overlaps with
“real” affects due to turbulence motions on the probe and thus simple filtering of the
inclinometers at this wavelength not only removes the spurious peak in the spectra due
to the transverse vibrations but also increases the peak at ~ 10 metres as a result of
removing “real” inclinometer information. A third peak in the inclinometer spectra at
the shortest wavelength is probably due to the cable buzzing as a result of eddy shedding
induced vibration in the wind. This can be safely filtered out of the inclinometers at
wavelengths shorter than ~ 5 metres. At increased height the peaks shift to longer
wavelengths. The transverse vibration peak(s) increases in wavelength as ~ L (L is the
cable length), while the peak due to balloon ‘inverse pendulum’ motions increases as
~ L. Thus they become less well separated as L increases, and the filter period has to
be increased. Over the balloon height range of 500 to 5000 feet the period of transverse
vibrations varies from 2 to 25 seconds while the balloon motion period varies from 20
to 75 seconds. The filter period is best set to half the balloon motion period.

The spectra are significantly affected by translational effects due to balloon motions
at heights greater than ~ 100 feet. The translational motions have wavelengths in the
range 70 metres to several kilometres and give significant peaks in the V? spectra.
These amount to an increase in v? energy of ~ 50% at 500 feet increasing by ~ 100%
per 1000 feet in medium conditions. The u?' spectra also acquires some energy due
to translational motions (about 10% at 500 feet, increasing by ~ 20% per 1000 feet),
while the w? spectra is nearly unaffected. A method of removing the translational
energy from the spectra that appears fairly successful is to use the inclinometer and
magnetometer information to determine azimuth and declination angles. These angles
can then be used to determine the position assuming a straight line approximation to
the balloon cable, and the coordinates of the position filtered with a time constant of
10 - 15 seconds before differentiating to determine the translational velocities. This
simple approximation works very well up to ~ 500 feet and appears to give beneficial
corrections to much greater heights, the errors in v* increasing by ~ 50% to 100%
per 2000 feet. Above ~ 500 feet the filter time constant has to be increased as the
wavelength due to balloon motion increases and the transverse vibration mode of the
cable predominates at 60 - 100 metres. At 2000 feet a suitable time constant is ~ 20
seconds.

An extension of this procedure (suggested by P.J. Mason) can be used to remove the
effects of spurious (non-gravitational) accelerations on the inclinometers on the spectra.
These accelerations are proportional to the square of the frequency, and become signif-
icant at frequencies greater than 0-1 Hz (corresponding to ~ 50 metres). The peak in



the inclinometer spectra at 0-3 to 0-5 Hz (15 - 10 metres) is mainly due to these accel-
erations but as has been mentioned above, simple filtering of the inclinometer affects
the “real” spectra and would also affect calculations of translational motion. A solution
to this is to use the azimuth (m) and declination (n) angles previously computed. The
combined functions sin m, cosn and sinm, sinn are quantities that only vary at wave-
lengths greater than ~ 70 metres and can thus be filtered at shorter wavelengths. After
filtering, m and n can be recalculated and used to determine turbulence quantities. It

_ should be noted that direct filtering of m corrupts the data as it contains high frequency

components with “real” information.

The v* spectra processed using this technique still show a peak in the 10 - 200 metre
region. The wavelength of the peak varies with height and is seen in the magnetometer
spectra. It may be partly due to the affects associated with the length constant of
the probe mentioned previously, but is probably mainly due to the “real” affect of the
transverse vibration mode - ie. the fact that air is moving relative to the probe at
this frequency. This cannot be simply allowed for with the tracking connection as the
inclinometers are strongly affected by non-gravitational accelerations due to the same
vibration. In addition, the motion is not simply related to orientation.

At increasing levels of turbulence (u' ~ 1m/s) the peaks in the v* spectra tend to
become relatively submerged. Conversely at low levels of turbulent energy (~ 0-3 m/s)
they are prominent.

Finally it should be noted that in strong winds and highly turbulent conditions the
probe spectra become more and more affected by the enhanced cable motions.

Two other effects on the spectra have been considered. These are the accelerations
of the inclinometers due to rotational motions of the probe about its axis and the
translational affect on the Gills due to the same rotational motions. These both appear
to be second order affects, especially if the inclinometers are close to the cable and if
alignment of the Gill axes extends backwards through the cable.




4 Orientation calculations

4.1 Wind relative to probe axes X, Y, Z

First obtain velocity components relative to the right handed set X,Y, Z.

o sin ¢ = sin H sin 30°

cos(90° — ¢) = sin H/2
sin p = sin H sin 60°

cos(90° — p) = /3sin H/2

If X,Y, Z have velocity components u,v,w

—u, = ucos H + vy/3sin H/2 — wsin H/2

@
—u, = ucos H — vy/3sin H/2 — wsin H/2

—uy =ucos H + wsin H
| = : (us + up + u,)
i STy ey
l V=)
i vasin i T
1 1
w=—3sinH(2u'—u”_u’)
|
&
®



Anemometer components given as negative as their output is positive for velocities in
towards the centre.

|
LmaRBoARRp K5
: e

Figure 1: Gill stereogram, showing derivation of components of wind velocity rela-
tive to an orthogonal frame (North, West, Up) from readings of three cosine response
anemometers mounted at 60° intervals on a cone of half angle H, with its axis tilted
down by angle D from the horizontal.



The velocities are then measured relative to a set of axes X' Y' Z' tilted back to D
to X, Y, Z.

Zk- A 2

D
/ : 3

u' = ucos D+ wsin D (9)
w' = —usinD + wcos D (10)
U=y (11)

u = (sin.D/3sin H — cos D/3 cos H) (u, +u,) — (cos D/3 cos H +2sin D/3sin H)u, (12)
v = (1/4/3sin H)(u, — up) (13)
w = (cos D/3sin H +sin D/3cos H)(u,+u,)+ (sin D/3 cos H — 2 cos D/3sin H)u, (14)

It is also useful to know the cosines of the angles between the anemometers and the
z' direction.

(i) For u; the angle is H — D, so Cosine, is cos(H — D) trivially.
(ii) For u, (and u, follows by analogy),
sin(90° — p) = sin(90° — H)/sin(90° — r) (15)

i.e.
cosr = cos H/ cosp (16)

By similar reasoning, Cosine, is

cos pcos(r + D) = cos pcos (cos“(cos H/cosp) + D) (17)



5 Errors

The main error using Gill anemometers is in evaluating the deviation of the Gill from
a cosine response. This deviation is worse and more prone to error at large angles.
Correcting for the error involves an iterative procedure in the program in which an
approximation to the true wind vector is made from the Gill outputs, and this is used
with cosine error tables to determine the actual wind components along the Gills.

Experimental results appear to show that a symmetrical arrangement of Gills is
better than a non-symmetrical layout, probably because errors in the cosine deviation
then tend to cancel. An error analysis assuming known cosine deviations indicates H ~
54°44' gives minimum errors (ie. the Gills are orthogonal). However cosine deviation
errors become quite large at these angles and H ~ 30° appears satisfactory. In addition
response time of the Gills falls off as a cosine and so is increased at high angles and
starting errors (due to friction) become important.

6 Definition of a set of orthogonal co-ordinates by
angular reference to two fixed axes

The problem of determining the orientation of a freely gymballed turbulence probe
using inclinometers and magnetometers reduces to that of defining the orientation of an
orthogonal set of axes (the turbulence probe) A, B and C if the direction cosines a, b, ¢
these axes make respectively with a fixed direction G (gravity) and the direction cosines
@, 3, v they make with another fixed direction M (the magnetic vector) are known.

In the general case, if a, b and ¢ (or e, §, and ) only are known, the set of axes
is defined by three cones centred on G (or M). If the other three cosines, relative to M
(or G) are known then three pairs of intersecting cones define, in general, two possible
directions for each axes. However, only one of each pair of directions will combine to
form the correct right handed set of probe axes. In fact, as will be seen, only five
direction cosines are necessary and sufficient to define the probe orientation, and if an
additional piece of information, ie. that the probe does not invert, is introduced, then
only two cosines relative to each axis are necessary.

This is demonstrated in figure (1). The axis A makes direction cosine a with G and
a with M. The axis B makes direction cosine b with G and with M. Thus A and B
can take the orientations shown on the stereographic projection. However by reflection
through the mirror plane containing G and M they can take the orientation A', B'. The
sets A, B and A’, B' define two different positions for the third axis, ie. C and C' which
are related by an 180° rotation about the (diad) axis shown normal to the G, M plane.
To distinguish between these two possible orientations of the third axis, it may be noted
that one will always be below the plane of the unit circle — that is, the probe will be
inverted. Alternatively, information from a fifth direction cosine relative to either G or
M may be used.

The above results can be confirmed algebraically as follows. In the stereogram, the
probe is shown with pitch 8, yaw ¢ and roll p. Gravity has strength g and the magnetic
field M has components H, and H, along with x and negative z axes respectively. The
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magnetometers measure components ¢, 3, v along the probe axes A, B,C. These are
related to H., Hy, ¢, § and p by the following three equations.

a= H,sinf + H, cos ¢ cos b (18)
Bcosp+ ysinp = H,sin¢ (19)
— Bsinp + ycosp = H,cos psinf — H, cos b (20)

The inclinometers measure components perpendicular to their own axis, in the plane
of their pendula. If three are used they could be mounted to give the three gravitational
components a,b,c and A4, B, C.

a=gsinycosz = gsinf (21)

from triangle A in stereogram
b= gcosfsinp (22)
¢ = —gcosfcosp (23)
The magnetometer equations can be re-arranged to give:

cos¢p = (a— H,sinf)/H,cos b (24)
Bcosf + asinpsinf — H, sinp

sin¢g =
¢ H, cospcosf

for 0 < ¢ < 360°
The inclinometer equations give:

For —90° < 0 < 90°

sind = +a/g cosf =4/1— a?/g? . (26)

For —180° < p < 180°

sinp = b/\/g? —a? cosp = :}:\/(g2 —a? — b%) /(g% — a?) (27)

If we restrict the probe to be upright, i.e. —90° < p < 90°, we can take the positive
root for cos p.

Combining the magnetometer and inclinometer equations

cog 900 G (28)



B(g9* — a?) + aba — H,bg

sin ¢ = (29)

Hay/(g* - a?)(g* - a2 - )

Thus ¢ is uniquely determined, given only a, b, @ and 3. We can also use the identity
sin *¢ + cos’ ¢ = 1 to determine the angle of dip. The inclinometer equations uniquely
determined 6 and p given only a and b provided —90° < p < 90°.

Another system was previously considered, in which p was constrained to be 0° —
that is the probe pitch axis was kept gravitationally horizontal. This would have reduced
the number of necessary inclinometers to one. However an error analysis showed that
an error of 1° in maintaining p = 0° gave up to 15° error in orientation of the probe
and experiments using prototypes showed that p could be +£5° or more in error. The
present system does not show “error multiplication” of this type provided the cable axis
is within 45° of the vertical.

Although only two magnetometers are strictly necessary, the values of H,, H, (or
total H and angle of dip) need to be monitored as they vary with locality. As a result
three magnetometers should be used, and this will give some much needed redundancy.

12
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Figure 2: Stereographic projection. Dots show south pole projection (ie. vectors above
@ plane) and circles north pole projection (ie. vectors below plane)
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6.1 Rotating wind components

Required to determine wind components u, v, w relative to fixed axes z, y, z from u', v’ ,w'
relative to A, B, C.

This can be accomplished by three separate two-dimensional rotations — refer to
Figure 3. ‘

()

v; =v'cosp+ w'sinp

w; = —v'sinp + w'cos p (30)
u; = u'
"al
(N

S >
v
(ii)
Uy = Uy cos 0 + wysin b
wy = —u;sinf + w; cos d (31)

vy =1

14



Orientation stereogram. Probe pitched down by 6, yawed by ¢ and rolled by p.

Figure 3: Stereographic projection: circles show north pole projection (vectors below
plane of unit circle), dots south pole projection (vectors above plane of unit circle). A
is probe fore-aft axis, B port-starboard axis, and C cable (up-down) axis.
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(iii)

U = uycos @ + vysin ¢

v = —uysin @ + vy cos @
w = Wy
% Vy

U = ujcosf + w;sin b

uz = u' cos 6 + sin6(—v'sin p + w' cos p)

wy = —u;sinf + w; cos
wy = —u'sinf + cos 6(—v'sinp + w' cos p)
V2 =V

vy = v'cosp + w'sinp

U = U3 COS @ + vy Sin @

u = (u'cosf + sinf(—v'sin p + w' cos p)) cos ¢ + (v' cos p + w'sin p) sin ¢

V= —uySsin¢ + v, cos @

16
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(34)

(35)

(36)

(37)



v = —sin¢(u' cos 0 + sin §(—v'sin p + w' cos p)) + (v’ cos p + w'sin p) cos ¢ (42)

where (see back)

defining

W = Ws (43)
w = —u'sinf + cos §(—v'sinp + w' cos p) (44)
sinf = —a/g cos@ = P/g (45)
sinp =b/P cosp=Q/P (46)
cos ¢ = gaI;—j,a (47)
. . gBP? 4 aba— H,bg
sing = PO (48)
P =./(¢* - d*),Q = +/(¢* — a® — b?) (49)
Hence substituting for sines and cosines of p, 6, ¢:
w'Q\] [ga — H,a} v'Q w'd\ [BP?+ aba — H,bg
i P)J[ H,P +(P P H,PQ (50)

gt BT 9( g
| g g P
) g ¥

If we make

H.PQ

a=afg,b=0b/g,aa=a/H,f=0/H

H,=H,/H,H, = H,/H,P =+/1—a?/g,

and Q = \/1 —~a?/g® — b /g?

this reduces to the following transformation matrix:

17
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(e — H,a)/H, (8—-0bH,)/H, (68 + aa — H,(a® + b*)]/H.Q
( (—aba + H,b— fP?)/H,Q (a— H,a—b*a+abB)/H,Q (—ap + ba)/H,
—~a =05 Q
(56)

This should be applied to give:

[u,v,w] = [MATRIX]

z' } (57)

wl

7 Inclinometers

The inclinometers should be given as ratios of voltage to maximum (90°) voltage —
this will give a/g,b/g. The signs should be arranged to give positive § and p as shown
in the stereogram ie. 6§ positive pitching down, p positive port side down. Their zeroes
should be set by an initial vertical calibration. The inclinometers can suffer from high
frequency “noise” due to cable vibrations and bearing rattle which may be removed by
pre-filtering.

8 Magnetometers

Their readings should be given as ratios of voltage to maximum voltage. The maximum
voltage can be taken as the sums of the squares of the individual voltages, i.e.

Vo/Va = Vo//(VE+ Vi +VE) =a/H (58)

The signs of a, § are such that pointing either the nose (for ) or the port side of
the probe (for ) north gives positive readings. The angle of dip must be measured or
known to give H,/H and H,/H. In theory it may be determined from the redundant

relation
cos’ ¢ +sin’ ¢ = 1 (59)

i.e.
(9o — H.a)? + [B(g* — a®) + abaH,bg)*/(¢* — a® — b%) = H?(¢* — d?) (60)

9 Rotation into the mean wind

The wind vectors obtained from the probe are referenced to a right handed orthogonal
set of North, West, Up (u,v,w respectively). In order to rotate into the mean wind the
average values of u,v,w are first obtained. These are then rotated as follows:

00 = tan™' (v, %) (61)
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8., = tan~ (W, /(w* + v* + @?)) (62)
u" = ucosb,, + vsinb,, (63)
v' = vcosl,, — usinb,, (64)
u' = u"cosb,, = wsinb, (65)
w' = wcosf, — u"sin b, (66)

It should be noted that although the mean value system u', v', w' are self defined in
the u' direction, there is an ambiguity between v’ and w' that depends on the original
u,v,w axes being correctly oriented with respect to gravity. Thus the inclinometers
must be correctly zeroed to avoid false cross correlations between v and w. Finally it
should be noted that in deriving the wind direction (D):

D = tan™!(—v/u) + 180° (67)

where v is measured westward, v northward.

10 Calculation of the dip angle

Large errors in mean and turbulence quantities can occur if a dip angle is imposed that
is not consistent with the probe measured values of magnetic field and inclination. The
mean value errors are 5% per degree error and the effect on turbulence quantities is
worse. It has been found that provided the self measured dip angle is used the data is
partially free from magnetometer calibration and mounting errors.

Assuming the components of the earths field H; and H, have been normalised using
all three magnetometer readings so that H2 + H? = 1. Then taking components along
the vertical:

H, = asind — cos 8(~y cos p — B sinp) (68)
H,=aa—~v—9Q + Fb (69)

where
Q=(1-a ) (70)

Then
H. = y(1- BY) (1)
Dip angle = tan™*[H,//(1 — H?)] (72)

This measurement essentially uses the extra information provided by the redundancy

relation:
B(1 — a?) + aba — H,b

1-a®-¥

(a — H,a)? + = H%*(1 - a?) (73)
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This can be treated as a quadratic in H, the solution of which is:

H, = aa + Bb+4Q (74)
10.1 Separate calculation of horizontal mean wind — a check
& :
We now describe how to measure the mean wind component parallel to the probe in
the horizontal plane from each Gill independently, assuming probe is lined up parallel
to the wind. This is a useful probe diagnostic as it is independent of magnetometer
measurements and checks each Gill separately.
Using the probe stereogram, the angle y between the probe tail axis and the inter-
section between the probe tail - cable axis and the horizontal is first found:
in 6
siny = ot (75)
cosz
@
e e (76)
cos y
tand  a P e
¢ ok ity 77
. cosp. Q. 0 fad
Using the Gill stereogram, the three direction cosines between each of the three Gills
and the horizontal vector parallel to the probe tail are then found.
| For the top Gill this is
|
cos(H — D —y) =cos(H — D — tan"' a/Q) (78)
|
For the port and starboard Gills this is:
cospcos(r + D + y) (79)
|
@
where
H
| £ =cos i (80)
V1 - (3/4)sin® H
(giving r = cos™! 2,/(3/13) in the case H = 30°) and
y = tan 1(a/Q) (81)

These direction cosines should then be corrected for Gill cosine error. The three
S mean winds parallel to the probe so derived will only be equal if the probe tail is
correctly aligned. A consistent difference between mean winds calculated from port
and starboard Gills indicates misalignment and in this case the top Gill reading will be
incorrect.

20



11 Tracking

A possible method of tracking the balloon in order to determine the effect of balloon
motions is to use the inclinometer, magnetometer and pressure sensor readings of probes
mounted at several points on the cable. A piece wise fit may then be made to the cable
curve using the derived probe orientations to find the co-ordinates of each probe and

® hence their translational velocities by differentiation.
The first step is to determine the azimuth and dip angles m and n of the probe
axes using the pitch, roll, and yaw angles (6, p, #) determined in the previous section.
It should be noted that the velocities of the probe relative to the ground due to balloon
motions derived above should be added to the wind velocities u, v, w measured by the
probe itself.
Using the tracking stereogram as follows:
: 4 sin(90° — m)
P sin(90° — p) = E(—(—Q‘d:———ﬂ) (82)
cosm = cos pcos b (83)
i — 1
sm(?S n) $e (84)
sinp sinm
: sin p ;
o s 85
sl sinm (85)
Also .
sinm = —— < (86)
cos(¢ — n)
and
cosp = L (87)
i o sin §
From (52) and (53),
in @
® cos(¢p —n) = R (88)
sinm
From the previous section:
sinf = a,cos = P (89)
sinp = b/P,cosp = Q/P (90)
: BP? + aba — H,b
= 1
sin ¢ H.PO (91)
— H,a
® o T e 2
; cos ¢ H.P (92)
| using previous definitions of symbols.
|
} Hence
cosm = Q (93)
As 0° < m < 90°,
tanm = +4/1 - Q?/Q (94)
21



Figure 4: Tracking stereogram
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95

sin(¢ — n) = b/Py/1 — Q?
cos(¢ — n) = aQ/Py/1 — Q?

(

(
— 180° < (¢ — n) < 180° (97

(

(

96

¢ = tan"'(cos ¢, sin ¢) 99
n:¢——(¢—n) (100

and will be in the range —360° < n < 360°. [Here by slight abuse of notation we
have applied tan™! to a vector, with the answer defined to be its direction.]

)
)
)
¢—n= tan~!(cos(¢ — n),sin(¢ — n)) %)
)
)

In fact —180° < n < 180° and values outside this range can be shifted by adding or
subtracting 360°.

Once m and n are uniquely determined at a point on the cable, they define the
tangent to the cable at that point. A variety of approximations may then be used to
determine the horizontal position of the probe relative to the pulley block, giving the
probe height (2) above the pulling block. The simplest of these, used in the case of a
single probe, assumes a straight cable.

Simple geometry gives:

Height = =

Northerly horizontal distance = z tan mcos n.
Westerly horizontal distance = —ztan msinn.

These three distances need to be differentiated in order to obtain velocities for cor-
recting to the probe determined velocities.

However differentiation of the unfiltered distances would produce a large contami-
nation of the velocity power spectra at high frequencies due to the strongly frequency
dependant effect of differentiation. A study must first be made of the spectra of the
distances to determine the position of the peak due to balloon motions. Filtering (with
cut-off period 30 secs) can then be applied to the distances to eliminate frequencies
greater than this prior to differentiation. A simple catenary approximation neglecting
effects of the wind on the cable, the weight of the probe and accelerations of the cable
gives practically identical results to the linear approximation. This is presumably be-
cause both simple catenary and linear approximations are identical in their treatment
of cable v motion which predominates and are similar for v motions as differentials are
involved. Non-simple effects are probably at high enough frequencies to be eliminated
by the filter.

12 Calculation of probe orientation using azimuth
and declination angles together with magnetome-
ter information

The peak in the inclinometer spectra due to non-gravitational accelerations induced by
transverse cable vibrations occurs in a region of the spectrum where there is a significant
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contribution due to real probe motions. Filtering of the inclinometer spectra in this
region will thus remove real information. However if the declination and azimuth angles
m and n are first calculated as in the previous section then functions of these variables
can be constructed that should only vary on the timescale of the balloon motions,
which is an order of magnitude greater than the timescale of the probe motions. If
these functions are filtered and m and n recalculated, then magnetometer data alone,
which is not affected by accelerations, can be used to calculate the probe orientations.
It should be noted that m cannot be directly filtered, as a time series of m varies as a
square function during simple inverse pendulum motions of the balloon and filtering of
this at short wavelengths would create spurious long wavelength v motions. Initially the
functions tan m sin n, sin m cos n were used but in highly turbulent conditions with large
inclinometer readings extreme values of tan m gave singularities in the filtered function.
Suitable functions for filtering are:

(i) sinmsinn
(ii) sinmcosn
which are components of the cable axial vector and are related to horizontal position.

It should be noted that a disadvantage of this method is the singularity that occurs
when the probe is oriented along the magnetic axis. A careful check has to be made
that the probe is never nearer than a few degrees of this orientation as digitization noise
in the magnetometer chanel will begin to affect the spectra.

24



The following calculation assumes that m and n are available having been calculated
as shown in the previous section and filtered as described above.

North
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The probe z,y, z axes are A, B and C respectively. If magnetic field components are
taken along C, D and E: which are the axes of the tilted but unrotated probe then:

60 = H,cosnsinm — H,cosm (101)
acosl + fsinl = H,cosncosm + H,sinm (102)
— asinl + fcosl = H,sinn (103)

From the last two equations:

B(H,cosncosm+ H,sinm) — aH,sinn
iy o

sitil = (104)

a(H,cosncosm + H,sinm) + fH,sinn
a2 =5 52

cosl = (105)

In the initial calculations of m and n, H was determined using the formula:
H, = aa+ bf — yV1 — a? — b? (106)

However for the calculation of sin! and cos! in the above formulae it must be rede-
termined as follows using filtered values m and n:

~ = H,cosnsinm — H,cosm (107)
whence, again, using the normalization
Hi4 HE =1 (108)

—~ cosm =+ cos nsinmy/(cos? n + cos? nsin? m — 42)
H: = s (109)
cos?m + cos? nsin”m

Unfortunately the sign to be used in this formula varies with m and n. The term
within the square root defines a plane including the magnetic vector and the east -
west direction: If the cable axis is north of this plane (the normal case) the position
sign is used, otherwise the negative sign is used. As this formula is used to define the
magnetic axis, it is not possible to determine if the cable axis is, in fact, north or south
of the plane except using H, defined as previous from inclinometer data. This has the
disadvantage that H, is not then fully compatible with the set of equations above, but
is the only thing that can be done when the cable is laid back in a southerly direction.
The north - south lay back angle is given by

cos A = o i (110)

\/1 — sin’ msin®n

where A is positive for cosn > 0 and negative for cosn < 0
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®
?
13 Rotation
The calculated values of sin!, cos!, sinm, cosn, cosn can now be used to determine the
rotation matrix. These are three rotations:
Rotation about C axis gives:
®
u' = ucosl + sin! (111)
v' = —usinl + vcos! (112)
Bv
E v :
Dw
@
L
O
5 — Au
/ X
Rotation about E axis gives: : o
u" =u'cosm +sinm (113)
w' = —u'sihm+wcosm (114)
N
@
m
E i
W
AN m
ULI
& u" = (ucos! + vsinl)cosm + wsinm (115)
w" = —(ucos! + vsinl)sinm + wcosm (116)

@ 27



Rotation about vertical axis gives:

Wes
AL =

. (A o
Up/ I\ ) Nodx

78
u" = u"cosn +v'sinn (117)
v" = —n"sinn = v'cosn (118)
w"l 2 w" (119)

Hence the rotation matrix M is:

coslcosmcosn — sinlsinn sinlcosmcosn + coslsinn sinmcosn
—coslcosmsinn —sinlcosn —sinlcosmsinn + coslcosn —sinmsinn

—coslsinm —sinlsinm cosm
(120)
where
North Turbulence
u| West | = MATRIX | x u| Probe (121)
Up azes

14 Accelerometer Corrections

Provided that the balloon induced motions of the cable are well seperated in frequency
from other cable motions then the orientation of the cable is well defined to within
the period of the balloon motion. In this case magnetometer data alone is required
to give the rotation of the probe about the cable and any inclinometer angle that is
not campatible with the orientation angle so derived can be assumed to be due to
accelerations. These accelerations can be interested to give sideways cable velocities
and used to correct for ‘twanging’ modes of the cable. If a and b are the inclinometer
readings, and m, n,and | are defined as previously

Acceleration in ‘n’ direction:
An = s(asinl + bcos! — sinm) (122)
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Acceleration in ‘m’ direction:

Ap = g(acos! — bsinl) (123)

Where g is the acceleration due to gravity.

Then in north, west up frame:

Anorth = Apsinn + A,, cosmcosn (124)
Ayest = Ancosn — A, cosmsinn (125)
Ay =—A,sinm (126)

Ayp is not used as it is incomplete, there being no ‘z’ inclinometer

This can now be integrated: V; = V,_; — AtA where V is velocity at time t, V,_; at
time ¢ — 1, At is the time internal, and A is the acceleration.

The boundary conditions used is derived from the fact that the probe dosen’t go
anywhere. Hence the mean position doesn’t change, and the mean velocity is therefore
zero. Therefore the mean velocity determined by the calculations is set to zero by
subtraction.

In practice this system has large drifts, but these can be subtracted off to give useful
information. In fact in a perfect system no motion can occur on a timescale greater
than the balloon motion period as the mean probe accelerations are assumed zero on
this timescale in deriving the probe orientation. This assumption is not fully justified
and is sometimes seriously in error but has to be used in this calculation. Therefore
the inclinometer derived velocities are hi-pass filtered on the timescale of the balloon
motions and the resultant velocities added (not subtracted) to the probe measured gusts
as in the case of the balloon motion correction.

15 Correction of Gill frequency response

The arrangement of length constants resulted in the higher frequency direction varia-
tions being measured by the Gill anemometers, while the lower frequencies were mea-
sured through the package attitude. The length scale of the package response to rotation
about the cable Lp was about 3m and fairly close to the length constant Lg( about 1m)
of the Gills. As a result the measurement of turbulence at wavelengths of the order of
Lp and in the "transition” region was affected to a some degree by the amplitude and
phase response of the Gill anemometers. If this amplitude and phase response is not
corrected for, then the two sources of information on the direction of the flow do not
match and the combined direction information shows a spurious increase in variance
in this frequency range. In fact, even with corrections, the velocities derived from the
Gills will have some errors due to inaccuracies in both the cosine corrections, and the
phase and amplitude response corrections. Because of this a residual error at wave-
lengths of the order of 27Lp is inevitable. The error is mainly confined to the lateral
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velocity component (v-component) and the energy spectrum of this component tends to
show a peak. In order to assess the size of the above error quantitatively, the frequency
response of the vane due to a forcing oscillation in the lateral wind has to be studied.
A wind vane has a second order response, and its transfer function rises from a value
of unity at low frequencies to a maximum at a wavelength of the order of 27Lp (see
e.g. Busch et al. 1980). When mounted on a cable the turbulence probe has a peak
value of its transfer function of about 1-8 at a wavelength of 16 metres, and the value
falls to its half power point at a wavelength of 8 metres. At wavelengths around 27,
the phase lag between the probe vane and the forcing oscillation is 90°, and thus the
Gills experience an airflow which is the combination of two components, one 1-8 times
the other in amplitude with a phase lag of 90°. The resultant is 2 times the amplitude
of the forcing oscillation and has a phase lag of 30° with respect to it. This result
has been derived by comparing the lateral velocity information obtained from the Gill
anemometers and from the vane orientation separately, with results obtained from a
nearby ultra-sonic anemometer. In a typical case the lateral velocity variance obtained
from the Gill anemometers alone, in the waveband of order Lp, is about 400% greater
than that due to the forcing motions. Combination of the Gill derived velocities with
the attitude derived velocities without regard for the phase and amplitude corrections
reduces this excess to about 80%. Application of the Gill anemometer phase and am-
plitude corrections reduces the excess to about 25%. This residual value is due to both
the errors involved in the combination and to other influences discussed below.

The amplitude and phase corrections were obtained by applying a simple first order
algorithm to the Gill anemometer outputs i.e.

G(t) = Gm(t) + 7(Gm(t + Dt) — Gm(t — Dt))/2Dt (127)

where G(t) and Gm(t) are the corrected and measured Gill outputs respectively at
time t, 7 is the response time of the Gills, and Dt is the data interval. The response time
7 was derived using measurements of the prevailing windspeed and a length constant
of L\/z cos(#)) where 6 is the angle of the Gill to the instantaneous wind and L has a
value of 1 metre (Hicks B.B. 1972). This procedure is adequate to improve the response
for turbulence length scales down to about 1m. For shorter scales there are problems
with electrical noise and signal resolution which limit the accuracy. At these shorter
scales electrical filters have been used to prevent aliasing errors and it is impossible
to recover information. The above corrections for amplitude and phase response, and
the correction for non-cosine response, are all interdependent and strictly speaking an
iteration involving all procedures is required. In practice the results are quite insensitive
to this interdependence and even a constant value of 7 based on the mean wind speed
and mean value of theta gives reasonable results. The procedure adopted is more refined
than this and should be a little more accurate i.e. (i) apply the non-cosine correction
to estimate the instantaneous value of theta and of the wind speed, then (ii) correct
the raw data for the amplitude and phase response, and finally (iii) recalculate the
non-cosine corrections. The phase corrections have only limited accuracy due to the
frequency limit of the digitization rate, the uncertainties of the Gill anemometer length
constant at large angles, and other factors. The non-cosine response corrections are
made using an iterative procedure (Horst 1973) in which successive estimates are made
of the true wind vector and tables give the measured angular response deviation. The
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corrected Gill measurements are converted into components of wind velocity relative to
the probe frame of reference and then using the procedures discussed above they are
converted into a fixed frame, and finally the cable motion corrections are applied.
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16 Appendix: use of Stereograms

A stereogram is a two-dimensional representation of directions in 3-dimensions which is
widely used in crystallography. First consider a sphere, the surface of which terminates
the ends of vectors originating at the centre of the sphere. These ends, i.e. directions, are
projected as points on the stereogram, which is defined as the plane through the centre
of the sphere with points projected onto it towards the South pole. (This applies to
‘Northern’ points; Southern points are conventionally projected onto the plane towards
the North pole and denoted by open circles.) These ends can be joined by curves
corresponding to great circles on the sphere. A theorem of projective geometry (see
McKie and McKie or Philips) says that great circles project onto arcs of circles on the
stereogram. Three points can thus be joined as a triangle:

Note that A, B, and C are all angles subtended at the centre of the sphere by the
vectors at the apices of the triangle.

The sine formula used in previous sections is:
sindA ‘sinB  sinC

- = 128
sina sin b sine ( )

This can be simplified in the case where a, b or cis a right angle. There is also a cosine

formulae:
cosa = cosbcosc + sinasinbcos ¢ (129)

which for a right angled triangle reduces to :

cosa = cosbcosc (130)
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17 Notation
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