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Executive Summary 
 
This report summarises the general theory of conservative coupling between the 
ocean and the atmosphere components of a climate General Circulation Model. It 
then applies this theory to the particular case of (prototype) HadGEM3-AO, the 
GCM which will form the basis of the next generation of Met Office Hadley Centre 
climate and seasonal-to-decadal prediction models. These GCMs comprise a 
regularly gridded atmospheric model coupled to an ocean model which has a 
tripolar grid configuration (as in the figure below). In the latter, the usual 
“meridionally convergent” grid in the Arctic is replaced by a quasi-uniform grid 
having two poles over the land masses of Canada and Siberia. This device 
removes the coordinate singularity at the north pole from the ocean, and 
eliminates the need for the extensive Fourier filtering that is known to have a 
deleterious effect on the integrity of regularly gridded ocean models. The price to 
be paid for this is that there is no longer any simple geometric relationship 
between the ocean grid and the overlying atmospheric grid. This has the 
consequences for the conservative coupling of fluxes between the two models – 
consequences which this report seeks to examine.  
 
After some introductory remarks to put the problem in the HadGEM3-AO context, 
the basic theory is examined in a variety of simple problems at low and high 
resolution. First and second order interpolation schemes are compared with each 
other, and with schemes used to conservatively remap fluxes in the earlier 
(regularly gridded) GCM HadGEM1. Finally, some recommendations for 
conservative coupling of various fields in HadGEM3-AO are made. 
 

                              



 

 
1. Introduction 
 
The conservative interpolation of fluxes between atmosphere and ocean is 
essential for the integrity and stability of long-term coupled climate model 
integrations. The problem is more acute for coupled models whose ocean 
components are discretised on irregular grids, such as the tripolar grids used in 
some configurations of the NEMO [Madec, 2007] and MOM [Griffies et al, 2004] 
ocean models, or the “displaced pole” grids sometimes used in the CICE [Hunke 
et al, 2008] sea-ice model. On such grids, the longitude and latitude of each 
gridpoint are not separable functions of the i and j indices of the grid, but are 
general 2D functions λij=f(i,j) and φij=g(i,j). (The coordinate lines are usually still 
orthogonal, however.) This means that identifying the gridcells of one grid that 
are located near those of the other is not straightforward. It also means that the 
shape and size of the gridcells can be very different to those of traditional grids, 
which has consequences for both qualitative and quantitative model analysis and 
development. 
 
For example, Fig 1a shows the gridcells of the ORCA2 (nominal 2o resolution) 
configuration of the NEMO ocean model.  Note the many differences from a 
traditional uniform resolution grid: the global grid refinements in the tropics and 
the southern hemisphere; the two numerical poles in Canada and Russia; and 
the local grid refinement in the Mediterranean and Red Seas, and the 
consequent gaps over Central Asia and the Sahara.  Fig 1b shows a close up of 
this grid around the mouth of the Mediterranean Sea, together with an example 
overlying atmosphere gridcell. (This is taken from the N48 (3.75o x 2.5o) 
resolution (early) HadGAM1 model, which is a forerunner of the atmospheric 
component of HadGEM1 [Johns et al, 2005], the Met Office’s current climate 
modelling GCM, to which ORCA2 could be coupled in a low resolution GCM.) 
Finding which ocean model gridcells overlap this particular atmosphere model 
gridcell is more difficult than for regular cells, as it now requires a 2D search on 
the ocean gridcell corners, rather than two 1D searches. And calculating the 
resulting overlap integrals that are needed to perform the interpolation is much 

                              



 

less straightforward than it would be for regular grids, where all such regions are 
rectangles in latitude-longitude space.  
 
Fig 2a illustrates some other difficulties. It shows the arrangement near the north 
pole of the gridcells of the prototype HadGEM3-AO coupled model which is the 
archetypal model used in this study. The ocean component is the ORCA1 (1o) 
configuration of NEMO, and the atmosphere component is the N96 (1.875o x 
1.25o) configuration of HadGAM1. Traditional choices of the interpolation method 
between two grids depend on which one is considered to be high resolution and 
which is considered low.  Clearly, for a tripolar grid in the high Arctic, the question 
is a rather open one. It will be discussed in this report. It is also clear from the 
expanded plot of the ORCA1 gridcells in Fig 2b that they span many degrees of 
longitude.  Any traditional “small ∆λ” approximation will likely suffer a large 
truncation error if applied to these cells. Likewise, any “regular grid” assumption 
is likely to go wrong near the pole, since the gridcell boundaries are far from 
being straight lines in latitude-longitude space. Finally, the passing of the ORCA1 
grid directly over the north pole is yet another potential mathematical difficulty.1
 
 

 
 

                                                 
1 The quasi-regular resolution of the ocean grid over the Arctic Ocean is of 
course the main reason for using tripolar grids in ocean modelling. If the ocean 
model grid suffered the convergence of the meridians evident (Fig 2a) in the 
atmosphere model, then severe Fourier filtering, and possibly the invention of a 
polar land point, would be needed to handle the coordinate singularity at the 
north pole. 
 

                              



 

Fig 1a: Gridcells and bathymetry of the ORCA2 configuration of NEMO ocean 
model. 
 
 

 
Fig 1b: Example of overlap between ORCA2 and N48 HadGAM1 grids at the 
mouth of the Mediterranean. (See Fig 1a.) Shaded cells are landpoints of the 
ocean model. 
For all these reasons, the (conservative) interpolation of fields between general 
grids is considerably more involved than it is when the grids are regular. 
Fortunately, a tool already exists to interpolate between two general grids on the 
sphere: the SCRIP interpolation package [Jones, 1999]. This facility is being 
increasingly widely used as more and more coupled models employ irregular 
grids. Indeed, it lies at the heart of OASIS [Valcke, 2004], which is the coupler 
used in HadGEM3-AO. We have access to an offline version of SCRIP, which 
makes much easier the development and checking of its algorithms, 
performance, and so on.  
 
The rest of this report falls into two main sections: an idealised discussion of 
conservative remapping between irregular grids, using various simple examples, 
and a practical assessment and evaluation of the method when applied to the 
prototype HadGEM3-AO GCM. Attention is restricted to the SCRIP interpolation 
methods. The account is intended as a pedagogical guide for modellers who are 
using SCRIP/OASIS to build coupled climate models, rather than a theoretical 

                              



 

analysis of the whys and wherefores of conservative interpolation in GCMs. For 
this reason, much of the mathematical detail has been relegated to the Appendix.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig 2a: Example of overlap between ORCA1 and N96 HadGAM1 grids near the 
north pole. 
 
 
 

                              



 

 
 
Fig 2b: ORCA1 gridcells very near the north pole, with actual boundaries (red) 
and those derived by assuming they are straight lines in (λ, sinφ) space (blue). 
The numbers are the ratios of the gridcell areas. 
2. Theory 
 
Conservative interpolation depends on equating the integrated fluxes f and F on 
the source (g) and target (G) grids.  Different assumptions about the form of f 
over the source cells lead to different orders of accuracy in the interpolated field 
F. Piecewise constant f gives a first order accurate interpolation; piecewise linear 
f gives second order accurate interpolation. In either case, the set of fluxes on 
the target grid F={FI} is expressed as a linear transformation of the fluxes on the 
source grid f={fi}, thus: 
 
 

(1)1 2 3F = w f + w df dφ + w df dλ  
 
 
where (importantly) the remapping matrices w1, w2 and w3 depend only on the 
geometry of the two grids, not on the fluxes f, whose contribution is explicit in (1). 
SCRIP can (and does) therefore calculate and store these remapping coefficients 
once for each (source grid, target grid) pair. Interpolation is then effected by the 
simple matrix multiplication in (1). 
 

                              



 

For first order conservative remapping, otherwise known as area averaging, w2 

and w3 are null. 
 
Jones (1999) gives formulae for the remapping matrices, which are calculated by 
making a Taylor expansion of the source cell flux about its centroid. Details of the 
theory, and some deductions from it, are discussed in Appendix A. 
 
There follow some simple examples of the principles and practice of conservative 
interpolation.  
 
 
2.1 1D toy problem 
 
Consider the following example, where quadratically varying fluxes, f(λ) = 144λ2, 
on a 3x1 atmosphere grid are mapped to a 4x1 ocean grid (assuming domain 
0�λ� 1, φ=0): 
 

Atmosphere  grid 
f1 = 4 f2 = 36 f3 = 100 

↓ 
Ocean grid 

F1 = ? F2  = ? F3  = ? F4  = ? 
 
 
The remapping matrices w1 and w3 for this problem are, according to eqns A.3a-
3c of Appendix A: 

1 3

1 0 0 1/ 24 0 0
1/ 3 2 / 3 0 1/ 24 1/18 0

;
0 2 / 3 1/ 3 0 1/18 1/ 24
0 0 1 0 0 1/ 24

w w

−⎛ ⎞ ⎛
⎜ ⎟ ⎜ −⎜ ⎟ ⎜= =
⎜ ⎟ ⎜ −
⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎟
⎟
⎟
⎠

 

Note that: 
 

1. For this 1D problem, w2 (the multiplier of ∂f/∂φ) is null. 
2. The row sums of w1 are unity. This follows directly from equation (A.3a). It 

implies that a constant field would be mapped to a constant field (with the 
same value of the constant). 

3. The column sums of w1 are all the same. This is a result of the uniform 
resolution of the source and target grids. The constant is (area source 
cell)/(area target cell) (=4/3 here). 

4. The column sums of w3 are zero. In general this would also be (non-
trivially) true of the column sums of w2, too. It is only true because the 
target grid has uniform resolution. It follows in that case from �AI(r-r0) dA = 
0, ie the 2nd order gradient terms vanish upon integrating over an entire 
source cell.  

                              



 

5. By ignoring w3 (the multiplier of ∂f/∂λ), and assuming the given quadratic f 
= (4,  36, 100), we get (using eqn 1) the 1st order remapped output                                    
F = (4, 25 1/3, 57 1/3, 100). 

6. By including the contribution from w3, we get the 2nd order accurate 
remapped output F = (2, 19 1/3, 55 1/3, 110).2 

7. In both cases we have FdA∫ = 140/3, which is, of course, equal 

to fda∫ (whether one thinks of f as being constant or varying linearly 
across each source gridcell). 

 
These, and some other formal results about remapping matrices, are discussed 
in Appendix A.2. 
 
The results of 1st and 2nd order conservative interpolation are plotted in Fig 3. 
Also shown is the result of “transa2o”, which is the current Met Office Hadley 
Centre method for interpolating fluxes between regular grids in current GCMs. 
This uses a predictor-corrector method, in which an initial bilinear approximation 
to the flux on the target grid is adjusted to ensure conservation of fluxes. Different 
adjustments are made for positive fields like downward SW (which are scaled) 
and fields of either sign like P-E (which are shifted). See Appendix A.4 for further 
information on transa2o. 
 
Such behaviour could in principle be emulated with SCRIP/OASIS3, but in 
practice this is likely to be difficult. However, for this toy problem the (single) 
remapping matrix (using the “E-P” type correction) is easily shown to be (App 
A.4.1): 
 

1

114 / 96 18 / 96 0
26 / 96 82 / 96 12 / 96
12 / 96 82 / 96 26 / 96

0 18 / 96 114 / 96

w

−⎛ ⎞
⎜ ⎟−⎜ ⎟=
⎜ ⎟−
⎜ ⎟

−⎝ ⎠

. 

 
(Note that properties 2 & 3 above are still true.)  The result of applying this to  
f = (4, 36, 100) is F = (-2, 19 1/3, 57 1/3, 112). Once again, FdA∫ = 140/3, as 
required. 
 
Fig 3 shows that 2nd order conservative and transa2o are equally good at 
respecting the gradients in the input data: much better than 1st order remapping, 
which smears them out through its area averaging. 2nd order conservative 
remapping is therefore the best method for “P-E”-type fields. For “SW”-type 

                                                 
2 This uses the exact expression /f λ∂ ∂ = (48, 144, 240), although in practice the 
source gradients only need to be 1st order accurate to achieve 2nd order accuracy 
in the remapped field [Jones, 1999]. 
 
3 At least for “additive” corrections; see App A.4.2. 

                              



 

fields, however, there is a problem: 2nd order interpolation can generate negative 
values where the source field abruptly falls to zero, because it uses an inaccurate 
estimate of the gradient (finite where it should be zero). In fact, it can overshoot 
as well as undershoot, leading in principle to, for example, ice fractions greater 
than 1 appearing on the other side of the coupler. Flux limiters are one possible 
means of avoiding this [Dukowicz and Kodis, 1987].  A more pragmatic approach 
may be to simply “top and tail” data that lie outside physically acceptable bounds, 
and live with the non-conservation – as long as it is small enough.  More will be 
said about this in Section 3. 
 
 

 
 
Fig 3: Results of quadratic remapping toy problem. 
 
 
Another problem with 2nd order remapping occurs in the presence of masked 
data, and this will be discussed now.  
 
 
2.2 1D toy problem (masked) 
 
The masking problem is surprisingly thorny, and repays study even in a simple 
1D problem. Therefore, consider again the 1D toy problem: 
 

                              



 

Atmosphere grid 
f1 = mdi f2 = 36 f3 = 100 

 
Ocean grid 

F1 = mdi F2 = mdi F3  = ? F4  = ? 
 
This time, as indicated by the white colours, some of the atmosphere and ocean 
gridcells are masked. This pattern follows the usual coupled model rule that 
atmosphere gridcells are only masked out if all the underlying ocean gridcells are 
masked out (ie, are land points in that model). 
 
One technicality: the sea-fraction α is defined as the fraction of each 
atmosphere gridcell which overlays unmasked (ie, sea) points in the ocean 
model. It is calculated by 1st order conservative interpolation of the ocean mask 
to the atmosphere grid. In this case, therefore, α = (0, ½, 1). 
 
Atmosphere to ocean and ocean to atmosphere remapping need separate 
treatment. 
 
 
2.2.1 3x1 atmos to 4x1 ocean 
 
Under 1st order conservative remapping, fA = (0, 36, 100) is mapped to FO = (0, 
24, 57 1/3, 100). We only conserve fluxes (as Fig 5 in Sec 2.2.2 suggests and 
Appendix A.3 confirms) if we multiply the source flux fA by the sea-fraction and 
the target field by its mask: 
 
� α fA da = 1/3 (0�4 + ½⋅36 + 1⋅100) = 118/3; 
 
� MO FO dA = 1/4 (0�0 + 0⋅24 + 1⋅57 1/3 + 1⋅100) = 118/3. 
 
This has an interesting consequence for 2nd order remapping. Conservation in 
this scheme relies on the fact that the 2nd order correction (the term in (r-r0).∇f0 in 
App A.1) vanishes upon integrating over a complete source cell. Some 
destination cells will see an excess over the 1st order value arising from this term, 
but others will see a deficit, so that overall no flux is gained or lost – it’s still 
conservative.  But of course if some of the overlying destination cells are 
masked, then this zero sum budget will not be respected. See Figure 4.  
 

                              



 

 
 
Fig 4: Impact of masking on 1st and 2nd order conservative interpolation. See text 
for details. 
 
The top panel shows the results of 1st order interpolation, as just discussed, with 
the assumed piecewise constant source field. The middle panel shows the 
results of 2nd order interpolation, with the assumed piecewise linear source field. 
Note that the flux in the 4th ocean gridcell is greater than it is for 1st order 
interpolation (110 cf 100), because the average of the linearly increasing source 
flux over this destination cell is greater than the average over the whole of the 
source cell. (In other words, matrix element w3

4,3 > 0.) The same is true for the 
contribution from the 2nd atmosphere gridcell to the 3rd ocean gridcell (ie w3

3,2 > 
0), although this is moderated by the smaller than average contribution from the 
3rd atmosphere gridcell (ie w3

3,3 < 0). Note, however, that the total contribution 
from atmos gridcell 3 is the same as for 1st order interpolation, because the 
integral of the linear correction over the whole gridcell is zero (ie w3

4,3 + w3
3,3 = 

0). But for atmosphere gridcell 2 this is no longer the case, because its (smaller 
than average) contribution to ocean gridcell 2 is not applied, because the latter is 
masked out. Therefore, the integrated flux on the ocean grid is greater than that 
on the atmosphere grid (124/3 cf 118/3).  
 
An obvious solution is to revert to 1st order interpolation in the vicinity of coasts 
by nullifying the 2nd order weights, as illustrated in the bottom panel of Fig 4. To 
be specific, w3 (and w2 in general) must be set to zero for all links (ie non-zero 

                              



 

remapping weights) starting on any partially masked source cell. In other words, 
the whole column must be set to zero if any of its non-zero elements apply to a 
masked destination cell. When this is done, conservation is restored, at the 
expense of some degradation in the accuracy of the solution near the coasts. 
 
 
At the risk of labouring the point: 
 

Source:  
0 0 0

1/ 2 ; 36 ; / 144 ; 118 / 3.
1 100 240

f f x fdaα α
⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = ∂ ∂ = ⇒ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∫

 

1st order:  1 (1) 1 (1)

1 0 0 0
0

1/ 3 2 / 3 0 24 0
36 118 / 3.

0 2 / 3 1/ 3 172 / 3
100

0 0 1 100

w F w F d

⎛ ⎞ ⎛ ⎞
⎛ ⎞⎜ ⎟ ⎜ ⎟→⎜ ⎟⎜ ⎟ ⎜ ⎟= ⇒ = = ⇒⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠

⎝ ⎠ ⎝ ⎠

∫ A =

(2)F dA =

A

2nd order: 
 

3 (2) 3 (1)

1/ 24 0 0 0
0

1/ 24 1/18 0 8 0
144 124 / 3.

0 1/18 1/ 24 2
240

0 0 1/ 24 10

w F w F

−⎛ ⎞ ⎛ ⎞
⎛ ⎞⎜ ⎟ ⎜ ⎟− − →⎜ ⎟⎜ ⎟ ⎜ ⎟= ⇒ = = ⇒ +⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠

⎝ ⎠ ⎝ ⎠

∫

 
 
2nd order (revised, alterations in red): 
 

3 (2) 3 (1) (2)

0 0 0
0

0 0
144 118 / 3.

0 1/

0
0 0

0 24 10
240

0 0 1/ 24 10

w F w F F d

⎛ ⎞ ⎛ ⎞
⎛ ⎞⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟= ⇒ = = ⇒ + =⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠

⎝ ⎠ ⎝ ⎠

∫  

 
It may be possible to bypass this difficulty if 2nd order interpolation were used to 
calculate sea-fractions etc – but this is not past practice, and it could have 
downstream implications for coastal tiling, ancillary file generation etc. In 
addition, we may wish to use 1st order interpolation for some fields (eg river 
runoff). It hardly seems sensible to have two sea-fractions, one for each 
interpolation scheme.  For the moment, nullifying the 2nd order weights in the 
vicinity of coasts seems to be the simplest solution. 
  
Unless otherwise stated, the 2nd order remapping weights used hereafter have 
been modified in this way. 
 
 

                              



 

2.2.2 4x1 ocean to 3x1 atmos 
 
Coastal masking issues do not arise when mapping from ocean to atmosphere 
(because all masked atmosphere model points are fully covered by masked 
ocean points), but a complementary problem does: normalisation. 
 
SCRIP allows two normalisation options for AI in eqn 4: 

• DESTAREA, in which AI is the total area of destination cell I; and 
• FRACAREA, in which AI is the unmasked area of destination cell I. 

 
(In fact, there’s a third option, NONE, in which AI≡1, which we will ignore in this 
report.) 
As stated above, the difference only matters when mapping from ocean to 
atmosphere, since when going from atmosphere to ocean the unmasked 
destination cells overlay completely unmasked atmosphere cells. But when 
remapping from ocean to atmosphere, DESTAREA conserves fluxes exactly at 
the cost of reducing the fields where the destination (ie atmosphere) cells are 
partially masked (ie, coastal points). FRACAREA gives more “realistic” fields near 
the coasts, but only conserves fluxes if account is taken of the sea-fraction α, as 
when remapping in the other direction. Figure 5 should clarify; if not, App A.3 
provides some theoretical support. 
 
 

 
 

                              



 

Fig 5: Comparison of DESTAREA and FRACAREA normalisations in SCRIP 
 
FRACAREA, and its consequent dependence on use of the sea-fraction, is closer 
to what is done in the “transo2a” code used to remap fields (using area-
averaging) from ocean to atmosphere in HadGEM1 and 2.  
 
 
2.3 2D toy problem: 3x4 atmosphere to and from 4x6 ocean 
 
To see how these ideas come together in a slightly more realistic scenario, we 
consider remapping the simple function cos(λ+φ) between the following two 
global grids: 
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White gridcells denote missing data regions (“continents”).  
 
Again, atmosphere-to-ocean and ocean-to-atmosphere need separate treatment. 
 
 
2.3.1 3x4 atmosphere to 4x6 ocean 
 
Figure 6 displays the remapping matrices w1-w3 for this problem. (Source and 
destination addresses are labelled above.) 
 
These results tally with eqns A.3a-A.3c of App A.  For example, w1 ≥ 0, and is 
large when the destination cell is largely covered by the given source cell (eg 
w1

11 = 1). And the super/sub diagonal elements of w2 are (from eqn A.3b) the 
differences of φ, from its mean value, over the southern/northern parts of the 
source cell, and are therefore negative/positive so that (if ∂f/∂φ > 0) the 
“meridional” second order correction w2 ∂f/∂φ is negative/positive. Similarly for w3 
in the zonal direction. 
 
 

                              



 

                              

 



 

 
Fig 6: Conservative remapping matrices w1-w3 for 3x4 atmosphere to 4x6 ocean 
problem.  
 
Figure 7 shows the new values of w2 and w3 which result from making the coastal 
masking adjustment described in Sec 2.2.1.  (w1 is of course unaffected.) 
 
 

 
 
Fig 7: Revised conservative remapping matrices w2-w3 for 3x4 atmosphere to 
4x6 ocean problem.  
 
The impact of the coastal adjustment is striking: all of the 2nd order weights from 
source cells 4-12 are nullified. This is because these cells are precisely those 
that (partially) overlap the masked ocean gridcells.  Only those ocean cells that 
overlap the fully uncovered bottom row of atmosphere cells (ie ocean cells 1-8) 

                              



 

retain any 2nd accuracy. In other words, w2 and w3 are zero in any columns 
corresponding to an atmosphere gridcell having a sea-fraction less than unity.  
 
For higher resolution grids, the impact of the coastal masking is less widespread.  
 
What happens when these (and other) interpolation schemes are used to remap 
the test function cos(λ+φ) from atmosphere to ocean? The results are shown in 
Figure 8. 
 

                              



 

 
 

                              



 

Fig 8: Results of remapping cos(λ+φ) from 3x4 atmosphere grid to 4x6 ocean 
grid.  
 
 
Table 1 lists some statistics of the fields. 

Table 1: Statistics of the fields in Fig 8 
Grid/method Min Total Max 

Atmos -0.991445 -5.55400e+13 0.923880 
Atmos (*seafrac)† -0.991445 -7.49872e+13 0.608761 
Ocean (1st cons) -0.991445 -7.49872e+13 0.608761 
Ocean (2nd  cons) -1.046075 -10.87660e+13 0.874267 
Ocean (2nd cons´) -0.991445 -7.49872e+13 0.685802 
Ocean (bilinear) -0.750960 -7.61081e+13 0.497970 

Ocean (transa2o) -1.444833 -7.49872e+13 0.885116 
 

Table 1: Statistics of the fields shown in Fig 8. Undesirable properties are in red. 
† Not shown in Fig 8. 
 
 
Several points stand out: 

• 1st order conservative conserves flux exactly (after multiplying input by 
sea-fraction). 

• 2nd order suffers from overshoots, and it doesn’t conserve unless coastal 
masking is applied (labelled 2nd cons’). It then reduces to 1st order 
everywhere but the bottom two ocean rows (Fig 7). In this case, this is 
enough to wipe out the overshoots, but this wouldn’t be true in general – 
they’re different issues. 

• Bilinear doesn’t respect gradients in the source data very well. This is 
because the correlation scale of the input field is not much larger than the 
input gridcell size, so bilinear interpolation mixes up very different input 
values. It doesn’t conserve, of course. 

• The transa2o algorithm, which starts from the bilinear approximation, does 
conserve.  Because it’s using the “P-E” correction, it has generated some 
overshoots – which are rather larger than those of 2nd order SCRIP.  

 
We will see that the same features appear when dealing with high resolution 
coupled model fields. 
 
 
2.3.2: 4x6 ocean to 3x4 atmosphere 
 
We now consider the reverse mapping, from ocean to atmosphere.  
 
The “DESTAREA” remapping matrices for this problem are shown in Figure 9. 
Note that: 
 

                              



 

• The 1st order weights are generally smaller than they are for atmosphere 
to ocean. This is because less of each target gridcell is covered by any 
single source gridcell – in fact, they’re never fully covered, which is why 
the maximum of w1 is less than 1. 

• There can be no effect of coastal masking since there are no matrix 
elements connecting the (one) masked output cell to any source cells 
(because of the relative arrangement of atmosphere and ocean gridcells in 
coupled models). 

• The 2nd order weights w2 and w3 have the same patterns as before, but 
are smaller. 

 

                              



 

                              



 

  
 
Fig 9: DESTAREA conservative remapping matrices w1-w3 for 4x6 ocean to 3x4 
atmosphere problem.  
Although there is no impact of coastal masking when mapping in this direction, 
recall that the FRACAREA vs DESTAREA distinction is now important. Hence, 
Figure 10 shows the “FRACAREA” remapping matrices.  

 

                              



 

 
 
Fig 10: FRACAREA conservative remapping matrices w1-w3 for 4x6 ocean to 
3x4 atmosphere problem.  

                              



 

This shows that the only effect of using FRACAREA rather than DESTAREA is a 
rescaling of all matrix elements w1-3

Ii associated with a particular destination cell 
(ie all elements in a given row) by the same amount, namely the reciprocal of the 
sea-fraction in that cell. This follows from the definition in Sec 2.2.2. 
 
The results of remapping cos(λ+φ) from 4x6 ocean grid to the 3x4 atmosphere 
grid are shown in Figure 11, and some statistics are listed in Table 2. 
 
 

Table 2: Statistics of the fields in Fig 11 
Grid/method Min Total Max 

Ocean -1.000000 -1.10440e+14 1.000000 
Atmos (bilinear) -0.839402 -1.12940e+14 0.500000 

Atmos (1st cons DEST) -0.761215 -1.10440e+14 0.406211 
Atmos (2nd  cons 

DEST) 
-0.842137 -1.10440e+14 0.475907 

Atmos (1st cons 
FRAC) 

-0.905265 -1.18790e+14 0.500000 

Atmos (1st cons 
FRAC) *seafrac†

-0.761215 -1.10440e+14 0.406211 

Atmos (2nd cons 
FRAC) 

-0.905266 -1.12660e+14 0.660071 

Atmos (2nd cons 
FRAC) * seafrac†

-0.842137 -1.10440e+14 0.475907 

 
Table 2: Statistics of the fields shown in Fig 11. Undesirable properties are in 
red. † Not shown in Fig 11. 
 
 
Points of interest: 
 

• Traditionally, the problem of mapping ocean to atmosphere has been 
considered one of high to low resolution (as it is with regular grids). It has 
therefore been treated by area-averaging, ie 1st order remapping, or even 
just bilinear interpolation. 

• No overshooting problems arise in this case – probably because the 
averaging implicit in the remapping to a coarser grid is washing out 
excesses derived from extrapolating source data. 

• FRACAREA uses the same “unmasked normalisation” as we are used to 
(eg compare the small (<0.2) fluxes assigned to atmos gridcell 5 by the 
DESTAREA schemes, compared to the 0.5 or greater generated by the 
FRACAREA scheme). It is therefore probably to be preferred. However, 
Table 2 (and Fig 5) makes clear, it is only conservative if the resulting 
atmosphere field is multiplied by the sea-fraction.  

• The two (1st and 2nd order) FRACAREA output fields have different total 
fluxes through them, unlike 1st and 2nd order DESTAREA. This is because 
the piecewise linear 2nd order corrections to the source flux only integrate 

                              



 

to zero over the entire source cell. In this case of FRACAREA, the parts of 
the source cell under separate destination cells are normalised in different 
ways, and so the target grid sees a weighted sum of the overlap integrals 
over the source grid, which therefore does not equal zero. When these 
weights are undone, by multiplying by the sea-fraction, the 2nd order 
contributions integrate to zero, and the 1st and 2nd order schemes give the 
same total flux (which equals that of the input ocean field, and of the 1st 
and 2nd order DESTAREA schemes). 

 

                              



  

                              

 

                              



 

 
 
Fig 11: Results of remapping cos(λ+φ) from 4x6 ocean grid  to 3x4 atmosphere 
grid.  
2.4 2D real model grids 
 
We now extend the study of test examples to high resolution atmosphere and 
ocean grids used in existing GCMs. We use two test functions: 
 

• The “speedbump”:  f = max(0, sin(2λ+2φ)). This allows various 
interpolation schemes’ preservation of positivity to be examined.  

• The “delta function”: fjj = δi-i0 j-j0. This is a severe test of the interpolation 
schemes’ handling of gradients in the source.  

 
 
2.4.1 HadGAM1 to HadGOM1 
 
2.4.1.a Speedbump 
 
We map the speedbump from N96 HadGAM1 to HadGOM1 (the ocean model 
component of HadGEM1-AO). This ocean grid is regular in latitude and 
longitude, which means it is susceptible to interpolation by transa2o, so we can 
compare its results with those of SCRIP.  
 
Fig 12 compares the results of remapping by transa2o, and 1st and 2nd order 
SCRIP, and of their differences with respect to the exact solution. In all three 
cases the integrated flux is the same as that of the original field. Overall, 
transa2o and 2nd order SCRIP are closer to the exact solution (standard deviation 
of difference ~2e-3) than 1st order SCRIP (sd ~5e-3). 2nd order SCRIP does, 
however, suffer undershoot near the edge of the speedbump, as can be seen in 
the Fig 12. If we simply set those negative values to zero, to maintain positivity, 
the resulting field fails to conserve fluxes by less than 0.01%. 
 
Second order SCRIP overshoots at the high end of the filed range too: its 
maximum value is 1.0004. First order SCRIP is completely bounded by 0 and 1. 
Interestingly – and this isn’t clear from the picture – transa2o also overshoots at 
the upper end: its maximum value is 1.001. This doesn’t seem to cause problems 
in practice (eg HadGEM1 or HadGEM2), but if f were the sea-ice fraction, it could 
have severe consequences.  
 
Second order SCRIP is slightly better than transa2o near the coasts. 
 

                              



  

                              

 
 

                              



 

Fig 12: Results of remapping max(0,sin(2λ +2φ)) from HadGAM1 atmosphere 
nd 
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2.4.2 HadGAM1 to HadORCA1 
 
2
 
W
component of HadGEM3-AO). This ocean grid is not regular in latitude and 
longitude, which means that transa2o is not available for interpolation. For 
comparison, therefore, we show the results of bilinear interpolation (the 
“predictor” step of transa2o) which is available from SCRIP. We again co
the results of all three schemes with the analytical solution on the irregular grid. 
 

ndT
order SCRIP is better than 1st order, but again it undershoots and overshoots. 
(Bilinear itself doesn’t overshoot: it’s the corrections applied to ensure 
conservation that cause that.) 
 
F
(difference in integrated flux < 0.0006%): this is probably due to the smoo
nature of the input field.  
 
O
 
 
2
 
A
input, in which the source is zero everywhere except for one gridcell, where it is 
unity. In this case the non-zero source cell is the highlighted blue HadGAM1 
gridcell in Fig 2a. The results of interpolating this to the red HadORCA1 grid b
bilinear, 1st and 2nd order conservative schemes are shown in Fig 14a. 
 
B
target cell is close to that of the only non-zero source cell. Both conservative 
interpolation methods are compromised (highly diluted) by their integration ov
the many overlapping source cells where the field is zero, as is clear from Fig 2a
 
T
hemisphere, where both grids are regular. In that case, the ocean gridcells are
smaller than the atmosphere ones, often falling entirely within them, which 
means that conservative interpolation schemes (1st or 2nd order) reflect the 
“blockiness” of the input delta function, while the bilinear scheme smears ou
source cell discontinuity, because it can be one of the four nearest neighbours of 
many ocean cells. This is apparent from Fig 14b, which shows the results of 
interpolating a delta function centred on the equator. Conservative interpolatio

                              



 

clearly better here, and, if it is important to maintain positivity, 1st order is to be 
preferred.  
 
In the high Arctic, however, atmosphere-to-ocean remapping is rather more like 
the interpolation from ocean-to-atmosphere in the regular regions of the grid. 
(Compare the bottom panel of Fig 14a with Fig 16b, which shows the result of 
remapping a tropically situated delta function in this sense.) At very high 
latitudes, then, it appears that the atmosphere model can be considered to have 
the fine mesh.  
 
Overall, bilinear is best here. 

                              



 

 
 

                              



 

 
Fig 13: Results of remapping max(0,sin(2λ +2φ)) from HadGAM1 atmosphere 
grid to HadORCA1 ocean grid. The results of remapping by bilinear, and 1st and 
2nd order SCRIP, and of their differences wrt the exact solution, are shown. 

                              



  

                              

 

                              



 

 
Fig 14a: Maps and cross-sections of the results of interpolating a delta function 
source centred on the dark blue HadGAM1 gridcell of Fig 2a. (The “exact” 
solution in the cross-sections is a nominal value.) 

                              



  

                              

 

                              



 

 
Fig 14b: Maps and cross-sections of the results of interpolating a delta function 
source in a HadGAM1 gridcell at (90E, 0N). (The “exact” solution in the cross-
sections is a nominal value.) 
2.4.3 HadORCA1 to HadGAM1 
 
2.4.3.a Speedbump 
 
The results of interpolating the speedbump from the HadGEM3 ocean to 
atmosphere grids are shown in Fig 154. Apart from being smaller in magnitude 
overall, the errors in the right hand column tell the same story as when going 
from HadGAM1 to HadORCA1 (Fig 13): bilinear has a small, systematic error, 1st 
order conservative has a large error, 2nd order conservative has a smaller one, 
but does not maintain positivity.  
 
Overall, bilinear is best here.  
 
 
2.4.3.b  Delta function 
 
The delta function test is again more instructive.  The results of interpolating a 
delta function source concentrated in the highlighted red ORCA1 gridcell of Fig 
2a, are shown in Fig 16a. In the N-S direction, we have the familiar fine-to-coarse 
remapping, for which bilinear is marginally better. In the E-W direction, however, 
it’s a coarse-to-fine remapping, and bilinear is much too diffusive. This is like the 
situation when remapping in the reverse direction, from HadGAM1 to 
HadORCA1, where both grids are regular.  (Compare the bottom panel of Fig 
16a with Fig 14b, which shows the results of mapping a delta function on the 
equator from atmosphere to ocean.)  In other words, in the E-W direction in the 
high Arctic, the ocean grid is the coarse one. 
 
Overall, 1st order conservative is probably best here.  
 
Note that for a delta function source in the tropics (see Fig 16b), where the ocean 
grid is much finer than the atmosphere, 1st and 2nd order conservative remapping 
are similar, and much worse than bilinear interpolation.  
 
 
These somewhat inconclusive findings have prompted the study of further 
idealised tests, which, to avoid trying the reader’s patience further, will not be 
discussed here. The overall conclusion is that they do not strongly favour one 
interpolation scheme over another. We are therefore led to a more pragmatic 
study of interpolation, using real fields passed between real, high resolution GCM 
atmosphere and ocean grids.  
                                                 
4 The derivatives ∂f/∂λ and ∂f/∂φ that are needed to use the 2nd order conservative interpolation 
scheme (see eqn 1) are calculated by writing ∂f/∂i and ∂f/∂j (which are known) in terms of ∂f/∂λ 
and ∂f/∂λ through a matrix with elements like ∂λ/∂i (which are known), and then inverting. In other 
words we follow the rules for a covariant transformation between (i,j) and (λ,φ) coordinates.  

                              



 

 
 
 
 
 
 

                              



 

 
 

                              



 

 
Fig 15: Results of remapping max(0,sin(2λ+2φ)) from HadORCA1 ocean grid to 
HadGAM1 atmosphere grid. The results of remapping by bilinear, and 1st and 2nd 
order SCRIP, and of their differences wrt the exact solution are shown. 

                              



  

                              

 

                              



 

 
Fig 16a: Maps and cross-sections of the results of interpolating a delta function 
source centred on the dark red HadORCA1 gridcell of Fig 2a. (The “exact” 
solution in the cross-sections is a nominal value.) 
 
 

                              



 

 
 

                              



 

Fig 16b: Maps and cross-sections of the results of interpolating a delta function 
source in a HadORCA1 gridcell at (90E, 0N). (The “exact” solution in the cross-
sections is a nominal value.) 
3. Practical example: HadGEM3-AO 
 
Finally – and we acknowledge it’s been a long time coming – we apply all the 
preceding ideas to a practical problem: that of interpolating fields between the 
N96 HadGAM1 atmosphere model and the HadORCA1 ocean model, which lie 
at the heart of the HadGEM3-AO coupled GCM. The sea-ice component of this 
model is the ORCA1 configuration of the CICE model, so, apart from some 
technicalities concerning the mapping of velocities between NEMO’s C-grid and 
CICE’s B-grid (which won’t be discussed here), the ocean-to-sea ice remapping 
is straightforward.  
 
 
3.1 HadGAM1 to ORCA1 
 
Fig 17 shows the results of interpolating an example positive field (surface SW 
down) from N96 HadGAM1 to the ORCA1 grid. Since the output fields look very 
similar, only the differences are plotted. These, and the statistics in Table 3, 
show that: 
 

1. Bilinear interpolation fails to conserve the flux exactly. 
2. Bilinear is generally closer to 2nd order SCRIP than it is to 1st order. 
3. 2nd order interpolation undershoots the minimum of the input field, giving, 

in this case, negative SW down at the surface. Zeroing these values out 
violates conservation (obviously), but only very slightly (1 part in 106). 

4. Only 1st order conservative remapping conserves integrated fluxes and 
stays within the range of the input field. 

 
 

Table 3: Statistics of Fig 17 
Grid Min Total Max 

HadGAM1 1.9401133759e-03  3.2685585886e+16     1.4028228760e+02
HadORCA1 
(Bilinear) 

2.9598724842e-01    3.2687091272e+16      1.3597830200e+02

HadORCA1 
(1st order) 

7.2713509202e-02    3.2685585886e+16      1.3570767212e+02

HadORCA1 
(2nd order) 

-3.2710268497e+00 3.2685585886e+16     1.3570767212e+02

HadORCA1 
(2nd order, 
truncated) †

0.0000000000e+00     3.2685605213e+16    1.3570767212e+02

 
Table 3: Statistics of the fields shown in Fig 17. HadGAM1 total understood to be 
calculated after multiplying by seafrac. Undesirable properties are shown in red. 
†Not shown in Fig 17. 
 

                              



 

 

 
 
Fig 17: Results of remapping downwelling SW radiation from HadGAM1 
atmosphere grid to HadORCA1 ocean grid. Differences in the results of 
remapping by bilinear, and 1st and 2nd order SCRIP are shown. 
 
 
The small impact of “topping and tailing” the 2nd order SCRIP results suggests 
that this might be a suitable way of proceeding until flux limiters or “transa2o” 
emulators are incorporated in SCRIP. To this end, we have interpolated all the 
fields that will be passed from the atmosphere to the ocean in HadGEM3-AO, 
and examined the impact of trimming the output in general. The results are given 
in Fig 18, which compares the minimum, maximum and integrated total of the 
variously interpolated output fields with those of the input, for a set of fields. On 
this (stretched) plot, the input has a minimum of -1, a total of 0 and a maximum of 
1.  
 
For most fields, the fractional error resulting from topping and tailing the 2nd order 
SCRIP results is less than 10-3, and often less than 10-4. This therefore seems a 
safe method to use when interpolating fields conservatively from HadGAM1 to 
HadORCA1. (It is always much closer than bilinear.) 
 
The only field for which this is not true is the river runoff field. However, the 
extremely localised nature of this field means that we would probably prefer to 

                              



 

use 1st order interpolation on it anyway. The same is arguably true of topmelt.  
(The plotted statistics are actually for the sum of the topmelts over all (5) 
categories. We may expect the category topmelts to have finer scale structure, 
and to therefore be more susceptible to interpolation errors. And if category 
topmelts are remapped with 1st order SCRIP, category botmelts (penultimate field 
of plot) probably should be too, for consistency. 

 
 
Fig 18: Summary of results of remapping required atmosphere fields from 
HadGAM1 to HadORCA1. The results of remapping by bilinear, and 1st and 2nd 
order conservative interpolation are shown. “conserv3” means “conserv2” with 
negative values set to zero.  
 
 
 
3.2 ORCA1 to HadGAM1 
 
Recall that in mapping from ocean to atmosphere, the distinction between 
DESTAREA and FRACAREA is important, and that we prefer FRACAREA as it 
extrapolates “without dilution” near the coasts.  
 
Recall from Fig 2a, and the discussion in Sec 2.4.3.b, that HadORCA1-to-
HadGAM1 remapping is not necessarily the simple fine-to-coarse interpolation 
that can be handled by area-averaging (as it is in transo2a).   
 

                              



 

One of the fields that needs mapping from ocean to atmosphere is the category-
by-category ice fields. Although strictly these do not need to be mapped 
conservatively, there would be no harm in doing so if it could be done with 
sufficient accuracy. 
 
The results of remapping category 1 ice areas from ORCA1 to HadGAM1 are 
shown in Fig 19 and detailed in Table 4.  In this case, the undershoot effected by 
2nd order SCRIP needs amending.  Simply setting negative values to zero 
doesn’t drastically violate conservation (the totals still agree to within 1 part in 
104), which doesn’t need to hold exactly for these fields anyway. Interestingly, in 
this case the two SCRIP values are nearer each other than either is to the 
bilinear result, which suggests that the “fine-to-coarse grid” argument for area 
averaging still holds to some extent. 

 
 
Fig 19: Results of remapping category 1 ice area from the HadORCA1 ocean 
grid to the HadGAM1 atmosphere grid. The results of remapping by bilinear, and 
1st and 2nd order SCRIP are shown. 
 
 

Table 4: Statistics of Fig 19 
Grid Min Total Max 

HadORCA1 0.0000000000e+00 6.1109672346e+12 6.0528779030e-
01 

HadGAM1 0.0000000000e+00 6.1199619195e+12 5.9619092941e-

                              



 

(Bilinear) 01 
HadGAM1 (1st 

order) 
0.0000000000e+00 6.1109672346e+12 5.9291255474e-

01 
HadGAM1 (2nd 

order) 
-1.2267022394e-03 6.1109672346e+12 6.0049217939e-

01 
HadGAM1 (2nd 

order, 
truncated) †

0.0000000000e+00 6.1112382915e+12  6.0049217939e-
01 

 
Table 4: Statistics of the fields shown in Fig 19. HadGAM1 totals understood to 
be calculated after multiplication by sea-fraction. Undesirable properties are 
shown in red. †Not shown in Fig 19. 
 
As before, we have made a similar analysis for all the fields that need to be 
transferred from ocean to atmosphere in HadGEM3-AO. The results are shown 
in Fig 20, which again makes it clear that truncating the NEMO fields has little 
overall impact on the conservation (which is of arguable importance in going from 
ocean to atmosphere). 1st and 2nd order conservative interpolation are equally 
acceptable, and tie in with what we currently do in transo2a.  
 

 
 
Fig 20: Summary of results of remapping required atmosphere fields from 
HadORCA1 to HadGAM1. The results of remapping by bilinear, and 1st and 2nd 

                              



 

order conservative are shown. “conserv3” means “conserv2” with negative values 
set to zero.  
 
 
3.3 Recommendations 
 
The preceding results lead us to the construction of Table 5, which lists some 
recommended methods for interpolating fields between atmosphere and ocean in 
a HadGEM3-AO-type coupled model.   
 
 

Table 5: Recommended interpolation methods for HadGEM3-AO 
Atmosphere to ocean Ocean to atmosphere 

Wind stress:  
Bilinear 

Currents:  
Bilinear 

RUNOFF, TOPMELT and BOTMELT:  
1st order conservative (DESTAREA) 

 

Other scalars: 2nd order conservative 
(DESTAREA), truncated if necessary. 

Scalars: 2nd order conservative 
(FRACAREA), truncated if necessary. 

  
The remapping of vector fields has not been discussed in this report. This can be 
done via SCRIP, but the required rotations involve considerably more effort. 
Since vectors are interpolated bilinearly in our current coupling codes (transa2o 
and transo2a), we simply suggest doing the same for HadGEM3-AO, and 
postpone any further discussion of this point.  
 
3.4 Coupled model results 
 
As an example of these ideas in practice, Fig 21 shows the global atmosphere 
and ocean heat budgets of a typical proto-HadGEM3-AO coupled model. It can 
be seen that the heat fluxes across the coupler are conserved to an accuracy of 
about 10-3 W/m2.  A steady heat flux imbalance of this magnitude would lead to a 
mean ocean temperature trend of 0.3mK per century – far smaller than would be 
expected to arise in a climate change simulation. In other words, heat fluxes are 
being conserved well enough. 
 
 

                              



 

 
 
Fig 21: Global mean heat budgets for the first 40 years of a coupled HadGEM3-
AO run. The difference between the red and blue curves is the non-conservation 
of heat across the coupler.

                              



 

4. Summary and suggestions for further work 
 
This report has explored the theory and practice of conservative interpolation of 
fluxes between the atmosphere and ocean components of a General Circulation 
Model. No very strong assumptions about the regularity of the two grids have 
been made.  This means that the results can be applied to HadGEM3-AO, the 
next generation Hadley Centre GCM, whose ocean component (NEMO) is 
modelled on a tripolar grid.  
 
Important features of the general theory, such as the place of normalisation and 
masking, and the differences between 1st and 2nd order conservative remapping, 
have been explained by appeal to simple test problems at low and high 
resolution. The interpolation of actual model fields has then been examined, and 
recommendations for the interpolation of all the fields in HadGEM3-AO have 
been made. 
 
The practical implementation of these ideas is straightforward. The interpolation 
tool SCRIP takes source and target grids, and generates remapping matrices 
which can then be used to carry out the interpolation between the two. Files 
containing these matrices can be used directly by OASIS, the coupler employed 
in HadGEM3-AO, which means that we can be confident that the fluxes in the 
GCM are being interpolated as expected. Calculations of heat and freshwater 
budgets from coupled model integrations confirm that fluxes are indeed being 
conserved across the coupler. 
 
Further work that could be done in this area, suggested by this study, includes: 
 

• Incorporation of the transa2o-type predictor-corrector methods within 
SCRIP; 

• Possible use of flux limiters to make 2nd order interpolation positivity-
maintaining; 

• Further analysis of the interpolation of vector fields (including wind stress); 
• More accurate treatment of gridcell areas in SCRIP. 

 
These matters may be the subject of future reports. In the present one, we have 
shown that the SCRIP remapping code, and the use of its remapping files in 
OASIS, allows us to interpolate fluxes conservatively between the N96 
HadGAM1 atmosphere and HadORCA1 ocean components of the HadGEM3-AO 
coupled GCM.  
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Appendix A: Some technical details of remapping 
 
This appendix records some more abstract, general remarks about remapping. 
The aim is to show the place of normalisation, masking and composition of maps 
in a general formalism of linear transformations between vector spaces.  
 
 
A.1 General formalism 
 
In general then, we consider remapping a flux f from a source grid g, having 
gridcell areas ai, (i=1,n) to a target grid G, having gridcell areas AI, (I=1,N) where 
it has the value F. 
 
Let us adopt at the outset the principle that data are masked but grids are not. 
(SCRIP allows one to incorporate masking of grids during the calculation of the 
remapping weights. This can lead to confusion.) The question of masking can 
therefore be postponed to Section A.3. 
 
We therefore seek a mapping from {fi} to {FI} which conserves fluxes, so that ∫R FI 
dS =  
∫R fi ds over any region R. By taking this to be gridcell I of the target grid, we 
obtain 
 

1 ( .1)
I i

iI I A a
i

F A f ds−= ∑ ∫ I
A

0

 

 
A first order Taylor expansion of f about the centroid of the cell, f = f0 + (r-
r0).gradf0, as described by Jones (1999) results in 
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Eqn (A.2) can be written in matrix form as 
 

( .4)A1 2 3F = w f + w df dφ + w df dλ  
 
which emphasises the linear nature of the remapping procedure.  
 
For most pairs of gridcells AI�ai = ∅, and therefore the corresponding element of 
the matrices w1-3

Ii  is zero. In other words, the matrices w1-3 are sparse. This is 
essential for the practical implementation of this formulation, as w1-3 are of order 
N x n, which is 105 x 105 even for modest resolution GCM component models. 
This makes storing the full matrices impractical. SCRIP exploits the sparseness 
of the remapping matrices by simply storing {i(L),I(L),w1-3 I(L)i(L)} where the link L 
runs over the non-zero weights. The number of non-zero weights is O(max(N, 
n)), and storing the links therefore uses O(1/min(N, n)) as much space as storing 
the full matrix.  
 
The area integrals in eqns A.3 above are converted to line integrals by means of 
Gauss’ Theorem. This idea is due to Dukowicz and Kodis [1987], and makes 
practical the evaluation of the matrix elements.  It does, however, introduce an 
error when implemented in SCRIP, because the line integrals along the 
segments of the overlap region AI�ai are calculated using the end points only, by 
means of the trapezoidal rule. Thus, for example, the line element for the matrix 
element w1, eqn A.3a, is calculated in SCRIP as  
 

sin 1 2(sin sin )( ) ( .5)
B

A B B AA
d Aϕ λ ϕ ϕ λ λ− = − + −∫  

 
This would be correct if the gridcell boundary were linear in (λ, sinϕ) space. This 
is the case for “regular” grids, in which the gridcell boundaries are defined by 
λ=constant or ϕ=constant, but unfortunately not in general, eg for the curvilinear 
grids used in NEMO and CICE. For the ORCA1 (1°, tripolar) configurations of 
such models, the largest error in the estimate of gridcell error incurred by the 
“linear” approximation in SCRIP occurs very near the North Pole, where the 
gridcell boundaries are most different to latitude circles, and is around 50%, as 
shown on Fig 2b. Other measures of gridcell area, which do not suffer these 
failings are possible, but for now we simply accept the infelicity implied by eqn 
(A.5) (and its analogues for w2 and w3). One consequence of this is that we must 
use the areas calculated from eqn A.5 when checking the conservation of fluxes 
using remapping matrices calculated by SCRIP.  

                              



 

 
 
A.2 Some consequences 
 
A.2.1 Row sums 
 
∑i w1

Ii = AI
-1∑i∫AIids = AI

-1 AI = 1, as noted in the 1D toy problem example in Sec 
2.1. Here, AIi is shorthand for AI�ai. 
 
A.2.2 Column sums 
 
∑I w1

Ii = ∑I AI
-1∫ AIids.  If the target grid is of uniform resolution, AI≡Ao say, this 

equals  
Ao

-1 ∑I ∫ AIids = Ao
-1 ai. If in addition the source grid is of uniform resolution, ai≡ao 

say, then ∑I w1
Ii = Ao

-1 ao = constant, as noted in Sec 2.1 (where the constant 
equals 4/3). 
 
Similarly, for a target grid of uniform resolution, the column sum of w2, ∑I w2

Ii =  
Ao

-1 ∑I ∫ AIi(ϕ-ϕ0)ds = 0 by definition of the latitude of the centroid of the cell, ϕ0. 
Likewise ∑I w3

Ii = 0 if the target grid is of uniform resolution. See Sec 2.1 again. 
 
A.2.3 Composition of mappings 
 
The matrix formulation in eqn 3 shows that first order conservative mapping from 
grid A to grid C via grid B is just given by the product of the underlying matrices:  
w1

A->C=w1
B->Cw1

A->B. Putting C=A, we see that if fluxes on grid A are “bounced” off 
grid B, back to A, they are transformed according to the product matrix w1

B->Aw1
A-

>B. For instance, for the toy problem described in Sec 2.1, we have 
 

1 1 1

1 0 0
3 4 1 4 0 0 5 6 1 6 0

1 3 2 3 0
0 1 2 1 2 0 1 6 2 3 1 6

0 2 3 1 3
0 0 1 4 3 4 0 1 6 5 6

0 0 1

A A O A A Ow w w−> −> −>

⎛ ⎞
⎛ ⎞ ⎛⎜ ⎟
⎜ ⎟ ⎜⎜ ⎟= = =⎜ ⎟ ⎜⎜ ⎟⎜ ⎟ ⎜⎜ ⎟⎝ ⎠ ⎝

⎝ ⎠

⎞
⎟
⎟
⎟
⎠

 
Note that w1

A->A ≠ idA, the identity operator on A. This is to be expected if the 
gridcells of one grid do not lie wholly within those of the other, as flux from a 
source gridcell will be spread over a wider area before being mapped back.  
 
A.2.4 Reverse mappings 
 
Although w1

G->g may not be the inverse of w1
g->G, there is still some relation 

between these two matrices. For, from the definition (eqn A.3a in Sec A.1),  
 
(w1

g->G)Ii = area(AI∩ai)/area(AI)  and (w1
G->g)iI = area(AI∩ai)/area(ai), and therefore  

 

                              



 

(w1
g->G)Ii = (w1

G->g)iI area(ai)/area(AI). If, further, grids g and G have uniform 
gridcell areas a0 and A0 respectively, then we see that each matrix is proportional 
to the transpose of the other: 
 

1 0 0 1( )( T
g G G ga Aw w−> −>= )  

 
This can be seen in the examples in Sec A.2.3 above, for which g=A, G=O and 
a0/A0 = 4/3. 
 
A.2.5 Coastal adjustment 
 
This formalism allows us to express the coastal adjustment algorithm described 
in Sec 2.2.1 as 

1 1
2 3

( ({0}))
0

OIL M
w − −

− ≡  

 
Here, MO is the ocean model mask (1/0 for sea/land), and therefore M-1

O({0}) is 
the set of indices of land points on the ocean grid. L labels the links from i to I, 
and therefore L-1 of M-1

O({0}) is the set of indices of atmosphere gridcells that are 
linked to land points in the ocean model. By zeroing out w2 and w3 for all the links 
from these (coastal) cells, we revert to 1st order interpolation in precisely those 
cells where it is needed to retain conservative mapping (see Fig 4).  The same 
condition can be written as 
 

1
2 3

([0,1))
0

I
w

α −
− ≡  

where α is the sea-fraction. This expression states that those links from 
atmosphere gridcells with a sea-fraction less than unity are nullified. 
 
 
A.3 Masking and normalisation 
 
A.3.1 General theory 
 
We now consider the effects of masking the source and destination fields. The 
first is important in determining the flux incident upon the destination grid; the 
second is important when calculating flux budgets.  
 
Remembering that we agreed that grids are masked and that fields are not, we 
need to explicitly account for the masks (=1 (0) where valid (invalid)) when 
defining conservative interpolation over some region R, thus: 
 

R R
MFdS mfds=∫ ∫  

 
Taking R to be destination gridcell AI leads to  
 

                              



 

1

I
I I A
F A mfd−= ∫ s

ds

 

 
unless MI=0 and ∫mfds is not, in which case there’s a an inconsistency. This 
happens whenever source flux falls on masked destination cells. See for 
example the top row of Fig 5. Short of redistributing the flux over valid target 
cells, all that can be done in this case is to account for the masking when 
calculating budgets.  
 
Even if MI is non-zero, the resulting flux as given above can be diluted by the 
absence of source flux over the whole of the destination cell. See for example the 
bottom row of Fig 5. This can be remedied by normalising by the unmasked 
source area, thus: 
 

/
I I

I A A
F mfds m= ∫ ∫  

 
This is just the FRACREA option in SCRIP. 
 
Considerations like these lead to the following generalisations of the basic 
conservative interpolation theory, appropriate for masked grids. DESTAREA and 
FRACAREA normalisations need separate treatment. 
 
 

DESTAREA FRACAREA 
 

mdi 36 100 
↓ 

mdi  mdi 57⅓ 100 
↓ 

mdi 28⅔ 89⅓ 
 
Calculation:  
 

F = ∫mfds / ∫ds, 
 
which implies  
 
FI = ∑i mi fi AIi / ∑i AIi = ∑i mi fi AIi / AI  

 

 where AIi = ∫ AI ∩ai ds as before.  
 
Flux budgets: 
  

∫φmfds = ∫MFdS, 
 
where φ is the open fraction of grid G 
on grid g, ie  

 
mdi 36 100 

↓ 
mdi  mdi 57⅓ 100 

↓ 
mdi 57⅓ 89⅓ 

 
Calculation:  
 

F = ∫mfds / ∫mds, 
 
which implies  
 
FI = ∑i mi fi AIi / ∑i mi AIi  

 

 where AIi = ∫ AI ∩ai ds as before.  
 
Flux budgets: 
  

∫φmfds = ∫ΦMFdS, 
 
where φ is as before, and Φ is the 
open fraction of grid g on grid G,  

                              



 

 
φ = ∫MdS / ∫dS which implies  
 
φi= ∑I MI AIi / ∑I AIi = ∑I MI AIi / ai. 
 
Proof:  
∫φmfds = ∑i φimifiai  
            = ∑i mifi ∑I MI AIi by definition of 
φi
            = ∑I MI ∑i mifiAIi  
            = ∑I MIFIAI by definition of FI
            =∫MFdS. ▌ 
 
 
These can be checked using the 
numbers in the toy model problem 
above. The budget integrals equal 
118/3 in each case.  
The difference in the unmodified 
integrated atmospheric flux is 18/3, 
which is precisely that lost to the ocean 
grid masked cells; multiplying 
appropriately by the open fraction 
accounts for this.  
 

 
ie Φ = ∫mds / ∫ds which implies  
 
ΦI= ∑i mi AIi / ∑i AIi = ∑i mi AIi / AI. 
 
Proof:  
∫φmfds = ∑i φimifiai  
            = ∑i mifi ∑I MI AIi by definition of 
φi 

                  = ∑I MI ∑i mifiAIi 
            = ∑I MIFI ∑i mi AIi by definition of 
FI
            = ∑I MIFI ΦI AI by definition of ΦI
            = ∫ΦMFdS. ▌
 
Note the pleasing symmetry in the flux 
budget integrals: the flux on each grid 
needs to be multiplied by the open 
fraction of the other grid. As for 
DESTAREA, the budget integrals in the 
toy problem above are all 118/3. Note 
that in this case we appear to have 
gained some (unmodified) flux on the 
atmosphere grid; again, proper 
budgeting accounts for this. 

The following special cases can be derived. 
 
A.3.2 Target mask covers source mask 
 
Here, masked source cells are fully overlain by masked target cells. The source 
mask is therefore not relevant to the remapping, since all valid target cells are 
wholly covered by valid source cells. This is the situation when mapping from 
atmosphere to ocean in a GCM. In this case, φ=α, the sea-fraction defined in Sec 
2.2, and Φ≡1, because of the way ocean and atmosphere grids are defined in a 
GCM. The above theory and the top panels of Fig 5 make it clear that in this 
case: 
 

• There’s no difference between DESTAREA and FRACAREA in SCRIP 
(because the overlying source cells are unmasked, so Φ≡1);  

• One has to multiply the source flux by the sea-fraction (Sec 2.2) to 
balance the flux budgets: ∫αmAfAdsA = ∫MOFOdSO. This is an unavoidable 
consequence of some of the source flux falling on masked target cells.  

 
A.3.3 Source mask covers target mask 
 
Here, unmasked target cells may be partially overlain by masked source cells. 
The source mask is therefore important, since it determines the amount of flux 
falling on the target cell. This is the situation when mapping from ocean to 

                              



 

atmosphere in a GCM. In this case φ≡1 because of the way ocean and 
atmosphere grids are defined in a GCM, and Φ=α, the sea-fraction defined in 
Sec 2.2. The above theory and the bottom panels of Fig 5 make it clear that in 
this case: 
 

• The DESTAREA option in SCRIP (in which the target fluxes are 
normalised wrt to the total target gridcell area) preserves integrated fluxes, 
at the expense of some dilution of the local flux as a result of partial 
masking of the overlying source cells: ∫mOfOdsO = ∫MAFAdSA; 

• The FRACAREA option in SCRIP (in which the target fluxes are 
normalised wrt to the area of that part of the target gridcell which overlies 
unmasked source cells) preserves local fluxes, at the expense of some 
apparent non-conservation of integrated flux. One needs to multiply the 
target flux by the sea-fraction to balance the flux budgets: ∫mOfOdsO = 
∫αMAFAdSA.   

 
 
All these results are encapsulated in Fig 5. The key thing to remember is that the 
calculated fluxes may need to be modified by an “open fraction” when calculating 
flux budgets. 
 
 
The FRACAREA normalisation is analogous to that applied to the (1st order 
conservative) remapping used in “transo2a”, the ocean-to-atmosphere coupler 
used in HadGEM1 and 2. To interpolate from the atmosphere to the ocean, these 
models use a scheme called “transa2o”, a brief description of which now follows. 
 
 
 
 
 
A.4 The atmosphere-to-ocean HadGEM1&2 remapping scheme: transa2o 
 
For the record, we discuss the transa2o remapping schemes used to 
conservatively map fluxes from the atmosphere to the ocean in HadGEM1 and 
HadGEM2.  As noted in Sec 2.1, this scheme uses a predictor-corrector method 
to adjust a first guess solution, derived by bilinear interpolation, to conserve 
integrated flux. Additive corrections are applied to fields of indeterminate sign; 
multiplicative corrections are applied to fields that are positive or negative 
everywhere. We examine each in turn. 
 
A.4.1 Additive correction 
 
Fig A.1 explains the method as applied to the 3x1 atmosphere to 4x1 ocean toy 
problem described in Sec 2.1. 
 
The idea should be clear: by conservatively mapping the bilinear first guess back 
to the source grid, we derive a difference field which, when mapped 

                              



 

conservatively to the target grid and added to the 1st guess, compensates for the 
lack of conservation in the original bilinear mapping, and thereby guarantees 
�g1dSO = �f0dSA. 
 
Formally, we seek an additive correction to the prediction Bf0 such that the 
integrated flux is conserved. Thus, write g1 = Bf0+ε, where �(Bf0+ε)dSO  = 
�f0dSA. If we write �f0dSA =�Cf0dSO (because C is conservative), this implies �ε 
dSO  = �(C-B)f0dSO, which (weakly) suggests that ε=(C-B)f0. Hence, g1 = Bf0+ε = 
Cf0, ie just the 1st order conservative interpolation (aka area-averaging). But we 
know from Sec 2.1 that this doesn’t respect gradients in the input fields 
particularly well, and can be “blocky” when mapping from atmosphere to ocean. 
So we seek a better method. 
 
Another possible approach is to map the bilinear approximation back to the 
source grid, where it can be differenced from the original field. We have�ε dSO  = 
�f0dSA  - �Bf0dSO =  
�f0dSA  - �cBf0dSA (because c is conservative)  = �(Cf0 - CcBf0)dSO (because C 
is conservative). This suggests ε=(C-CcB)f0, and thus g1= Bf0+ε = (B+C-CcB)f0. 
This is indeed the transa2o method, as Figure A.1 makes plain. Inclusion of the 
contribution from B ensures that gradients in the input field are respected more 
closely (see also Fig 3) than they would be by using C. Note that the fact that Cc 
≠ idO (Sec A.2.3) is crucial to making the two methods different, since g1= 
(C+(idO-Cc)B)f0. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

f0 4 36 100 �f0dSA = 46.6667 

 
↓B 

 
g0 = Bf0 0 24 60 108 �g0dSO = 48.0000 

 
↓c 
 

                              



 

f1 = cBf0 6 42 96 �f0dSA = 48.0000 

 
↓- 
 

∆f=f0-f1= 
(1- cB)f0

-2 -6 4 �∆fdSA = -1.3333 

 
↓C 

 
∆g=C∆f = 
C(1-cB) f0

-2 -4.66 -2.66 4 �∆gdSO = -1.3333 

 
↓+ 

 
g1=g0+∆g = 

(B+C-CcB) f0
-2 19.33 57.33 112 �g1dSO = 46.6667 

 
Fig A.1: Additive transa2o method applied to the 3X1 to 4X1 toy problem of Sec 
2.1. B is the bilinear mapping from A to O, c is the1st order conservative 
remapping from O to A, and C is the 1st order conservative remapping from A to 
O. 
 
 
For this toy problem, C (=w1

A->O) and c (=w1
O->A) are quoted in Sec A.2.3, and B 

is easily shown to be given by  
 

9 8 1 8 0
3 8 5 8 0
0 5 8 3 8
0 1 8 9 8

A OB −>

−⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟

−⎝ ⎠

. 

 
Therefore, the additive transa2o remapping matrix is given by 
 

114 96 18 96 0
26 96 82 96 12 96
12 96 82 96 26 96

0 18 96 114 96

transa2o(add) = B + C - CcB

−⎛ ⎞
⎜ ⎟−⎜ ⎟=
⎜ ⎟−
⎜ ⎟

−⎝ ⎠

, 

as quoted in Sec 2.1. (Note that the regridding in the transa2o routine is not 
explicitly treated as a linear transformation in this way.) 
 
A.4.2 Multiplicative correction 
 

                              



 

Fig A.2 explains the method as applied to the 3x1 atmosphere to 4x1 ocean toy 
problem described in Sec 2.1. 
 
The idea should be clear: by conservatively mapping the bilinear first guess back 
to the source grid, we derive a ratio field which, when mapped conservatively to 
the target grid and multiplied by the 1st guess, compensates for the lack of 
conservation in the original bilinear mapping, and thereby guarantees �g1dSO = 
�f0dSA. 
 
Because of the non-linear nature of the divisions and multiplications implicit in 
this method, it is not possible to express the algorithm as a linear mapping 
between source and grid5.  However, the expression for the Ith element of g1 (eg 
see Fig A.2),  
 

0
1 0

0
i

I I Ii
i iJ J

J

fg g C
c g

⎛ ⎞
⎜ ⎟= ⎜
⎜ ⎟
⎝ ⎠

∑ ∑ ⎟      (A.6), 

 
(where g0=Bf0) allows conservation to be shown directly, thus: 
 

0
1 1 0

0
i

O I I I I Ii
I I i iJ J

J

fg dS A g A g C
c g

⎛ ⎞
⎜ ⎟= = ⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑ ∑∫ ∑  
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0

0
i i

I Ii I
I i J Ji J

J

a fA C g
A C g

⎛ ⎞
⎜ ⎟= ⎜
⎜ ⎟
⎝ ⎠

∑∑ ∑ ⎟  (by the result in Sec A.2.4 that ciJ=CJi(AJ/ai)) 

 

0 0
0

1
i i I Ii I

i I J Ji J
J

a f A C g
A C g

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑ ∑  

 
0 0

i i A
i
a f f dS= =∑ ∫      ▌. 

 
 
                                                 
5 Eqn A.6 shows that the mapping f0 to g1 is homogeneous of degree 1 (ie λf0 is 
mapped to λg1). However, eqn A.6 also shows that it is non-linear, because fA0 + 
fB0 is not mapped to gA

1 + gB
1. Here, gX

k

is the image of fXk under the transa2o remapping. 

                              



 

 
f0 4 36 100 �f0dSA = 46.6667 

 
↓B 

 
g0 = Bf0 0 24 60 108 �g0dSO = 48.0000 

 
↓c 

 
f1 = cBf0 6 42 96 �f0dSA = 48.0000 

 
↓÷ 

 
Ρf=f0/f1 0.667 0.857 1.042 �ΡfdSA = 0.85516 

 
↓C 

 
Ρg=CΡf 

 
0.667 0.793 0.918 1.042 �ΡgdSO = 0.85516

 
↓× 

 
g1=g0*Ρg 0 19.05 55.12 112.50 �g1dSO = 46.6667 

 
Fig A.2: Multiplicative transa2o method applied to the 3X1 to 4X1 toy problem of 
Sec 2.1. B is the bilinear mapping from A to O, c is the1st order conservative 
remapping from O to A, and C is the 1st order conservative remapping from A to 
O. 
 
 
It may be possible to emulate the additive transa2o scheme in SCRIP/OASIS, by 
calculating the matrix C+(1-CcB) offline, as we have done in Sec A.4.1, but the 
non-linearities implicit in the multiplicative predictor-corrector scheme, which is 
needed for always positive or always negative fields, would appear to make this 
difficult for OASIS.  
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