A scheme for 'lncorporating the thermo-

dynamic sea-ice model into a coupled
ocean-atmosphere model.

by

C.Gordon and M. Bottomley

DCTN | June 1984




JB/ 16
DYNAMICAL CLIMATOLOGY TECHNICAL NOTE NO. 1
A SCHEME FOR INCORPORATING THE THERMODYNAMIC
SEA-ICE MODEL INTO A COUPLED
OCEAN-ATMOSPHERE MODEL
by
C GORDON AND M BOTTOMLEY
Met 0 20 (Dynamical
Climatology Branch)
Meteorological Office
London Road
Bracknell
Berkshire RG12 2SZ
June 1984
Note: This paper has not been published. Permission to quote from it
should be obtained from the Assistant Director of the above
" Meteorological Office Branch.

18]



1S Introduction

The ocean/atmosphere coupled model which is currently under
development in Met O 20 will contain a simple representation of sea-ice
growth and decay due to thermodynamic processes. Ice will form in the
model when the ocean surface temperature drops below freezing and then
grow or decay according to the net heat budget of the ice block. Open
water appears when the ice depth falls to zero.

A diurnal cycle of radiative heating is explicitly represented in
the atmospheric model and surface exchanges of heat and moisture are
calculated every timestep(e.g. 10-20 minutes). It is also desirable to
update the sea-ice surface temperature every timestep. This is because
the non-linearity of the outgoing infra-red flux may lead to significant
errors in the surface heat balance if the diurnal variation of
temperature is not included. The diurnal cycle of day-time melting and
night-time freezing also affects the short wave radiative budget at the
surface as a consequence of the changing surface albedo. Over the open
ocean, however, there is little justification for including the diurnal
cycle of sea-surface temperature explicitly. This is especially true in
a model with a globally constant mixed layer depth since the heat
capacity of this layer is sufficiently large that it would make no
significant difference.

Typically the ocean surface temperature will be updated on the
timescale of days whereas the ice surface temperature will be updated
much more frequently.

Figure 1 indicates a typical mode of coupling in a synchronous
ocean/atmosphere experiment. The atmospheric model would run for N days

(where N is likely to be of order 1 to 5) during which the heat and



momentum fluxes required by the ocean model would be accumulated. At
the end of this N day period the ocean model would be called and the
sea-surface temperature updated and passed back to the AGCM for use over
the next N days. The value of N is determined by computational and
physical considerations. The computational factor is that if it is
necessary to swap the ocean and atmosphere models in and out of the
computer main memory, it is clearly desirable to make N as large as
possible so as to minimise the time spent in the programme interchange.
However, if both models fit in core, this is not a limitation. The
physical considerations concern the extent to which N determines the
frequency spectrum of forcing passed across to the ocean model. It is
not desirable to resolve short timescale dynamical motions in the ocean
model if their dissipation mechanisms are not adequately parameterised,
so that to choose N as small as possible is not necessarily the best
option.

Incorporating the sea-ice model into the scheme illustrated in
Figure 1 can lead to problems because of the explicit representation of
the diurnal cycle in ice surface temperature. Complications occur when
a sea-ice point changes to a sea point part way through the N-day cycle.
Although these can be overcome, the coding required is rather cumbersome
and a much simpler scheme is to update the ice surface temperature every
atmospheric model timestep but to update the ice depth only every N
days. In this way the classification of a point can only change in the
oceanic leg of the cycle.

In the sections below the physical applicability of such a 'dual
timestep' scheme will be discussed and the modifications to the basic

model to include the diurnal cycle and snow cover will be looked at in
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detail.

2. Basic Equations

In this section the fundamental equations which are common to all
thermodynamic sea-ice models will be written down and discussed. Snow
cover will be included in a later section.

Consider the coordinates v and'\a.as defined in Figure 2. These
are the coordinate distances of the upper and lower ice surfaces
respectively. They are introduced so that latent heat changes can be
expressed separately at each boundary. The temperature profile inside

the ice block will satisfy the diffusion equation:

CPQI = @ [(woT (2.1)
ot o0z oz
The symbols used throughout this note are defined in Appendix A. If
the penetration of short wave radiation is included an additional flux
divergence term appears in (2.1).
The boundary conditions on (2.1) depend on whether there is surface

melting. If there is no surface melting, then
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Equation (2.2) expresses the balance between the net surface
heating and the diffusive heat flux at the surface. Since there is no
surface melting}hgoes not change and there is no latent heat term in the
equation. Equation (2.3) expresses the balance between the bottom
oceanic heat flux ,FB,the bottom diffusive heat flux and the latent heat
term due to melting or freezing at the ice bottom. Finally, (2.4)
ensures that the temperature at the ice bottom remains fixed at the
freezing point of sea water. (1E5= 2700 2K

If there is surface melting the appropriate boundary conditions are

W | =R AR FOOR W - th_._l}i (2.5)
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dt

T(hs.»h) i TS (2.8)

Since there is surface melting the upper coordinate‘li_now enters
as a prognostic variable. The last term in (2.5) is the latent heat
flux due to this melting. Equation (2.8) expresses the fact that the

surface temperature remains fixed at the melting point;1;, when melting
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occurs. Because of the residual salinity in the ice.T; is assumed to be
273.05K (Maykut and Untersteiner, 1971). (Note that Tg is less than Ty
because of the higher salinity of the newly formed ice at the lower
boundary).

Any model of sea-ice must match together the regimes of melting and
freezing discussed above to produce a continuous solution for the ice
temperature profile and ice depth. (The ice depth h-= ha— hi)

It may be noted here that the mass balance of the snow-ice system
is also affected by sublimation and, during melting, by evaporation.

For consistency with previous work (Maykut and Untersteiner, 1971;
Semtner, 1976; Bottomley, 1984) these effects were not included in the
initial tests of the dual timestep scheme reported here. They will
however be included when the scheme is incorporated into the coupled
atmosphere-ocean model.

In general, each of the physical parameters cJe,k:and %will be a
function of temperature and salinity and therefore, functions of depth.
Thermodynamic ice models differ in the detail with which the
non-uniformity of the physical parameters are represented, as well as in
the numerical scheme used to solve for the temperature profile. In what
follows all of these parameters will be assumed constant.

It will be useful to rearrange the above equations slightly.
Consider the heat budget of the whole ice block by integrating the

diffusion equation (2.1) over the block. This gives

dH = wWT - ol (2.9)
ot 9z oz
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which, on using (2.2) and (2.3) or (2.5) and (2.6), gives,

dil = -R R+ (-ORH “H vl + qyd_.g_x (2.10)
dkt ok

where}i is the heat content of the ice block and*\ is the ice thickness.
Equation (2.10) illustrates that the change in heat content of the ice
block is equal to the heat input minus the latent heat used in melting.
Equation (2.10) may be integrated to give an equation for the time

evolution of the ice depth. This is

k
h(t)= h(t‘)-}; s{- RTR (-ORs HoH .+ FB}cu: +H(E)~HE)(2.11)
Ee

Note that the surface fluxes are dependent on the surface
temperature and that this temperature depends upon the ice depth.
Despite its apparently simple form, (2.11) is actually a highly
non-linear equation.

The atmospheric heating terms in the surface balance equation
provide forcing on many different timescales. The ice surface
temperature will also respond on these multiple timescales but the
response of the ice depth will depend on the importance of the heat
storage term in (2.10). It will be convenient to discuss the ice depth
response to imposed surface forcing by considering the 'surface melting'

and 'no surface melting' regimes separately.
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a. No surface melting

In this regime changes in ice depth occur due to melting or
accretion at the ice bottom. Equation (2.3) then implies that the
timescale of the response in h‘.,_(!:) will be determined by the
variability present in the bottom diffusive heat flux "'Ka_é:_r «

-y A
It might be anticipated that for surface forcing on 'long'

2=h,
timescales temperature variations will be transmitted to the ice
bottom since the downward diffusive heat flux in the ice block has
the same sign over fairly long periods. For shorter timescales the
surface temperature increases and then decreases within a short
period. The diffusive heat flux in the ice therefore changes sign
more frequently preventing the signal diffusing downwards.

To look at this in more detail the analytic solution for the
equilibrium temperature profile in an ice block of constant
thickness has been obtained. In the equations that follow hi has
been taken as zero so that,hi=h . The boundary conditions imposed
were T (h,k) = Tg and Toe) - T+ AT cos(wk), where W= 2,__'::_" and T
is the timescale of the surface wave. The solution of equation

(2.1) has the form
T(=e)=(T-Tp)(\- ?-’_‘_-) + A(2).AT. cos(wt+ @)+ T, (2.12)

The amplitude A(‘z) and phase¢(z) are complicated functions of
v
z,hands, where O= (K,'C/Tl’ce)/.a Figure 3 shows the amplitude A(z)
with hh=2m . and for timescales with T= 1 day (diurnal), 5 days
(synoptic) and 1 year (seasonal). For diurnal and synoptic scales

there is no significant temperature change in the lower half of the



ice block whereas for seasonal timescales the amplitude function is
essentially linear. However, this does not imply that the
temperature profile is linear because of the phase term occurring
in the solution (2.12).

The phase function CP(z) is shown in Figure 4. It gives
information regarding the time lag with depth of the temperature

waves. The cosine function in (2.12) can be re-written as
CcosS (alf (b"’ 'EQ_\) so that '_C_é_(_,_z_.) is the time lag at a
T 2w 2T

depth Z associated with a surface temperature cycle of per'iod'C.
For example, for the seasonal timescale the temperature near the
ice bottom lags the surface temperature by approximately 0.2 x 365
= 73 days.

It is clear from Figure 3 that the diffusive heat flux at the
lower ice interface will not show any variation over the diurnal
and synoptic timescales. For the seasonal timescale, because the

amplitude A(Z) is essentially linear, the temperature profile in

(2.12) can be written as
T(z,t) ( T+AT.cos(ob+$@) - T(-2) + Ty (2.13)
h

The diffusive heat flux at the ice bottom is found from the
vertical derivative of (2.13) evaluated at z=h. Over seasonal
timescales it is the phase term ¢(z) which introduces
non-linearities into the profile.

Figure 5, which is taken from Maykut and Untersteiner (1971),
shows an observed temperature profile. For much of the year the

profile looks linear, indeed more so than would be expected from



the analytic solution (2.12). This is probably because a simple
cosine function is not a very good representation of the seasonal
variation of surface temperature in the central Arctic. The
profile is most markedly non-linear during the spring heating and
autumn cooling. It follows from the diffusion equation 2.1 that
the heat capacity of the ice plays its most significant role when
the time changes in surface temperature are a maximum. (This
equation also implies that during these periods the temperature
profile will be non-linear).

The analytic results and observations suggest that providing
the ice is sufficiently thick (see Figure U4) there will be
virtually no diurnal or synoptic signal in the latent heat changes
at the lower interface. Over seasonal timescales the diffusive
heat flux can be calculated to a reasonable approximation by
assuming a linear temperature profile. This will, however, lead to
errors during the spring and autumn. (See the discussion in
Section 3 for a quantitative estimate of these errors).

b. Surface melting

Surface melting can occur on all timescales in response to the
variations in surface forcing. Over the timescale of the melting
season (™~ 3 months), the surface temperature is effectively held
fixed at the melting point. Therefore during this period a linear
temperature gradient might be expected throughout the ice. However,
superimposed on this climatological melting are diurnal and

synoptic cycles of melting and refreezing, which establish large
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temperature gradients near the surface. The variations in ice

depth corresponding to these will obviously exhibit fairly short

timescale variations.

3. The zero layer model

The assumption of a linear temperature profile in the ice block,
which is equivalent to neglecting the heat capacity, has been used by a
number of authors as the basis of a simple thermodynamic ice model
(Bryan 1969, Semtner 1976).

In these models the temperature gradient in the ice is approximated

by

-wdT = w(Tw-Ta) (3.1)
oz n

In Bryan's model an additional term’y°= 1.7 cm is included in the
denominator in an attempt to parameterise the independence of ice growth
on ice depth when the ice is very thin. (However, considering the
neglect of many other important physical processes, the inclusion of
this term does not really seem justified).

Semtner (1976) has compared the simulations produced with a
multi-level model with those from a 'zero layer' model in which the
temperature profile throughout the ice is linear and of the form (314
Note that from equation (2.1) this implies a zero heat capacity.
Identical seasonally varying forcing was used in each model. The zero
layer model produces annual mean equilibrium ice depths which are 12 per

cent lower than those predicted by the multi-level model. Semtner
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attributes this difference to the lack of heat storage in the zero layer
model. In Semtner's zero layer model the thermal diffusivity of the ice
(and snow) is increased slightly to compensate for this error.

In the interactive atmosphere/ocean/sea-ice model currently under
development in Met 0 20 only the growth and decay of ice due to local
thermodynamic processes is being included. Ice dynamics and the
parametrisation of leads will be incorporated in a later version of the
model. In the current model, where the representation of these other
important physical processes is omitted, there is little justification
in treating the thermodynamics in any greater detail than in the zero
layer model. When additional ice processes are included a multi-level

model of ice thermodynamics might be more appropriate.

4, The diurnal cycle

The reasons for wanting to include the diurnal cycle over sea-ice
have already been given in the introduction. However, the assumption of
a linear temperature profile in the ice, as used in the zero layer
model, is not applicable to the diurnal timescale. A typical e-folding
depth for a surface induced temperature wave of diurnal frequency is
about 20 cm. In other words, diurnal temperature variations are only
felt in the top half-metre of the ice block. This being the case, the
temperature profile can obviously not be linear over the whole block.

If the zero layer model is run with an explicit diurnal cycle the
diurnal range of temperature is over-estimated. This is because the
large vertical temperature gradients near the ice surface which should
occur are absent. In practice this gives a large diffusive heat flux in

the near surface layer, away from the surface as the surface temperature
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is increasing but in the opposite direction once the temperature starts
to decrease. In this way the variation in surface temperature
throughout the day is damped by the diffusive heat flux into, or out of,
the surface. In the zero layer model, which assumes a linear
temperature profile throughout the ice block, these diffusive heat
fluxes are considerably underestimated.

If variations in-T; throughout the day are incorrectly simulated
there will be errors in the calculation of the outgoing infra-red and
turbulent fluxes. (Also possibly the solar flux if the albedo is
dependent on the surface conditions of the ice). These errors can, in
turn, affect the equilibrium ice depths.

A high resolution model would be required to resolve the diurnal
temperature wave. (Semtner's 3-level model may well not have sufficient
resolution near to the ice surface). However, this problem is similar
to that which has already been solved in the Met 0 20 soil model by the
use of a surface heat capacity term (Carson, 1980). In fact, providing
the ice thickness is considerably greater than the e-folding depth of
the diurnal temperature wave, the problem is identical to that in the
s0il model. If the ice is thin the surface heat capacity should be
dependent on the ice thickness, although such sophistication cannot
really be justified in the zero layer model (in which other important
effects such as ice dynamics are not represented).

With such a term included the basic equations become (see

Appendix B):
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a. No surface melting

Wil -T)* Ca dTs = - R +
* * dlse = Rw-!- = (l-—o()Rs“Hs-H,_ (4.1)

h dt
K(Ta-Tg) = -F,— qdh (1.2)
B —— 5
h 7'd.l:-

Hhe) » T (4.3)

ca® . . . :
where % is a surface heat capacity appropriate to diurnal
timescales and'_niis the daily mean temperature.

b. Surface melting

When there is surface melting _Eiis fixed so that 4T = 0
dt
and the heat capacity term does not contribute. The equations

governing this regime are therefore

K (Ta-Ta) = “R 4R GO 0 H ~ %d_l_\., (4.14)
h dt

The =T . (4.5)

Equations (4.2) and (4.3) are also applicable in this regime.
)
The C% in (4.1) is a surface heat capacity term which is
chosen so that the diurnal range of surface temperature is
(-8
simulated correctly. Thng( )d_;r_a term acts to damp the surface
dt

temperature oscillations and essentially parametrises the damping

effect of the depth dependent diurnal wave. Theoretical arguments
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suggest that C* should be assigned the value C’h@ = c\aS/-l'E

t
where O = QC'C/TTC‘D)/&is the e-folding depth introduced in the
previous section (see Appendix B for details).

However, these arguments are based on a very simplified
solution of the diffusion equation and this expression should be
used only as a guide for the value of (:;fo (see Appendix B for
details). 1In practice (:dsi)should be tuned so that a realistic
diurnal range of temperature is produced.

The temperature gradient terms in (4.1) to (4.5), arising from
the linear profile, should not be evaluated with a diurnal cycle in'1;i
since they are only applicable to the seasonal timescale. In
applications reported later the daily mean temperature has been
used in these terms. Also over seasonal timescales the cufiiilj
term should not contribute to the heat budget since Cx hasdl;:en
chosen explicitly with the diurnal cycle in mind. In fact, this
term is small for seasonal timescales. Quantitative estimates
derived from experiments with the model will be given later.

With a surface heat capacity term included, the heat balance

equation (see 2.10) becomes

(&t
o )41‘ = -Q‘_O+RLD+Q-¢)R8-HS- H;_"'FB -\-ctcy_x . (4.6)
dk dk

The linear part of the profile does not contribute in this

equation.
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It is worth making the final point that Ca could be chosen for
the seasonal timescale so that differences between the zero and
multi-level models could be reduced without tuning the heat
diffusivities. However, if this were done the diurnal cycle would

be too heavily damped.

5 The dual timestep model

The equations used in the dual timestep model (without snow cover)

are

k'(?:"-"s)* s R + R * (-0OR, “H, ~H_ (5.1)

and, from equation (2.11),

h(e) = h(ts) "ch {-RL;RL; - R, ~H -H_+ F }d.b D

The timestep used to update the ice depth }L(k)is taken to be
considerably longer (typically 1 to 5 days) than the timestep used in
the solution of the surface balance equation. (Typically A|:$_1 hour) .
For melting or freezing occurring at the ice bottom the use of a longer
timestep in the updating of the ice depth can be justified by the
results of the previous sections. However, since surface melting occurs
when the temperature predicted by (5.1) exceeds the melting point, the
onset and cessation of surface melting may be incorrectly predicted when
a longer timestep is used in the ice depth calculation. Errors due to
the longer ice depth timestep will be assessed later by looking at the

sensitivity of model results to the timesteps used.
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Comparing (5.2) with (2.11) it will be noticed that the heat

capacity term has been dropped in the dual timestep model. This is

. justified since over timescales of a day or more it is considerably
smaller than the other terms in (5.2) (see Section 7). In coupled
experiments this simplification will make the heat budget easier to
interpret since the net heat input into the ice over a given period will
be equal to the latent heat release due to ice depth change. 1In such
experiments it is anticipated that the surface balance equation (5.1)
will be solved every timestep (i.e. every 10-20 minutes), whereas the

ice depth will be updated only when the ocean model is called.

6. Snow-covered ice

When the depth of a snow cover has to be monitored in addition to
the ice depth, it becomes necessary to distinguish between changes at
the upper and at the lower boundary.

An additional coordinate,fts, is now required, as defined in Fig.

2. The snow depth, l“!8 is given by
h = h'—h (6.1)
and, as before, the ice depth,*\, is
h= h -h ; (6.2)
Assuming a linear temperature gradient through the combined

snow-ice layer eqns. (4.1) - (4.3), which apply when there is no surface

melting, become:
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K(Ta-To) +cfdTh= —R +R_+U-0R -H -H, (6.3
h+K/K,s' hs de

k(m-Ty = ~Fy-qehe (6.4)
h + W[k hg de
e N e (6.5)

In addition, we have

dhs = - snowfall . (6.6)
dt

Equations (4.4) - (4.5), which apply when there is surface melting,

become:

K(a-Te) = -R +R * (-&4)Rg ~Hg ~ H_

h+ K"ch'hs
- qqdhs .S¢h)—qdh,(1-S(hg) (6.7)
9 03 e hs 1,&_'( s)
Tha,t) = Tom £ hgvo (6.8)
TChye) = T, n0

where ihs,mleis the rate of change of h3 due to snow melt, 'T;(s) is

the melting point of snow (usually taken as 273.15K), and S is the

step function defined by
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e e

S(hs) =

In addition,

dhy = ‘.j.}_"s,mue. = Snowfall . (6.9)
db de

Note that egns. (6.4) and (6.5) also apply when there is surface

melting.

Dual timestep model

In the dual timestep model snow depth is updated with the same

frequency as the ice depth. The equations used now depend on which

melting regime operates.

a. No surface melting

By analogy with the snow-free case, we have:

K (Tu-To) + Callp = -R 4R _+ (raR, W~ W (6.10)
h_.|. w,'ghs Ab
and
3
h(e)= h(ky) -1 {"Rw‘r R (R oW - FB} de  (6.11)
$
to

since changes in ice depth occur at only one boundary (the lower
boundary) when the surface temperature is below freezing (and mass
changes due to sublimation are neglected). However, changes in

snow depth can occur at the upper boundary, due to snowfall i.e.

hs@) = h,("b) - s gh(snowfq.ll) dt . (6.12)

N
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b. Surface melting

Here the equations differ from the snow-free case because of
the necessity to treat changes at the upper and at the lower
boundary separately. Changes at the lower boundary are

straightforward; from eqn. (6.4) we have:

ha(t-.)'-'ha(ko) s i‘c(:‘:t-'\'a) iRl &k (6.13)
$k° h"’ Klushs

At the upper snow boundary

t
hy@)=hyvd |

to

i— RFR R ~HH, - K (Ta-Te) } dt
S (6.14)

k
" S (eﬂwouofkul\) de .
be

Then if it is assumed that there is no ablation of ice from

the upper boundary (only ablation of snow), eqns. (6.1) and (6.2)

give:

hg(€) = hglk) = hy(k) + hy (k) (6.15)
and

() =hi) +h,(e) ~h() . (6.16)
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However, if the snow depth predicted by eqn. (6.15) is
negative, there is sufficient energy available in the period
between bo and & to remove the snow cover totally and to melt some
of the underlying ice. A correction must then be made to the

predicted ice depth (eqn. (6.16)) to allow for this i.e.

h(e) =h(t) + (hye) ~h, () + gs.hg (k)
9

where ha(t) "hz(k‘.h is given by eqn. (6.13) as before
and the snow depth then set to zero.

T Tests of the dual timestep formulation

A number of experiments were carried out to test the effect of
updating the snow and ice depths with a different timestep from that
used to update the surface temperature. 1In each experiment the surface
forcing contained both seasonal and diurnal variations. On the seasonal
timescale Fletcher's fluxes as used by Semtner (1976), were used (see
Table 1). To simulate the diurnal cycle the incoming short wave flux

at the ice surface was assumed to be given by the expression

R (E;E) = QE) .cos(Z(l:;E)) (7.1)

where € and E.denote time coordinates representing diurnal and seasonal
changes respectively. Z(b:é) is the zenith angle and Q(‘E)is chosen so
that the mean short wave flux over a given day agrees with the value
obtained for that day by interpolation of Fletcher's monthly mean

values. The diurnal cycle was not included in the incoming longwave or
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turbulent fluxes. The prescription given in (7.1) leads to a reasonable
representation of the diurnal cycle in that the day length is correctly
predicted as a function of latitude and time of year. (It can also deal
with the permanent polar night and day). Further explanation of the
method used to simulate the diurnal cycle can be found in Appendix C.
The diurnal cycle used in the experiments described here was that given
by (7.1) at 7ON. This is illustrated in Fig. 6 for various times of
year, assuming a daily mean of 100 Wm-2 throughout.

The albedo formulation used by Semtner (1976) involves a dependence
on the depth of snow following the onset of surface melting (see
Table 1). This affects the amount of net solar radiation available at
the surface. Since the model is very sensitive to changes in the
surface forcing (Bottomley, (1984)), it can be expected that this
dependence of albedo on snow depth will make a significant contribution
to differences between experiments with differing periods between snow
and ice depth updates. Therefore, one set of experiments was carried
out in which the depth dependence of the snow albedo was removed, and
this was compared with another set in which Semtner's albedo formulation
was used without modification. Each set comprises three experiments.
In one, the control experiment, surface temperature and snow and ice
depths are all updated every hour. In the other two, ice and snow
depths are updated less frequently than surface temperature i.e. every
24 hours and every 5 days, compared with every hour for surface
temperature.

In all experiments the snowfall was taken from Semtner (1976) and
the model parameters were assigned the values given in Table 2.

Following Semtner (1976) the bare ice albedo was enhanced to allow for
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the effects of penetrative radiation. Integrations were made for 50
years, by which time equilibrium cycles of T;,"\ and hs had been
established.

Equilibrium monthly mean values of surface temperature, ice and
snow depth for the set of experiments in which the modified albedo
formulation (i.e. no dependence on snow depth, see Table 1) was used,
are shown in Tables 3-5. The equilibrium cycles for the control
experiment are also shown in Fig. 7. Table 6 contains monthly mean
values of the two terms on the left hand side of the surface balance
equation (6.10) for this latter experiment. The contribution from the
surface heat capacity term is considerably smaller than that arising
from the linear gradient term, as would be expected over seasonal
timescales. It is therefore reasonable to neglect the heat capacity
term in the ice and snow depth calculations, as described in Section 5.

The seasonal variation in both the surface temperature and the snow
depth is not significantly affected by reducing the frequency with which
the ice and snow depths are updated. In general the discrepancy between
the monthly mean values of.T;-for the 1 hour and the 5 day update is
less than 0.06K, which corresponds roughly to =~ 0.2 Wm-2. Although the
discrepancy is substantially higher in September (~ 0.5K), the monthly
mean values here are distorted by differences in the period for which
the ice is effectively snow-free i.e. in the period during which the
low, bare-ice albedo is in force.

The mean ice depth increases as the length of time between ice and
snow depth updates is increased. The greatest differences in monthly
mean ice depths are observed during the melting season when the most

rapid changes in ice depth occur and, therefore, the frequency with
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which the ice depth is updated is expected to be most significant. The
maximum differences between the monthly mean ice depths for the 1 hour
and the 24 hour update, and between those for the 1 hour and the 5 day
update are 6 cms (July and August) and 17 ems (July), respectively. The
maximum difference in monthly mean snow depth is only 2 cms.

Equilibrium annual mean ice depths for all three experiments are
compared in Table 7 with those obtained in the corresponding experiments
using the unmodified Semtner albedo formulation i.e. the experiments in
which the albedo value decreases as the depth of the snow cover
decreases during the melting season. Ice depths are lower in the latter
set of experiments than in their counterparts because of this reduced
albedo. As expected, the results for the 24 hour and the 5 day ice and
snow depth updates diverge more strongly from those for the control
experiment than in the experiments in which the albedo is not snow depth
dependent. The rapid changes in snow depth and thereby in albedo -
which occur during the melting season can be followed if a 1 hour, or
even a 24 hour timestep, is used (see Fig. 8). However, if the snow
depth is updated only every 5 days, these changes are not resolved and
the change of albedo formulation has little effect.

It should be noted that these experiments are relevant for
situations in which there is a perennial ice cover. Similar experiments
were also carried out, with different atmospheric forecing, in which open
water is periodically formed. In fact, multi-year equilibrium cycles of
ice depth are established (similar to those reported by Semtner (1976))
which are sensitive to the timing of the transition between open water
and ice in relation to the period of heavy snowfall which occurs in the

autumn in Semtner's snowfall formulation. Therefore the effect of
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varying the frequency with which the ice depth is updated is enhanced
since, in general, this changes the timing of the transition. 1In
equivalent experiments, but with zero snowfall, multi-year cycles are
not set up and differences in equilibrium annual mean ice depth are
small: for At = 1 hour, 1 day and 5 days the mean ice depths are

0.81 m, 0.82 m and 0.80 m respectively.

8. Summary and Discussion

The physical basis of a scheme in which the surface temperature of
sea-ice is updated every atmospheric model timestep (i.e. every 10-20
mins.) along with the land and land-ice surface temperatures, but the
ice depth is only updated every N days has been investigated.

Changes in ice depth can occur both at the upper and at the lower
boundary of the ice block. Solution of the temperature diffusion
equation shows that, for thick ice (2 2m), changes in surface
temperature occurring on diurnal or synoptic timescales are not
propagated to the bottom of the ice. The effects of changes occurring on
the seasonal timescale, however, are felt throughout the block.
Therefore, for ice of thickness a metre or more only the longer
timescale components of the variation in surface temperature affects the
changes in ice depth at the lower boundary. At the upper boundary
though, changes can occur in response to variations in surface forcing
on all timescales, including the diurnal.

Observations in perennial sea-ice indicate that on seasonal
timescales the temperature profile within the ice is linear for most of
the year. The exceptions occur during spring and autumn when the

variations in surface temperature are most rapid. If a linear
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temperature profile is assumed during these periods also, a net excess
of energy is made available for ice ablation, resulting in equilibrium
ice depths which are lower than observed.

However the assumption of a linear temperature profile in thick ice
is not applicable to the diurnal timescale i.e. the timescale on which
the surface temperature is to be updated. In reality the temperature
gradient (and therefore the diffusive heat flux) at the surface of the
ice is much greater than that implied by a linear profile. Therefore,
since the diffusive heat flux acts to damp the variations in surface
temperature, the assumption of a linear change in temperature between
the surface and the lower boundary results in an overestimation of the
diurnal range of surface temperature. However the diurnal range can be
simulated correctly by the introduction of an additional diffusive term

(&)
Ca )gt into the surface balance equation, where C*@n

de

heat capacity appropriate for diurnal or synoptic timescales.

is a surface

Maykut (1978) suggests that the temperature profile in rapidly
growing young ice is always approximately linear because it responds
quickly to surface temperature changes. It may be, then, that for thin
ice a linear profile is a reasonable approximation on all timescales.

In the dual timestep scheme proposed here the ice and snow depth is
updated every few days only so that the variations in ice depth which
would otherwise occur due to the diurnal cycle of surface temperature
are not resolved. However experiments with the model have shown that
for perennial sea-ice this does not have a very significant effect on

the equilibrium annual mean ice depth. It should be noted, though, that

26




the magnitude of the effect is increased if a depth dependent albedo

formulation is used. Some retuning of the model parameters might be

necessary in this case.
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Appendix A List of Symbols

« A(z)

Amplitude of temperature wave at depth z.
Specific heat capacity of ice.

Surface heat capacity appropriate for diurnal
Upward heat flux from the ocean into the ice.
Ice depth and snow depth respectively.

Heat content of snow-ice block.

Sensible heat flux.

Latent heat flux.

timescales.

Latent heats of fusion of ice and snow respectively.

Incoming long-wave radiation at surface.

Outgoing long-wave radiation at surface.

Incoming short-wave radiation at surface.

Step function defined byS(hg)= 1 ir hg> 0
=0if hg=0

Time.

Temperature.

Surface temperature.

Daily mean surface temperature.

Temperature at bottom of ice.

Surface melting point temperature.

Vertical coordinate, defined to be positive downward.

Surface albedo for ice and snow, respectively.

Temperature wave e-folding depth.

Thermal conductivity of ice and snow, respectively.

Density of sea-ice.
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Timescale of temperature wave.

Phase of temperature wave at depth

Angular frequency of temperature wave.




Appendix B The surface heat capacity

In this appendix the surface heat capacity term will be discussed
in greater detail. Consider an ice block of thicknessh . The

temperature profile in the block is found by solving the diffusion

equation
ceb_‘_\' =9 (wol . (B1)
okt oz oz
Rather than actually solving (B1) it is useful to consider the

vertically integrated equation i.e.

h

2
c,\aS l.dz = kT -1 s
h, 9t dZ|h, oz h,
The surface heat capacity is defined by
ha
ceg AT.dz = Cy (k) dTx : (B2)
h, 9t okt

In order to reduce (B2) to a balance equation involving only _&it

is necessary to replace Cg(t)by a typical constant value Ck. For

diurnal variations in surface temperature there will be no corresponding

signal in the bottom diffusive heat flux "'K:@I . It is therefore

possible to write oz "‘a
(divrnal) =
-k T = Cg Tk . (BY4)
oz, dt
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Cs can be determined by comparing the solution of the surface balance
equation using simple forcing with the solution obtained by explipit
integration of the diffusion equation. It can be shown that the diurnal

range of temperature will be the same provided

Cx = L 095 (B5)
2
2
where & = (%?) , with T= 24 hours, is the e-folding depth of the
diurnal temperature wave. The exact form of Ca is actually dependent
upon the ice thickness h although, provided h77§, the result (B5) is a

very good approximation.
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Appendix C Treatment of the diurnal cycle

At the top of the atmosphere the incoming solar radiation is given

by

=0 = So(j_-._)a cos Z(b) (c1)
d.(k)

where Z is the zenith angle which depends on the latitude, time of year
and time of day (Sellers, 1965). So is the solar constant (5021376
Wm-2) and d. is the distance of the earth from the sun (d is the annual

mean distance). Equation (C1) can be written out explicitly as

STbP &) = So(d%))a(sincP' sind -+ c_osCPocsS cos(‘c%:\’ (:)> (c2)

where ¢ is the latitude, 5 is the solar declination (angular distance
north of the equator) and(g_'l\')b is the hour angle (T= 24 hours).
i
(Sellers, 1965)
In order to represent the solar heating at the surface a formula
similar to (C2) is assumed to apply. At the surface the incoming solar

flux is taken to be

&(b;t):-Q@)(s'm¢.s'm5(E) o cos¢ cosa(‘l;)aas(g_'t_r_rb)) (c3)

L
In (C3) the time coordinate £ changes with the time of year and E
with the time of day. Q(b) in (C3) is chosen so that the daily mean
value of Rg(b’t-,)agr'ees with climatological estimates i.e. if H is the

half day length (and therefore 2H is the total period of daylight) then
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2 +H
RS(E) = :l_rS Rs(h,-i—:) dt : (ch)

L

From (C3) and (C4) it is easily shown that
~ = =1
Q(b)='rr £) {TTH sing. sind + L cosP. cos3. si wH 2
E:Rs( ) .:F, i ¢ tn 5 5?5 ut(%? ‘) (Cc5)

The half day length (f%) appearing in (C5) is determined from the

relation (Sellers, 1965)
cos H = —tand. tand ; (C6)
To summarise:

1. The daily mean incoming short wave radiation at the surface

(i.e. g(b)) is determined by interpolation of Fletcher's monthly

mean values.

“~
ii. Equation (C5) is then used to find the appropriate G}(b)for

that day using the half day length given by (C6).

iii. Equation (C3) is used to calculate the diurnal cycle in

surface net short wave radiation throughout the day.
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More accurate empirical formulae (Parkinson and Washington, 1979)
can be used to estimate the diurnal cycle, although since (C3) ensures
that the daily mean radiation, as well as the day length, is correctly

determined the above treatment was felt to be adequate for the studies

discussed in this note.
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K 2.166 Jm=1K=1S-1

K 0.3299 Jm-1K~1S-1
c*(f‘-) 2.26 x 105 Jm=2K-1
B 2.0 Wm-2

® 9 3.014 x 108 Jm-3

B ?9 1.097 x 108 Jm"3

Table 2: Model Parameters.

| Monthly Mean Surface Temperature (K)
| Frequency of ice/snow 1 hour 24 hours 5 days
depth update

Jan 244,63 244,62 244,59
Feb 242,82 242.80 242.77
March 243.74 243.72 243.70
April 253.00 252.99 252 .97
May 265.65 265.65 265.64
June 272.40 272.39 272.39
July 272.89 272.89 272.89
Aug 271.85 271.87 271.88
Sept 264,08 264.08 264,53
Oct 254 .50 254 .49 254.53
Nov 246.54 246.52 246.50
Dec 245,33 245.31 245,28

Table 3: Equilibrium monthly mean surface temperature for various
frequencies of ice and snow depth update.

Monthly Mean Snow Depth (M)
Frequency of ice/snow 1 hour 24 hours 5 days
depth update

Jan 0.28 0.28 0.27
Feb 0.29 0.29 0.28
March 0.30 0.29 0.29
April 0.31 0.30 0.30
May 0.34 0.33 0.32
June 0.12 0.12 0.14
July 0.00 0.00 0.00
Aug 0.00 0.00 0.00
Sept 0.07 0.07 0.05
Oct 0.20 0.19 0.18

| Nov 0.27 0.26 0.25

% Dec 0.27 0.27 0.26

| 2

w Table 4: Equilibrium monthly mean snow depth for various frequencies of

ice and snow depth update.
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Monthly Mean Ice Depth (M)
Frequency of ice/snow 1 hour 24 hours 5 days
depth update

Jan 1.59 1463 1.70
Feb 1.71 1.76 1.83
March 1.84 1.89 1.95
April 1.93 1.98 2.04
May 1.96 2.01 2.08
June 1.91 1.96 2.05
July 1.48 1.54 1.65
Aug T.14 120 1.29
Sept 4201 1.16 1523
Oct 120 1e2D 1.32
Nov 1.32 1437 1.44
Dec 1.46 145 15T

Table 5: Equilibrium monthly mean ice depth for various frequencies of
ice and snow depth update.

CalbTe (Wn-2) K(Ta—Te) (Wm-2)

At (h+K/ke. hs)
Jan -0.14 -16.67
Feb -0.01 -17.01
March 0.26 -15.74
April 1.08 -10.24
May 0.95 -3.12
June 0.25 115
July -0.06 2.52
Aug -0.19 1.36
Sept -0.91 -8.80
Oct -0.86 -13089
Nov -0.38 =17.24
Dec 0.00 -17.24

Table 6: Comparison of the contributions to the surface balance
equation from the surface heat capacity term and the linear diffusive
heat flux.

Values shown are monthly means at equilibrium.
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Annual Mean Ice Depth (M)

Frequency of ice/
snow depth update 1 hour 24 hours 5 days

Albedo not snow
depth dependent 1.55 1.60 1.68

Albedo dependent on
snow depth after onset
of melting 1.38 1.47 1.63

Table 7: Equilibrium annual mean ice depth for various frequencies
ice and snow depth update and two different albedo formulations.
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