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Abstract

Following a number of pilot studies which looked at the potential for the use of satellite
imagery pattern recognition in numerical weather prediction (NWP), a list of ten
candidate products covering a wide variety of observation types has been drawn up.
These include seven products aimed at improving current NWP observations, namely
cloud cover, cloud type, synthetic relative humidity profiles, precipitation rate, radar
anaprop removal, satellite winds and sea-ice extent. New NWP observations have
also been considered, and include cloud system recognition for improving forecast
error, objective PAOBs (paid observations) and potential vorticity mapping using
water vapour imagery. This technical report describes each of the products in terms
of their possible benefit to NWP as well as how they might be constructed and tested,
considers likely implementation in UK Met. Office models and gives an estimate of
the expected resources.

1 Introduction

Over the last three years, a project has been undertaken in the Satellite Image Appli-
cations Group of NWP(SA)!, to examine the potential for new meteorological satellite
imagery products obtained using a pattern recognition approach. Initially, the em-
phasis was on the identification of both cloud fields (such as cirrus and cumulus) and
synoptic-scale cloud systems (cold fronts, warm sectors and depressions, for exam-
ple), but recent work has pointed the way to developing many other products that in
some way make use of the correlation between the spatial information contained in
satellite imagery and other meteorological parameters beside cloud amount and type.

During this period, a number of tools were developed and studies carried out to
investigate the pattern recognition approach, and to see whether it might be of benefit

to NWP at the UK Met. Office (UKMO). These included:

1. A literature review of past and current cloud pattern recognition techniques
and their application in meteorology, published in Meteorological Applications
(Pankiewicz, 1995).

2. A Feature Selection and Evaluation Tool (FSET), built in conjunction with
EDS Ltd (UK) to determine the optimal set of pattern recognition features for
use in a classifier, given either objective or subjective training data.

If a number of characteristics of an image are calculated for different classes
of interest (for example, maximum infrared brightness temperature and visible
standard deviation in a small region, in order to distinguish cumulus cloud from

'Numerical Weather Prediction (Satellite Applications)



1 INTRODUCTION

water), then feature selection is the process of determining which characteristics
are the most significant at discriminating the classes. In this example, visible
standard deviation is expected to be the best discriminator, since for a field of
cumulus, the maximum infrared brightness temperature might be exactly the
same as that for a sample of water. In practice, probabilistic distance measures
are used, such as the Fisher and Bhattacharyya distances. (Note that in pattern
recognition literature, features are also often referred to as cues.)

3. A versatile MLP? neural network pattern classifier, coded in the PV-WAVE?
image processing language, which can be regarded as an essential building block
for any pattern recognition scheme.

Such a classifier is referred to as a supervised classifier, since a set of training
samples, each labelled either subjectively (with manually identified cloud fields,
for example) or objectively (such as rainfall rates from radar data), are used to
train the network into learning the classes (from the sample labels) by giving
it the relevant features or cues.

There are many good reasons for using neural networks as classifiers as op-
posed to more conventional methods such as Gaussian maximum likelihood
and thresholding. These include the ability of neural networks to solve non-
linearly separable problems and training to be data driven (removing the need
to make assumptions about class distributions). The MLP has been coded to
allow the user to make any number of modifications during training and clas-
sification, resulting in a network that can be tuned for use in many different
applications.

4. A neural network airmass classifier, trained on 2190 semi-subjectively chosen
Meteosat visible and infrared image pairs taken throughout 1994 to an accuracy
of 80.8+2.2% (tested on 730 independent samples).

The network classifies imagery into clear land or sea as well as three simple
“airmass” classes, each associated with different cloud fields, namely dynamic,
shallow convection and deep convection. The classifier was used successfully
between May and October 1996 as part of a trial operational version of the
GANDOLF* thunderstorm flood forecasting system, being built at the UKMO
for the UK Environment Agency (Collier et al., 1995; Pierce et al., 1995;
Pankiewicz, 1997a).

5. A two component neural network airmass classifier (following on from the GAN-
DOLF classifier), using class dependent textural information provided by the
original airmass classifier in a second, larger scale network.

The aim of such a network is to improve the definition of the boundaries between
airmasses, enabling a segmentation of airmass regions with a view to identifying
synoptic-scale cloud structures (Pankiewicz, 1996).

*MultiLayer Perceptron
3Precision Visuals - Workstation Analysis & Visualisation Environment
4Generating Advanced Nowcasts for Deployment in Operational Land-based Flood forecasts




6. An investigation into the use of feature selection for satellite rainfall estimation
in mid-latitudes, using the EDS FSET (Batten, 1996; Pankiewicz, 1997b).

The best features were obtained from collocated radar and polar-orbiting NOAA
AVHRR? imagery during spring 1991 in northwest Europe (the GPCP AIP-2°6
case study - WMO, 1994), and were composed of 8 spectral and textural features

from AVHRR channels 3 and 5.

A semi-supervised neural network built by EDS showed average classification
accuracies for four rainfall rate bands, with separating thresholds of 0.125, 1.00
and 8.00 mmh™', of 55.7+5.3%. At the no-rain/rain threshold of 0.125mmh~!,
and given a typical rainfall rate distribution, case studies showed that POD and
FAR' values were 72.4% and 36.8% respectively, compared to averages of case
studies from UKMO mesoscale model analyses of 69.0% and 51.0% respectively
(C. Jones, personal communication, 1996). The study summarized that many
improvements could be made (as well as training a network using Meteosat
imagery ), including the replacement of the rainfall rate at the sample centre
with the average rainfall rate in the sample, and non-linear neural network
classification (with MLPs for example).

Using the experience gained from these pilot studies, this report considers a num-
ber of products that could be developed, with the primary aim of improving NWP
performance.

A detailed account of pattern recognition techniques is perhaps inappropriate in this
report, (the review published in Meteorological Applications should be suitable for
further reading), but a short description of advantages over other methods is given
in appendix A, with particular reference to the estimation of cloud cover amount. A
brief description of the way in which MLP neural networks are trained and used is
provided in appendix B; further detail can be obtained from the textbook by Beale
& Jackson (1992).

2 The Products

A number of possible pattern recognition products that might be of benefit to NWP
models at the UKMO are presented in table 1. The products fall into two broad
categories: those that may have a potential impact in NWP models by improving
existing observations (within MOPS?® for example), and those that may provide com-
pletely new observation types. An indication of the possible area of use by UKMO
divisions other than NWP is given alongside each product.

SNational Oceanic and Atmospheric Administration Advanced Very High Resolution Radiometer
6Global Precipitation Climatology Project Algorithm Intercomparison Project no.2
"Probability of Detection, False Alarm Ratio

8Moisture Observation Preprocessing System (see Macpherson et al., 1996)
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| | ProbucTs | AREA OF USE |

Improved NWP Observations

1 | Cloud cover NWP, OS

2 | Cloud type NWP, OS

3 | Synthetic relative humidity profiles | NWP, OS

4 | Precipitation rate NWP, OS

5 | Radar anaprop removal NWP, OS

6 | Satellite winds NWP

7 | Sea-ice extent NWP, OA, CR
New NWP QObservations

8 | Cloud system type (forecast error) | NWP, OS, CR

9 | Surface pressure (objective PAOBs) | NWP

10 | Potential vorticity NWP, JCMM

Table 1: Ten possible pattern recognition products derived from
satellite imagery, together with likely UKMO customers.

Each of these products is described in this section in more detail, including some
background, required resources, likely customers and potential benefit. NWP relevant
products are considered in relation to the current versions of the UKMO Unified
Model (Cullen, 1993), namely the global, limited area and mesoscale forms.

The first two products considered are examples of how pattern recognition might be
used to the direct benefit of the MOPS scheme in either the mesoscale model or the
LAM?. In performing a three-dimensional analysis of cloud amount in the mesoscale
model, MOPS blends a number of observations from different sources, namely the UK
radar network, surface reports and Meteosat infrared satellite imagery. These result
in a precipitation rate analysis, a total cloud cover analysis, cloud-top and cloud-
base height analyses, and finally; a multilevel cloud analysis. Apart from radiosonde
observations, MOPS is the principal method of providing observations of moisture
in the atmosphere, and is therefore a convenient framework in which to assimilate
satellite imagery pattern recognition products relating to moisture fields.

2.1 Cloud cover

The current method of estimating cloud cover in the mesoscale model version of
MOPS is to use Meteosat infrared imagery which has been temperature-calibrated,
from which pixels are assumed to be cloud filled if they are colder than the mesoscale
model surface temperature by some specified threshold (Macpherson et al., 1996).
The number of cloudy satellite pixels (with a resolution of 7Tkm) is counted within a
mesoscale model grid square (17km resolution) to give an estimate of the total cloud
cover.

9Limited Area Model




2.1 Cloud cover 5

This technique is the same as the thresholding process described in further detail in
appendix A, which is compared to a number of other methods of estimating cloud
cover. The main objection to using the technique is found to result from the setting
of threshold values, which are generally functions of many variables. This problem
was highlighted by Macpherson et al. (1996): “The threshold temperature difference
in the satellite diagnosis step was found to require careful tuning. Too high a threshold
can cause problems with relatively warm low cloud over a cold surface”. Also, “The
current threshold does not vary geographically or in time. This represents a weakness
of the scheme”.

As described in appendix A, a superior method to thresholding is to use pattern
classification with a number of input features, such as spectral and textural features,
solar elevation, position in the diurnal cycle, surface elevation and so forth. This
enables geographical and temporal information to be included, and also allows for a
solution to the problem of detecting warm cloud over a cold surface.

It is interesting to note for example, the results of a pattern recognition technique
that was used on Arctic AVHRR imagery (Ebert, 1987). The technique classified the
imagery into one of 18 classes, including three low cloud types, each occurring over
snow or ice: stratus, stratocumulus and cumulus (the same cloud types occurring
over land or water were separate classes). The classifier used five spectral and three
textural features (obtained by a feature selection algorithm based on divergence),
from channels 1,2,3 and 4. The classification accuracies were obtained from a set of
images taken on Ist July 1984 (independent from the training data), by comparing
the computed class with a classification determined by three separate analysts. The
accuracies were 80.0% for stratus over snow or ice, and 87.7% for stratocumulus
over snow or ice (unfortunately, no independent results were available for cumulus
over snow or ice). The overall classification accuracy for all 18 classes from these
independent, manually labelled samples was 83.9%.

How would a pattern recognition technique be used in estimating the total cloud
cover for MOPS? There are three possible approaches:

1. A two class cloud mask would be developed, primarily using Meteosat infrared
observations to calculate features (but visible, geographical and temporal infor-
mation could be included), and mesoscale model cloud field analyses to train a
neural network classifier (note that model fields must be quality controlled, to
avoid training the classifier on model errors). The analyses would ensure train-
ing the network with our best current knowledge of cloud cover, in a purely
objective way.

The cloud mask would be used to classify individual pixels, as with the thresh-
olding technique. (The network would classify a pixel with a number of features
taken from its immediate neighbourhood). Cloudy pixels would then be counted
within a model grid square to estimate the total cloud cover, as in MOPS.
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2. A neural network cloud type classifier would be trained using manually labelled
Meteosat image samples (see section 2.2). A number of different cloud classes
would be used (of the order of 10 or 20), each with an associated total cloud
cover, typical of that class.

In this case, features would be calculated for larger areas (of a similar size to
the mesoscale model grid squares, but not the same so as to avoid locking the
feature calculation to model grid square areas), using the satellite pixel grey-
levels present, as well as temporal and geographical information. The network
would assign a cloud type to each area, and each cloud type would have an
associated total cloud cover (via a look-up table). For example, stratus might
have a total cloud cover of 0.9, whilst several classes of cumulus might exist
with cloud covers ranging between 0.1 and 0.6. The areal cloud cover estimates
would then be interpolated to the appropriate model grid squares.

3. The logical extrapolation to the first two methods is to train a neural network
directly from mesoscale model analyses of cloud cover. Thus a number of fea-
tures would be calculated from the imagery within the local neighbourhood of
a model grid square. The total cloud cover from model analyses would then
be used to train a neural network classifier, which could have one output with
a continuous range of cloud cover values (0.0 to 1.0), or a number of outputs,
each representing a small range of cloud cover values (0.0 to 0.1, 0.1 to 0.2,
...). An advantage of the latter method is that quality control can be included
in terms of the likelihood of a sample belonging to a particular class (see the
discussion at the end of appendix B).

All the required features would be calculated within the local neighbourhood of
the model grid square to assign the total cloud cover. The classification would
simply be a direct estimate of the total cloud cover in the model grid square,
with the addition of an uncertainty. (Note however that it would be possible
to obtain a measure of uncertainty in all three proposals described here).

Meteosat imagery collocated with a large number of training samples (from model
analyses or manual labelling) would be required, ideally spanning a whole year, and
obtained throughout periods of day and night!®. Such data exist in SIAG’s image
archive, and previous experience with GANDOLF has shown that around two weeks
are required to extract 365 image pairs taken during the course of a year (the time
mainly occupied in reading tapes). A sufficiently large number of training samples
need to be obtained to provide the network with good generalization (as a rule-of-
thumb, Tovinkere et al. (1993) recommended using 10N, to 20N, samples per class,
where N, is the total number of classes).

Methods 1 and 3 would both use mesoscale model analyses as training data for the

19Various methods can be used in a pattern classification system to account for lack of data (in
the visible channel at night): a switch between two separately trained classifiers, one trained with
visible and infrared imagery, the other with infrared alone, or training such that all image data are
used with visible features set to unique values during periods of dark.
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satellite imagery. In method 2, only satellite imagery is required, but subjective
labelling has to be performed, which can be time consuming. For the neural network
developed for GANDOLF, 2190 samples were labelled, six per day for a total of 365
days during 1994. The labelling was undertaken by Clive Pierce of O(RS4) together
with the author, in a total of four days. It is envisaged that about 4000 samples
would be needed in this case, requiring 16 days of staff time in total. However, the
time required to extract samples from suitable model fields for methods 1 and 3 is
probably not dissimilar.

The features chosen to train the network can be selected by experience, or by using
an objective feature selection technique. The FSET described in the introduction can
be used to advantage here; an estimate of the amount of time required to perform
an objective feature selection for such a network is one month. Finally, training
and testing of the network must be undertaken. As a rough guide, a period of two
months is suggested as a minimum. The total amount of staff time therefore comes
to a minimum of around four to five months, for any of the three methods suggested.

A final note should be made concerning alternative reasons for obtaining very high
quality cloud detection, namely that cloud clearing is of vital importance in deter-
mining a variety of surface parameters relevant to NWP, such as sea and land surface
temperature, surface albedo, vegetation index and sea-ice extent.

2.2 Cloud type

Cloud type determination was the original reason for introducing pattern recognition
techniques into the analysis of satellite imagery in the 1970s, in order to produce
objective nephanalyses. Cloud type also plays an important réle in the segmentation
of satellite images into regions associated with different cloud systems (Pankiewicz,
1995); further discussion of this aspect is left for section 2.8.

However, cloud type is also needed as a constraint for the cloud cover estimates pro-
vided to MOPS (Macpherson et al., 1996), specifically to assign an upper limit of 4
oktas if the cloud is cumulus or cumulonimbus, and to assign a minimum cloud thick-
ness according to cloud type. Cloud type observations in MOPS are obtained from
a limited number of surface observations, whereas automated satellite nephanalyses
would enable coverage over the whole mesoscale model field area. Cloud type deter-
mination could be of use in providing the second cloud cover estimator described in
the previous section.

The advantages of a pattern recognition approach result from the fact that many
different features can be incorporated besides visible and infrared spectral data, such
as textural, temporal and geographical information. Since no cloud type fields exist
within current NWP models however, image samples would have to be labelled either
with collocated ground-based synoptic reports or manually. To train a neural network
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pattern classifier, features would need to be calculated from the image samples over
a sufficiently large area to provide an accurate classification of the general cloud field
type. As mentioned in the previous section, the areas would be similar in size to
mesoscale model grid squares, but sufficiently different to avoid locking the feature
calculation to the grid squares.

A number of spectral and textural features have in the past provided very accu-
rate cloud type discriminators. For example, Lee et al ’s (1990) MLP classifier was
able to discriminate cumulus, stratocumulus and cirrus to 93% accuracy; Welch et
al.’s (1992) MLP classifier was able to discriminate polar AVHRR scenes into water,
solid sea-ice, broken sea-ice, snow-covered mountains, snow-free land, thin stratus or
fog over ice, cirrus over ice, stratus over water, cumulus over water and multilayer
cloudiness to 92% accuracy; and finally Bankert’s (1994) probabilistic neural network
classifier could discriminate AVHRR scenes into low cloud, altostratus, high cloud,
“precipitation-type” cloud and a clear class with 91% accuracy.

The building, training and testing of such a cloud type classifier would need the fol-
lowing steps undertaken: a decision on the choice of cloud type classes to use; the
gathering of Meteosat imagery either collocated with synoptic ground-based obser-
vations, or manually labelled; feature selection, and finally training and testing of
the network on independent data (either synoptic reports of cloud type not used in
training, or a set of manually labelled training samples not used in training). The
timescale required would be of a similar amount to that of the total cloud cover
product described earlier: a suggested minimum of four to five months.

2.3 Synthetic relative humidity profiles

In the previous two sections, pattern recognition methods have been suggested to
improve the extraction of cloud data from satellite imagery, including total cloud
cover and cloud type, so that they can be used within MOPS to arrive at a more
accurate three-dimensional cloud analysis. At present, the diagnosed cloud fraction
from MOPS is assimilated into the model by converting it into a set of relative
humidity profiles, which are treated as pseudo radiosondes with a single grid point
of influence. The main point is that the model is nudged toward the corresponding
relative humidity from a parametrization between cloud fraction and relative humidity
(Macpherson et al., 1996).

One of the possible drawbacks of this method is that the parametrization only con-
siders layered cloud (described earlier as dynamic cloud). As an alternative to this
approach, it might be possible to relate a given cloud profile within a model grid
square to a particular relative humidity profile, typically associated with such cloud.
Thus a synthetic relative humidity profile is assigned to a model grid square, based on
a previous statistical analysis of cloud in satellite imagery and collocated radiosonde
relative humidity profiles. Instead of the cloud analysis governing the relative hu-
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midity profile via one parametrization, it would result in a more realistic relative
humidity profile typically found for that case. This type of scheme has been used
with some success in an Australian mesoscale model (Mills & Davidson, 1987), and
in the Canadian regional model (Sarrazin et al., 1994), the latter using the method
of Garand (1993).

Although Macpherson et al. (1996) noted the problem by saying that “The UKMO
model’s relationship (between cloud fraction and relative humidity) is undoubtedly
idealized”, the point was also made that “It would not be productive to assimilate
cloud data into the model in a manner inconsistent with a relationship obeyed by the
model cloud scheme ... To obtain a model analysis that fits the cloud observations, the
assimilation scheme must respect the model parametrization as a “strong constraint”.”
However, if synthetic relative humidity profiles were assimilated directly into the
model, then the strong constraint would surely be bypassed, and the assimilation
process would not be concerned with the parametrization between cloud fraction and
relative humidity: this information would be implicit in the statistically analysed
relationships between cloud in the satellite imagery used for training, and the relative
humidity data from the collocated radiosonde profiles.

Recently, an attempt was made to assimilate cloud-top temperature information into
the LAM by adjusting the humidity field (Richards & Whyte, 1995). Some case
studies were performed for model runs during May 1994. Unfortunately, the results
were inconsistent: the generation of a more realistic cloud amount in the model was
found to cause unrealistic precipitation rates, particularly for low cloud, and if the
assimilated cloud was inconsistent with the model dynamics, the model could have
the effect of removing it. This meant that the best form of the scheme was found to be
when negative relative humidity increments only were made, but then the statistics
generally showed relatively little overall impact but the occasional dramatic improve-
ment. However, this attempt relied on the use of the parametrization scheme between
cloud fraction and relative humidity to nudge the model toward the “inferred” rela-
tive humidity. If cloud and humidity different to that idealized in the parametrization
scheme were actually observed, then perhaps this might account for the inconsistent
results observed? Richards & Whyte (1995) in fact recommended the inclusion of
some form of real-time cloud detection and classification, perhaps more in keeping
with the idea of using synthetic relative humidity profiles.

In previous work by Mills & Davidson (1987), 19 different dew-point depression pro-
files were identified, according to the layer of maximum cloudiness (five layers were
considered), the cloud fraction and the cloud type (whether or not the cloud was
stratiform or cumuliform). Cloud type was determined as a function of the standard
deviation of cloud-top temperature within the area, with a value greater than 3.5°C
indicating cumuliform cloud. If the layer of maximum cloud was below 850hPa, the
cloud amount was less than 20%, and the cloud type was not cumuliform, than the
area was deemed to be “clear”. In some cases, the method was found to impact
positively on the Australian mesoscale model (and subjectively, it appeared to reflect
observed cloud features better than analyses using conventional data). They recom-
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mended improving the system by also defining areas of deep convection, and adding
more synthetic relative humidity profiles relating to “rarer” categories.

More recently, Garand (1993) has been able to retrieve dew-point depression profiles
from Meteosat imagery at six standard levels: 1000, 850, 700, 500, 400 and 300hPa.
This was achieved by collocating radiosonde profiles with Meteosat imagery over
Europe from data taken during three months in 1988, using over 2000 radiosonde
profiles to train a pattern recognition system. In this case, a clustering technique
(the minimum squared error procedure) was used to identify distinct classes or profiles
in a feature space consisting of cloud-top pressure, cloud fraction and cloud albedo.
Interestingly, it was found that only seven distinct profiles were needed to contain the
essential information on the cloud type of interest if infrared imagery were used alone,
or nine if visible and infrared were used together. (The water vapour channel proved
very useful in improving dew-point depressions at higher levels and the visible channel
improved inferences of low-level humidity in classes associated with precipitation.)
Expressed in terms of relative humidity, results on independent test data showed
standard deviations varying from 13% to 20%, depending on level. In conclusion, it
was however suggested that improvements could be made by including information
from other channels (or sources), or by setting constraints aimed at improving the
vertical structure of the retrievals.

If direct assimilation of relative humidity was possible in the UKMO Unified Model
(perhaps using variational techniques), then a pattern recognition classifier trained
to recognize one of a number of synthetic relative humidity profiles might provide an
important new set of observations.

The first task would be to identify a number of distinct relative humidity profiles often
seen in radiosonde data, although several tens of such profiles would not be difficult
for a typical MLP network to handle. Collocation would have to be performed with
Meteosat imagery, so that features could be calculated in the imagery and trained on
the distinct radiosonde profiles. Thus an MLP network might be built with 20 output
nodes, each representing a separate radiosonde profile. Feature selection would need
to be performed in order to find the best set of features capable of discriminating
each of the distinct profiles, but this could be achieved using the FSET described in
the introduction.

Once the winning features had been obtained, an MLP network could be trained
and tested, such that during classification, the output node with the largest value
would indicate the associated relative humidity profile to use. An estimate of the
uncertainty in the classification could be provided in the way described at the end of
appendix B. Since this type of classifier has not been tried in any of the pilot studies,
some time would be required to become acquainted with the radiosonde data, and to
find out what constitutes a significant difference between profiles, so as to select the
profiles and hence features that would distinguish important cases.

Such a scheme would have many similarities to precipitation rate classification dis-
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cussed in the next section, and an estimate of the time required to build a prototype
synthetic relative humidity classifier would be nine to twelve months.

2.4 Precipitation rate

One of the pilot studies undertaken in 1996 was to assess the possibility of building a
pattern classifier, trained on ground-truth radar data, to estimate precipitation rates
from satellite imagery. Past work has shown that estimation of precipitation rates
from such data are notoriously difficult (WMO, 1994), with poor results often being
obtained in the mid-latitudes (Jackson et al., 1995).

The primary advantage of using pattern recognition techniques as an alternative to
previous methods is the same as those described in appendix A: the inclusion of a
number of dissimilar input features with which to train the classifier. For example,
Zhang & Scofield (1994) presented results of a neural network trained to estimate
heavy convective rainfall rates from satellite imagery using the following features:
cloud-top temperature, a cloud growth factor, a rain burst factor, an overshooting
top factor, a merger factor, a saturated environment factor, moisture correction and
speed of the storm. Their average test error from a total of seven cases was 3.9%,
compared to an average error from the “meteorologist-computed” Interactive Flash

Flood Analyzer system of NOAA/NESDIS'! of 30.4%.

In another recent study, Uddstrom & Gray (1996) considered the use of discriminant
functions to estimate rainfall rates from different cloud types, observed in AVHRR
imagery and verified with New Zealand radar data taken over the course of 1994.
Their idea was to initially classify imagery into eight cloud classes, and to use sep-
arate classifiers for each of the classes likely to produce rainfall (altocumulus, cu-
mulus, cumulonimbus, cirrus over cloud and nimbostratus). Results indicated that
a rain/no-rain classifier was accurate to 60%, 64%, 85% and 93% respectively for
cirrus over cloud, altocumulus, nimbostratus and cumulus (no results were presented
for cumulonimbus owing to sample size limitations). An analysis was then under-
taken of how different features were significant in determining rain rate. The most
useful features were found to be textural in the case of altocumulus and nimbostra-
tus, whereas cumulus was the only class to show a significant relationship between
cloud-top temperature and rain rate.

An important innovation in the UKMO pilot study was to concentrate on feature
selection before pattern classification; in other words, to determine the set of features
calculated from satellite imagery which maximizes a probabilistic distance measure
between all the classes under consideration.

In the pilot study, 27 sets of four and five channel AVHRR imagery were taken from

11National Environmental Satellite Data and Information Service



12 2 THE PRODUCTS

the GPCP AIP-2 study, which had been collocated with radar ground-truth data from
the UK Frontiers and European COST-73 radar networks (WMO, 1994). A total of
105 different features were calculated (21 per channel) for a number of samples taken
from the satellite imagery, each sample being labelled according to one of four rain
rate classes, determined from the collocated radar data corresponding to the centre of
the sample. The four rain rate classes were separated by boundaries of 0.125mmh~?,
1.00mmh~', and 8.00mmh~!. Probabilistic distance measures were calculated for
all combinations of feature vectors up to and including a feature vector length of
nine dimensions, beyond which it was found that probabilistic distance measures
decreased, indicating that there was more “noise” associated with the addition of
extra features than there was discriminating information.

This exercise resulted in a best probabilistic distance measure being obtained when
the following eight features were used: the minimum, maximum and spread in channel
5, the mean angular second moment, mean and maximum contrast in channel 3 and
the mean angular second moment and mean contrast in channel 5 (the latter five
features all being textural). By testing a classifier trained with such features, the
average POD and FAR values for nine of the 27 AIP-2 cases (complete image sets)
were found to be 71.6+9.6% and 4.042.0% respectively, a significantly better result
than previous AVHRR methods (Jackson et al., 1995). Comparison was also made
with the average of a number of case studies taken from the mesoscale model (C.
Jones, personal communication, 1996), providing the scores shown in table 2.

PR | T+0 | T+6
POD | 72.4 | 69.0 | 63.0
FAR | 36.8 | 51.0 | 56.0
HKS | 63.7 | 51.0 | 46.0
TS |50.9 | 40.0 | 35.0

Table 2: Comparison of scores obtained from the UKMO pilot study
to estimate precipitation rates from satellite imagery using pat-
tern recognition, and mesoscale model scores. POD = Probability
Of Detection, FAR = False Alarm Ratio, HKS = Hanssen Kuiper
Score, TS = Threat Score (see Jones & Macpherson, 1996). Scores
are based on the percentage of pixels in the mesoscale model area,
dependent on the rainfall distribution. The values quoted in the
text are based on the percentage of pixels in each of the four rain-
fall classes. Both used a rain/no-rain threshold of 0.125mmh~".

In summary, the study showed that a useful precipitation rate classifier could be
produced, relatively cheaply, and specifically tuned for use in a variety of UKMO
applications. A number of systems at the Met. Office might be improved with such
estimates of precipitation rate, namely:
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1. Assimilation of precipitation observations in NWP. It is possible to assimilate
precipitation rates at a range of scales via latent heat nudging (LHN) schemes,
as has been recently shown in the mesoscale model (Jones & Macpherson, 1996).

Lo

Cloud analysis in NWP. The MOPS scheme uses estimates of rainfall rate from
the radar network to make inferences about total cloud cover and to make
adjustments to the multilevel cloud analysis. This is done by modifying the
cloud profile to ensure there are two cloud free layers below the -15°C level in the
absence of rain, or presence of light rain, for example (Macpherson et al., 1996).
These adjustments are currently only available within the area covered by the
UK radar network; measurements based on satellite imagery would increase the
coverage within the system.

3. Nowcasting cloud and precipitation. Nowcasting systems such as Nimrod (Gold-
ing, 1995) are clear candidates for improved observations of precipitation rate,
especially as they would be able to provide enhanced coverage of the UK and
surrounding waters over and above the current UK radar network. A further
use of satellite-based precipitation rate would be as a means to improve the
reliability of anomalous propagation echo deletion in Nimrod radar process-
ing. This last application is discussed in the next section, but still under the
broad heading of improved NWP observations, since the latent heat nudging
scheme referred to earlier has recently started using precipitation data supplied
by Nimrod.

Latent heat nudging is a method which was implemented in the mesoscale model
in April 1996 (Jones & Macpherson, 1996), as a way of assimilating precipitation
rate data. Since precipitation rate is not a prognostic variable in the model, it
cannot be assimilated directly, but can be used to infer information about the model’s
temperature and moisture fields, in a way that nudges them so that the diagnosed rain
rate fits the observations more closely. In practice, this is performed by adjusting the
model latent heat profile to reflect the heating implied by the observed precipitation,
effectively resulting in an enhancement (or suppression) of the diabatic heating term
in the model’s thermodynamic equation.

Positional accuracy of the precipitation was found to be more important in impacting
the model than the rate. Since June 1996, the main source of observational data used
in the LHN scheme has been provided by the UK radar network via Nimrod, and is
known to be of low quantitative accuracy at ranges of over 100km from the nearest
radar (Jones & Macpherson, 1995). However, Jones & Macpherson pointed out that
“Imposing this 100km range on the LHN scheme would exclude those areas on the
edge of the radar range where systems are approaching the UK, systems we would
hope to analyse better. The “mazimum range” gives much better coverage, and it
seems worthwhile, if not essential, to extract useful information from the data over
this larger area, albeit recognizing the poorer quality nearer the perimeter.” The use
of satellite-derived precipitation rates would therefore appear to provide considerable
benefit, either by directly providing a new observational data type to the global
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model, or via Nimrod for the mesoscale model. A further advantage of using satellite
derived precipitation rates (obtained with pattern recognition), is the inclusion of an
uncertainty based on the precipitation rate being assigned correctly, compared to the
data that the network was originally trained with, as a form of quality control.

Some of the design principles used in the LHN scheme are of relevance to precipitation
estimation based on satellite imagery: independence of model resolution and domain
(satellite observations could be used throughout the global model), applicability to
any source of rain rate data, transparency to changes in model parametrization and
portability to a 3DVar environment. With regard to its use in variational assimilation,
Jones & Macpherson (1996) recommend the retention of the latent heat nudging
approach in 3DVar, and point out that preliminary studies have been made using
4DVar (Zupanski & Mesinger, 1995), which demonstrate the potential of LHN in the
longer term.

Although a useful precipitation estimator resulted from the UKMO pilot study, there
are a number of significant improvements that can be made. The classifier was
designed for use on AVHRR data, whereas for the LHN scheme in the mesoscale
model, Meteosat would be the preferable data source, primarily because of the better
temporal resolution (30 minutes compared to 6 hours). However, both itproved
temporal and spatial resolution are expected following launch of MSG'? in 2000, with
a 15 minute frequency and 3km infrared sub-satellite resolution (the high-resolution
visible channel will provide 1km resolution at the sub-satellite point). To train a
pattern classifier sufficiently on Meteosat data, the gathering of perhaps a year’s worth
of collocated satellite and radar imagery would be necessary (from one randomly
chosen observation set per day), and would probably need a minimum of two months
effort.

A very important part of building an accurate precipitation rate classifier is to choose
the features which best discriminate the classes of interest. In the pilot study, 21
features calculated in five AVHRR channels were used, but did not include channel
differences or features such as those described in the work of Zhang and Scofield
(1994). A significant part of the development of a good classifier would require some
three months to perform a feature selection using all the candidates of interest. This
selection would be performed using FSET, which requires no further development,
except to set it up for use on Meteosat imagery (perhaps one week to modify and test
the software). Much of the justification for using a precipitation classifier designed
in this way stems from this stage, where the ability of any classifier to discriminate
the classes of interest is explored. Using a two stage classifier, suggested by the work
of Uddstrom & Gray (1996), may produce even more accurate estimates, dependent
on cloud type. This would obviously need the extra work described in section 2.2,
occupying a minimum of four months.

Before incorporation into the LHN scheme, or as a new observational type in Nim-

12Meteosat Second Generation
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rod, the actual classifier must be developed, trained and tested using the winning
features. An MLP network is the preferred option, because of ease of use, the fact
that a general MLP classifier has already been produced, and the possibility to pro-
vide uncertainty estimates, as well as speed in operational use and high classification
accuracy compared to other techniques. The work would involve identification of
the best network architecture, training using samples taken from the collocated (and
quality controlled) ground-truth radar data, and testing using independent samples
from the same data set. Approximately two months is estimated as a guide to the
amount of staff time required. The total estimate for the development of a Me-
teosat based, accurate precipitation rate classifier is therefore around seven months
(or eleven months with the addition of a cloud classifier).

One point should be noted about the potential use of the precipitation rate classifier in
Nimrod. Although using features calculated from a local neighbourhood of Meteosat
pixels, the classifier would be trained on individual 5km resolution radar data, so
that the resulting precipitation rate classifier could produce a field of 5km resolution.
Alternatively, resolution could be decreased to the 15km currently used in Nimrod
on smoothed 5km data, for interpolation to the 17km mesoscale grid.

Finally, it should be noted that there is scope to design a pattern recognition system
encompassing microwave as well as conventional visible and infrared imagery. As
was shown in the AIP-2 report (WMO, 1994), methods of retrieving precipitation
rate from SSM/I also suffers drawbacks in the mid-latitudes. It might be possible
however, that a pattern classifier combining visible, infrared, and microwave imagery
could produce a significantly better method for detecting precipitation than current
methods show. Such data observed from the same platform would be an ideal way
forward, and this might be feasible using the AMSU-B instrument due for launch on
NOAA-K in 1997. Such research may be well worth pursuing at the UKMO, but
would require a timescale of the order of a year to combine the data, do the feature
selection and train a classifier.

2.5 Radar anaprop removal

As well as using satellite based precipitation rates in NWP models, or directly as a
new observation type in a nowcasting system, satellite-based precipitation rate esti-
mates might be used to quality control existing UK radar observations. For example,
it has been pointed out that there is a need to improve the reliability of deleting
two unwanted signals in the radar processing performed by Nimrod, namely anoma-
lous propagation (anaprop) and clutter (M. Kitchen, personal communication, 1996).
Meteosat infrared imagery is currently used to derive a probability of precipitation
based on an infrared thresholding technique, which provides a POD of around 60%
for cold frontal precipitation, worsening for others.

Some of the requirements for such a product include resolutions of 5km and 30 min-
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utes, 95% overall availability, each product no later than 5 minutes after the satellite
observation, a FAR of less than 5% within cloudy regions and a POD of more than
98% for precipitation rates greater than 1.00mmh ™', also within cloudy regions.

The spatial resolution of Meteosat imagery at UK latitudes is approximately 3km
(east-west) in the visible and 6km (east-west) in the infrared. (Resolutions of 5km
(infrared) should become available after launch of MSG in 2000). Experience from
running the GANDOLF classifier semi-operationally has shown that a classified image
can be made available within 30s of receipt of both images, using a typical UKMO HP
unix workstation, nearly 100% of the time (dependent on Autosat-3). The pilot study
precipitation rate estimator described in section 2.4 used a rain/no-rain threshold of
0.125mmh~!, and provided a one sigma FAR upper limit of 6.0% and POD lower
limit of 62.0% for the nine cases studied in spring 1991. The FAR is almost within
the requested tolerance, and it is likely that with a higher threshold of 1.00mmh™!
and improved feature selection using a larger range of candidate features, it would
prove easier to obtain a higher POD than the average value of 71.6%, which was
obtained within a number of different synoptic conditions.

The pilot study classifier could not simply be transposed for use in anaprop deletion,
since it was trained using AVHRR data for a small number of case studies in spring
1991. Data gathering would need to take place in order to provide a sufficient number
of collocated Meteosat and radar image sets to train a pattern classifier. However,
since the classifier would provide a probability of precipitation rather than individual
precipitation rates, the number of samples per class rule-of-thumb (Tovinkere, et al.,
1993) shows that 20 to 40 samples per class would be needed, although around 200 to
400 per class would be better, to capture different synoptic situations. This is because
only two neural network outputs would be required, representing precipitating and
non-precipitating classes, with a threshold of 1.00mmh~!.

Each output would have an associated measure of uncertainty, and as a first step, the
actual output value of the precipitating class could be used to provide the probability
of precipitation field required for Nimrod anaprop processing. The cheapest method
would be to choose about 10 or 20 collocated image sets spread throughout a year,
giving different synoptic situations. Around 20 samples would then be chosen for
each case to train the network. The amount of effort required in obtaining such data
might be of the order of one month.

Although the same features that showed the best class separation in the pilot study
could be used for a probability of precipitation field, it would be preferable to re-do
the feature selection on Meteosat imagery for the new set of cases, as they would
have been taken from throughout a whole year, and a significantly different threshold
would be considered. The work required to use the FSET to look for the best feature
separation in this situation would probably take around one and a half months.

Time would also be required to train and test the MLP network and decide on its
architecture. Around one and a half months effort is seen as the minimum time
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required in this case. So the total amount of staff time required to build, train and
test a classifier for use in the deletion of radar anaprop would be in the region of four
months. This work would however provide a useful base from which to go on and
build a classifier for discriminating several classes of precipitation rate.

2.6 Satellite winds

Winds derived from satellite data are obtained at a number of different atmospheric
levels by various national meteorological services, and the production of winds of par-
ticular relevance to NWP at the UKMO has recently been reviewed by Butterworth
(1997).

One of the ways in which pattern recognition techniques may increase the accu-
racy of satellite winds is to improve the tracking of clouds throughout successive
images. Currently, Meteosat derived winds (Schmetz et al., 1993) use a maximum
cross-correlation technique over three successive infrared images to determine a dis-
placement vector. However, work by Coté & Tatnall (1995) has shown that a Hopfield
neural network can result in more quickly processed and more accurate wind vectors.

Hopfield networks were originally designed as associative memory devices (Beale &
Jackson (1992) give a good introduction). In the work of C6té & Tatnall, a number
of sharp cloud edges represented by parabolic functions were identified, each of which
was assigned to a node in the Hopfield network, arranged in rows (for the first image)
and columns (for the second image). The network was then used to minimize an
energy function which matched the edges previously identified in the images.

It may be of interest to produce a faster, more accurate satellite wind tracking product
within the UKMO, based on these ideas, although it is also recognized that improved
wind height assignment is likely to lead to a larger model impact in the short-term.
To improve tracking using the pattern recognition technique, some time would be
spent building a prototype network and testing the method on half-hourly Meteosat
imagery using data from the Autosat-3 system. It is expected that only around four
months would be needed to build a prototype. Incorporation of in-house satellite
winds using this approach, with the appropriate quality checking would obviously
require further effort.

2.7 Sea-ice extent

An observed boundary of sea-ice is used in the Unified Model, and is obtained from
the U.S. Navy/NOAA Joint Ice Centre. These data are based on AVHRR and passive
microwave satellite observations, and are obtained on a weekly basis. If further detail
were required (either temporally or spatially), it would be possible to build a classifier
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similar to that of Ebert’s (1987) to identify areas of open water, unbroken sea-ice,
broken sea-ice, and ice sheet besides cloud and land cover from AVHRR imagery, at
around 30km resolution. In that study, spectral and textural features were used to
obtain classification accuracies of the order of 95% for those surface types.

Since experience has been obtained in producing cloud classifiers similar to the type
required to detect sea-ice, the main emphasis of the work would be in obtaining
training data, which could be manually labelled or collocated with surface reports.
Such a project would be expected to last about six months, before a prototype sea-ice
classifier could be demonstrated.

2.8 Cloud system type (forecast error)

One of the original reasons for undertaking pattern recognition research in SIAG was
to see if cloud systems (such as cold fronts and depressions), as opposed to cloud
fields (stratus and cumulus for example), could be identified from satellite imagery.

Previous cloud system classification techniques have been directed toward the auto-
matic interpretation of imagery for use by forecasters (although only a few examples
of such work are known in the literature). The scheme of Peak & Tag (1992), was
designed as part of an expert system for providing meteorological information to U.S.
Navy ship-based forecasters, such as the likelihood of clear air turbulence. They used
the subjective approach of asking a meteorologist to identify 172 synoptic scale ob-
jects in GOES-West satellite imagery, which were later binned into eight separate
types. For each object, the amount of low and multilayer cloud was calculated, as
well as the longitudinal and latitudinal extent, and the northernmost latitude. An
MLP network was then trained from 63 of the objects, providing a classification accu-
racy of 83% on the remainder. Unfortunately, the cloud systems had to be manually
segmented from the imagery by a meteorologist, but the authors pointed out that a
bottom-up approach (to segment the image into small regions first, followed by larger
regions) might be used to identify specific synoptic-scale systems in the image.

More recently, Zwatz-Meise et al. (1996) have been attempting to automate the so-
called “Satreps” produced by the Central Institute of Meteorology and Geodynamics
(ZAMG) in Austria. These are routine, daily analyses of satellite images, in which
conceptual models are manually identified, primarily to allow forecasters to subjec-
tively evaluate the quality of NWP analyses. The automated version involves an
initial cloud classification using infrared brightness temperature and the number of
local extrema as features, to identify two characteristics: whether the cloud is low,
medium or high, and whether it is homogeneous, lumpy or cellular. Similar and ad-
jacent samples are then connected into larger regions, from which attribute fields are
calculated, each belonging to a specific conceptual model. At the time of writing,
such attribute fields had been identified for cold fronts, warm fronts and jet streams.
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Efforts to develop a scheme to identify cloud systems at the UKMO were largely
based on the ideas of Peak & Tag (1992), of providing a classifier that can segment
an image in a bottom-up fashion. It became apparent that different features should
be calculated at different scales, depending on the pattern that a classifier was being
trained to recognise. For example, spectral features should be calculated for small
groups of pixels (or individually) for cloud amount, textural features should be cal-
culated over regions of perhaps tens to hundreds of kilometres (for cloud fields), and
spatial features at the synoptic scale (for cloud systems) should be calculated once
large areas of similar cloud type had been identified (Pankiewicz, 1995). This led
to the idea of a three-level cloud system classifier, for which features calculated at
each of three scales would provide the most important information to discriminate
classes found at those scales. It is interesting to see that these ideas are similar to
the work of Zwatz-Meise et al. (1996), who use simple spectral and textural features
to identify cloud type, and larger scale attribute fields to relate conceptual models to
spatial structure and meteorological variation at the synoptic-scale.

However, the interest at the UKMO is to provide new observation types from pat-
tern recognition of satellite imagery that may be used to influence NWP models,
by the way in which synoptic-scale structure is contained within the model. Some
recent work by Hoffman et al. (1995) has shown that the identification of such struc-
tures may be very well suited to reducing forecast errors (background minus analysis)
within a variational analysis framework. They considered the decomposition of fore-
cast errors in terms of three components: a displacement error (how much of the
forecast error can be accounted for by moving the forecast to best fit the analysis),
an amplitude error (how much of the forecast error can be accounted for by changing
the amplitude of the displaced forecast, which results in a combined distortion error),
plus a residual error (anything unaccounted for by distortion). Their basic premise
was that forecast errors are best described by reference to large-scale meteorolog-
ical objects, so that generally, small-scale errors can be attributed to the residual
error. Determining the distortion errors in this way is a problem of minimization,
and Hoffman et al. argued that in a variational framework, this methodology can
accommodate any type of data which can be diagnosed from the model forecast.

Many types of satellite data have potential for correcting distortion errors, but have
only had limited use in conventional data assimilation systems, for example cloudi-
ness in synoptic-scale systems, precipitable water (the latter often showing very
good agreement with frontal analyses) and water vapour. In practice, Hoffman et
al.’s study used precipitable water and surface wind speed from SSM/I and ERS-1
backscatter, to demonstrate the detection and characterization of forecast errors in
terms of position and amplitude errors (compared with ECMWEF operational analy-
ses), by means of a cross-correlation technique.

In terms of assimilating these errors into a variational scheme which might improve
NWP analyses, they had to choose a distortion which minimizes an objective func-
tion. The objective function used incorporates the sum of the residual and distortion
penalty functions (J,+J4), replacing the usual background penalty function Jj, as well
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as the normal observation cost function J, and other constraint penalty functions J.:

J=Jr+Jd+']o+Jc (]-)

Such an objective function is more complex than in the standard procedure (Lorenc,
1986), and more degrees of freedom are added to the variable X that we wish to
analyse. This is compensated not by additional information in the observations, but
by additional information in the statistics, contained within the constraint J,:

Ji=cts ¢ (2)

Here, C is a vector representing the distortion between X and the background field
Xy, and S is the estimated covariance of the distortion variables. The residual penalty
function is given by:

J, = (Xq= X)TR(X; - X) (3)

where X, is the distorted forecast, and R is the estimated covariance of the residual
errors, expected to be much simpler (and have less structure) than the normal co-
variance matrix of the forecast errors, so that it can be approximated by a diagonal
matrix. The aim is therefore to choose the analysis X, and the distortion C which
minimize the objective function J (so that X becomes the analysis X, when J has
been minimized).

Clearly, there will be a great deal of effort required in identifying cloud systems in
satellite imagery, and estimates of distortion errors in the corresponding objects in
UKMO NWP models. Large-scale meteorological objects such as fronts, cyclones,
anticyclones, polar lows and waves might be the candidates, and they would need to
be identified in both the satellite imagery and the model fields to be able to form
distortion errors of the type described in Hoffman et al.’s scheme.

Methods of identifying fronts in model fields have recently been explored at the
UKMO (T. Hewson, personal communication, 1996), in which several derivatives of
a temperature field are obtained, together with a number of other criteria to define
the position of a front; such a scheme could perhaps be adapted to this situation,
although it is the cloud that is being observed in the satellite imagery rather than
the temperature field. Model cloud fields (such as those regularly produced by the
mesoscale model) could be used to identify the synoptic-scale cloud structures for
direct comparison with the same structures in the satellite imagery. This would
provide a first step to reducing forecast error relating to cloud structure, and with the
potential shown for exploitation in variational assimilation schemes, these products
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may well be worth investing further research and development over the next few
years.

2.9 Surface pressure (objective PAOBs)

For around 25 years, PAOBs have been produced by the Australian Bureau of Mete-
orology, and have been disseminated to the meteorological community on the Global
Telecommunications System (Seaman et al., 1993). PAOB is an abbreviation for
“paid observation”, because when they were first used in the early 1970s, the nu-
merical analysis programs in operation were able to fit the PAOBs closely; they were
guaranteed or “paid” observations. The current assimilation systems assign obser-
vation errors, and they may be rejected by quality control procedures, so that now,
they do not pay their way quite as well!

The idea of a PAOB is to extract point estimates of sea-level pressure from manually
analysed charts in conjunction with satellite imagery interpretation, to identify sea-
level pressure values in a regular pattern with a spacing of 1000-1500km, together
with a number of additional points locating depression centres, troughs, ridges and so
on. They are used by a number of global modelling centres, including ECMWF, who
assign observation errors of 4hPA and still continue to find a modest positive impact
in the southern hemisphere mid-latitudes (Seaman et al., 1993; G. Kelly, personal
communication, 1995). (They are currently not in use at the UKMO.)

Using some of the ideas described in the previous section on cloud system recognition,
it would seem that depression centres, troughs and ridges could be automatically
identified using a pattern recognition system. The problem would be in assigning
the associated sea-level pressure, but if a similar technique were used on a pressure
analysis from the global model, the corresponding pressure could be reported, but at
the new location defined by the satellite observation and pattern recognition method.

The work would involve the identification of edges or centres of depressions, so that
fewer observations would probably be reported than classical PAOBs. This would
mean initial recognition of cloud systems, possibly via edge detection to define the
system rather than cloud type, before the extraction of points in the synoptic flow.
Once identified, these points would need to be compared with the same points in
a model sea-level pressure field. Since PAOBs are already being produced for the
southern hemisphere, greater impact might result by obtaining objective PAOBs in
the mesoscale model area around the UK. If a significant departure from the pressure
field was found in the observations, the model would be nudged toward the new
pressure distributions in the usual way. Alternatively, the departure from the pressure
field may be viewed as a forecast error, so that the distortion techniques described in
the previous section would also be applied here. This would make objective PAOBs
another possible candidate for variational assimilation.
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3 SUMMARY
2.10 Potential vorticity

Recent work at the JCMM?'® has shown that the so-called dry intrusions of air de-
scending from the upper troposphere and lower stratosphere into the middle and lower
troposphere (often seen as “dark zones” in Meteosat water vapour imagery) can be
related to the rolling-up of part of a streamer of anomalously high potential vorticity
(PV), which accompanies local downward-folding of the tropopause (Browning et al.,
1996).

The dark zone in the water vapour imagery appears to correspond to a minimum of
about 6km in the height of the PV = 2 surface, representing the dynamical tropopause

- (Hoskins et al., 1985). Regions where the tropopause descends to low levels therefore

corresponds to an upper-level maximum of PV. It may therefore be possible to use
Meteosat water vapour imagery to gain an understanding of PV in model areas of
interest, especially as the imagery is measuring water vapour near the tropopause.
Mansfield (1996), for example, presented several case studies showing how a mismatch
between PV and water vapour imagery might be indicative of model error.

This work is very much at its early stages, and so collaboration with JCMM would be
paramount to understand the exact relationships between PV and water vapour. For
example, does the relationship hold true in most cases for it to be used operationally
in a NWP model, and would the direct assimilation of water vapour imagery within
a 4DVar scheme be the preferred option?

However, if the relationship is general and is suited to model assimilation, it might be
possible to develop pattern recognition techniques which would automatically identify
the water vapour “dark zones”, and if trained with model PV field data, could supply
a new observational data type implying PV structure in the model.

This area of research might suit a pilot study of around six months which would use
collocated Meteosat water vapour imagery and global model (or LAM) PV fields to
investigate the correlation and look for possible forecast impact.

3 Summary

Ten separate pattern recognition products have been described, all of which would
be of relevance to NWP. Some products might be constructed on a timescale of a few
months (cloud type, precipitation rate and radar anaprop removal), whereas some of
the more challenging projects (such as decreasing forecast error with cloud system
observations and potential vorticity mapping from water vapour imagery) must be
viewed on a longer timescale.

13Joint Centre for Mesoscale Meteorology
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In addition to use in NWP, many other diagnostic pattern recognition products might
be worth considering. These could include automated nephanalyses (cloud fields),
descriptions of cloud system types and conceptual models (similar to that of Zwatz-
Meise et al., 1996), fog estimation, recognition of cloud ship wakes and aircraft con-
trails to name a few. Unfortunately, it has not been possible to describe these and
similar products within the scope of this report.

This overview is presented as a starting point for discussion on the best way of
using these techniques to improve UKMO NWP model performance. Suggestions
concerning the products described, as well as new ideas or alternative methods, will
of course be welcome.
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A Advantages of Pattern Recognition

In order to understand why pattern recognition techniques are potentially useful for retrieving a
number of meteorological parameters, it is instructive to examine a particular example, that of cloud
cover, and the various methods that have been used over the years. A summary of the different
techniques is given below, based on a review from the textbook “Satellite Meteorology” by Kidder
& Vonder Haar (1995).

The simplest approach to estimating cloud cover is to assign threshold values for both infrared
brightness temperature and visible albedo, defining cloud to occur on one side of the threshold.
However, cloud cover can be overestimated if the threshold is set near to the true clear radiance
(in which the image sample is completely clear) and underestimated if set near to the true cloudy
radiance (in which the sample is completely cloudy). Perhaps the main objection to thresholding
is that the setting of such values, which can be functions of many variables (surface type, surface
condition, recent weather, season, time of day and viewing geometry), is nearly always performed
manually.

An alternative method is to relax the assumption that thresholds must be used in spectral space, for
example by using a histogram technique such as dynamic clustering (Desbois et al., 1982). Problems
encountered here are that some cloud or surface types are too variable to form a local maximum
in the histogram. This being an unsupervised method, cluster centres have to be identified either
manually, by setting thresholds, or by comparing to previous classifications.

In multispectral retrieval techniques, radiance observed in a visible channel is modelled as solar
radiation reflected from cloud tops and the surface, and infrared radiance is modelled as surface,
cloud, and surface-through-cloud emission. Retrievals tend to be rather noisy, and error analyses
indicate that cloud amount must be obtained from at least 50 pixels. They also require a knowledge
of bidirectional reflectance, which is a function of size, shape and spacing of clouds.

For a small sample of pixels, the standard deviation of clear and completely cloudy areas can be low.
The spatial coherence method (Coakley & Bretherton, 1982) constructs an arch of points obtained
from each such sample in a 2D feature space consisting of visible standard deviation and infrared
brightness temperature. The average radiances in the “feet” of the arch are used to determine cloud
amount via an equation relating the total radiance to the individual cloudy and clear radiances.
However, when cloud systems are too complex (near fronts and when cirrus overlies lower cloud),
the method fails because the characteristic arch pattern is missing.

Radiative transfer techniques are often used to determine cloud optical depth and microphysical
parameters, after cloud has been detected in the image of interest. The method of Arking &
Childs (1985), however, selects one of six microphysical models as being the most representative
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in a sample, based on a comparison of the calculated and observed 3.7um radiance in the sample.
Clear radiance values and tabulated functions for the chosen microphysical model are then used to
determine a visible optical depth, a cloud top temperature and a cloud amount. The weakest part
of this approach is the selection of the microphysical model, which not only requires a number of
assumptions about drop size and phase, but is also rather subjective.

A better technique would be to construct a multidimensional feature space which has as its axes
not just spectral features, but also texture, time, surface conditions and so on, depending on those
features which are most significant in accurately classifying cloud amount (by means of feature
selection). Classes of interest (such as clear and cloudy, or different ranges of cloud amount) can
then be identified in this space using a suitable training set: these are the basic ideas behind the
pattern recognition method.

This method is something like thresholding, but much more sophisticated. The “thresholding”
functions need not be linear, but any shape determined by the training data, and information
concerning surface conditions, time of year or day and viewing geometry can be accommodated by
choosing the correct features on a large enough training set. Multispectral and spatial coherence
methods automatically become a part of the pattern recognition process if those features are deemed
important, but their disadvantages disappear because many other features are used also.

Supervised pattern recognition also avoids histogramming problems: it is not cluster centres that
are important, rather regions in between thresholding boundaries. If a supervised training set is
used, there is no need to label the classes after processing. Finally, no determination of a cloud
microphysical model is required; the information is implicit between the selected features and the
classes of interest. This means that pattern recognition techniques can also be used to explore
relationships between image features and classes of interest (for example, the relationship between
textural measures and rainfall rate).

B Multilayer Perceptron Neural Networks

As remarked in the introduction, multilayer perceptron neural networks provide fast, robust and
highly accurate pattern classifiers, and are becoming more and more accepted in the remote sensing
community. Conventional MLP networks consist of a number of input nodes (representing the
features calculated in the image), one or two “hidden layers” of nodes and a layer of output nodes,
the latter representing the output classes of interest. The nodes in each layer are connected to all
nodes in the next layer, so that for a network with 5 input nodes, 10 hidden nodes and 3 output
nodes, there are a total of 80 connection weights, each representing connection strengths between
various nodes.

MLPs can be trained using the so-called backpropagation learning algorithm (Rumelhart et al.
1986), where an error function is calculated at each output node. For a given training sample be-
longing to a specific class, the feature values are calculated and are input to the network. Initially
the connecting weight values are set randomly, and the error function is obtained from the difference
between the true output values for the class of that sample and the estimated values. The error
function is backpropagated through the network in order to update the interconnecting weights be-
tween each node. In this way, the error function decreases to a minimum after repeated presentation
of training samples, each presentation being referred to as an epoch. For a network with two active
layers j and k, the error function at the output layer k is:

o = oap(1 — ap)(ox — ax) (4)

where o measures the spread of the thresholding function, aj is the estimated network output value
for each class and o is the true output value for each class. For the preceding layer, the error
function is:
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§ = 0a;(1-a;) Y (6ewss) (5)
k

The weights between layers k and j are often updated with the following simple gradient descent
algorithm, the technique used to search for the minimum value of the error function:

wjk(t + 1)y= wjk(t) + pbra; (6)

p being the rate of adaption or the learning rate. For weights between i and j, the same equation
was used with j replaced by i, k replaced by j, and so on.

Numerous parameters affect the performance of such a network, and those that can be varied
include the number, type and normalisation of features calculated in the image samples, the number
of hidden layers and nodes, the range of output values o; used during training, the spread of the
sigmoidal thresholding function ¢, the number of training samples presented at each epoch and the
rate of adaption of weights p.

The sigmoidal thresholding function is used to control the effect of very large or small feature values,
in which the output or activity on a node at layer k is given by:

5 1
T 14l

ax (M
where I is the net input to the node from the previous layer j. The value of the spread o determines
the range of weights which are assigned to the network, which should ideally be kept within sensible
values.

One of the specific advantages of such network classifiers is that values obtained at the output nodes
can be used to obtain a measure of confidence in class assignment. If the highest output node
value is small compared to the values used during training, the network may be suffering from poor
generalisation (the ability to successfully classify samples that were not presented during training).
Cost is often a factor in producing a good solution, but it may be that extra time or additional
training data cannot be obtained. In that case, the maximum output value can be used to quality
control the network estimate.

The output node values of an MLP network are not strictly representative of the probability of a
sample belonging to a particular class. They are estimates which become less representative the
further away the test sample is from the training samples in feature space. A modified method
of training MLP neural networks uses a Bayesian framework (MacKay, 1992), so that the output
values are much closer to the true probabilities of obtaining a particular class throughout feature
space. Ideally, these modifications would be incorporated into all of the pattern classifiers described
in this report.



