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Abstract

An analytic semi-geostrophic model of frontogenesis 1is described
which exhibits the growth of a frontal discontinuity surface of finite
length . The initial distribution of temperature on a plane horizontal
boundary consists of a warm two-dimensional strip embedded in an
isothermal background. The potential vorticity is uniform and positive.
A barotropic deformation field with axis of dilation along the warm
strip forces a vertical front with velocity discontinuity as the warm
air is occluded and detaches from the lower boundary.

The solution demonstrates some important general properties of the
inviscid semi-geostrophic equations when discontinuities are present
In particular the vertical velocity at the lower boundary is zero
everywhere except at the front where it becomes ill-defined. At the time
when the front first forms the vertical velocity has a maximum at the
point discontinuity . Also the front itself constitutes a line source of
potential vorticity so that the global integral of mass-weighted
potential vorticity is only conserved if the boundary of the domain is
redefined in such a way as to exclude the front. Both properties have
practical implications for numerical modelling.

For typical atmospheric rates of deformation forcing the
accelerations of air parcels close to the front are sufficiently large
to violate the conditions of validity of semi-geostrophic theory but not

those for hydrostatic balance.



1. Introduction

Gill (1981) showed how exact balanced states of rectilinear flow on
an f-plane may be obtained by a conformal mapping technique , and found
a class of flow states which represent homogeneous intrusions in a
stratified medium of uniform potential vorticity. Solutions containing
discontinuities of finite length were found by Shutts (1987) and Purser
and Cullen (1987) : they were considered to be rudimentary models of
atmospheric fronts. The solutions found by Shutts (1987) were considered
to represent the balanced flow resulting from the instantaneous removal
of an infinite tube of fluid, with elliptical cross-section, oriented
parallel to the direction of the flow. Ou (1983) considered the
geostrophic adjustment of an incompressible fluid initially at rest but
with vertical isopycnals - a system with zero potential vorticity. When
the curvature of the density profile (in the horizontal coordinate)
exceeded a critical value, Ou noted that fluid initially in contact with
the upper and lower boundaries must detach and move into the interior of
the fluid along a frontal surface if a solution is to be found . This
separation process actually creates a front as particles with different
values of density and absolute momentum are brought together. A similar
problem was solved by Cullen (1983) in the context of frontogenesis
under the action of a deformation flow. A general technique for
constructing finite element approximations to balanced rectilinear flow
states with embedded discontinuities was outlined by Cullen and Purser
(1984). They argued that the inviscid semi-geostrophic eduations could
in principle be solved whether or not discontinuities were present and
that the frontogenesis problem considered by Hoskins and Bretherton
(1972) could be continued beyond the point when a discontinuity first
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forms. They also suggested that the geostrophic separation process
accompanying the formation of fronts would be associated with the
intrusion of a 1line source of potential vorticity - an apparent
violation of the requirement that the global-mean mass-weighted
potential vorticity be conserved (Haynes and McIntyre, 1987).

The physical relevance of the discontinuity predicted by inviscid
semi-geostrophic theory may be questioned for at least two reasons
firstly the scaling assumptions on which the equations are based will
break down in some region about the developing front ; and secondly
mixing will smooth out the velocity and temperature contrast across the
front. For the purpose of comparison with the atmosphere we assume,
consistent with observations, that the frontal discontinuity will be
limited to a thickness over which the local Richardson number is about
174 . Gall et al (1987) have shown, using a very high resolution two-
dimensional model, that a front collapses to the horizontal grid scale
even when this is as small as 280 m. Many aspects of the Gall simulation
support the concept of a growing frontal discontinuity proposed by
Cullen and Purser (1984) in spite of the failure of the balance
assumption near the front. The analytic model to be presented here is
used to illustrate some of the properties noted above and to assess the

likely range of validity of the semi-geostrophic assumption.

Our interest centres on steady rectilinear flows on an f-plane ,
which have vertical and cross-stream variation of flow speed . To be
steady such flows must be in geostrophic and hydrostatic balance and
therefore satisfy the thermal wind relation . A Cartesian coordinate
system is adopted with x , y , z representing the cross-stream , along
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stream and vertical coordinates respectively. The flow is assumed to
occupy the upper half space z > 0 with z taken as the pseudo-height

coordinate of Hoskins and Bretherton (1872). The state of balance can

then be expressed as :

fv, 29/ dx ()

]

g6/8, 09/ dz (2

where v, is the y-component of the geostrophic wind , 6 is the potential
temperature with reference value 6, |, ¢ is the geopotential , f is the
Coriolis parameter and g is the acceleration due to gravity (f,g and 6,
are assumed constant). Following Gill (1981) we introduce a
characteristic height scale H, time scale f-' and buoyancy frequency N ;
and define a horizontal length scale NH/f , a velocity scale NH , a

potential temperature scale N®H6,/g and a geopotential scale (NH)=.

These are used to non-dimensionalise the relevant equations so that

eqns. (1) and (2) become :

Vg = 09/dx 3
6 = dg/dz C4): <,
Introducing the absolute momentum M = x + Vg and letting the non-

dimensional potential vorticity have unit value then equations (3) and

(4) imply ,



OM/dz = do/dx (5)

and we have from the definition of potential vorticity ,

(M, 8)/d(x,2) = 1 (6

Finally, following Gill (1981), egs. (5) and (6) may be written as the

Cauchy-Riemann equations :

06/dM

- Ox/dZ (7>

06/dZ

ox/oM (8)

where Z is the same coordinate as z but differentiation is with M held
constant (ie. M and Z are treated as independent variables).
Egs. (7) and (8) imply a general conformal mapping

x+ 186 = F(M + 12

where F() represents any analytic function.

The conformal mappings dealt with in this paper associate all particles
in the x-z plane , z > 0 with the region in M-8 space indicated in Fig.
1 - that is, the upper half plane of M-8 except for an elliptical
indentation centred on the origin. We show that the horizontal
discontinuity map described by Shutts (1987) arises as the limit of a
particular conformal mapping , and that a family of solutions including
an upright discontinuity, a point discontinuity and an unperturbed
atmosphere at rest may be generated by varying a parameter in the
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mapping. A sequence of solutions corresponding to the continuous
deformation of an elliptical indentation of the lower boundary of the
domain in M-6 coordinates is also constructed. Different descriptions of
the mapping are required for different ranges of eccentricity of the
ellipse. The cases where the major axis of the ellipse is vertical
correspond to a line discontinuity in absolute momentum at x = 0. It is

shown how points on the indentation of the boundary in M-8 space map

onto points bounding this frontal discontinuity |, leading to the
identification of the front with the locus of points initially on z = 0O
(for the ellipses of aspect ratio < 1 ) that are forced away from z = O

(for the ellipses of aspect ratio > 1 ). Because these solutions have
the same horizontally stratified flow at infinity, any two members of
the family may be related by a time t and a deformation parameter in
such a way that we may consider one solution to have arisen from the

other under the action of deformation.

2. The Conformal Mapping solutions

(a) Mapping 1
If we take the mapping used by Gill (1981) and Shutts (1987) to

describe an elliptical lens of homogeneous fluid, and interchange x and
M with 6 and z respectively, the region corresponding to the half-lens
8 > 0 in x-z of their solution becomes an elliptical indentation in the

lower boundary of the region in M-6 coordinates.



The general form of the mapping is then:
Y = a cosh[sinh='{W cosh(ay)) - o]

where

x
]

x + 16

-
"

M+ iZ

and a and o, are constants .

(9)

(10)

(1)

Using the parametric coordinates (a,B) as in Gill (1981) we define

&= o +1B

Y=M+ iZ = a cosh{{-a,)

W=x+ 186 = sech(a,)sinh({)

forsa 2 0 O R AU,

(12)

(13)

(14

The requirement W 2 Y as 1Yl 2 ® (for a horizontally stratified

atmosphere at rest a long way from the origin) gives

a =1+ tanh(ay).

(15)

The lower boundary of the region in M-8 space ( a = ao ) is then given

by :
MZ/aZ + 62 = 1 IMl < a (16)

8 =0 IMI 2 a



For a; ? O we have 1 ¢ a ¢ 2 so the indentation varies from a semicircle
to a half-ellipse of eccentricity 1/2 with major axis along 6 = 0 .
Cross-sections of M and 6 for this solution for the values to = 10 and
Q> = 0 are shown in Figs. 2. In Appendix 1, it is shown that the limit
% - @ of this map corresponds to the horizontal discontinuity map of
Shutts (1887) . There is a singularity in the solution at the ends of
this discontinuity ( at x = +/- 1 in Figs 2a and 2b). As a, decreases
the width of the warm strip shortens until at ag = 0 the singularities
merge at the origin (Figs. 2c and 2d).

To extend this solution to allow O ¢ a ¢ 1 requires «a, < O which
causes the map from (a,B) to (x,z) to become multivalued for some a < O.

This may be avoided by taking only that part of the a-B plane with

x> 0 0 -<B. < for-a,-<.0

o 2 0o ¢ Bt w nfor o: 30

This would allow us to construct the solution where the ellipse in the
M-6 lower boundary has its major axis vertical, which is the requirement
for the map to contain a front. However if we consider how the variables
behave on the ellipse boundary we find that for a, < O the boundary is
given by a = 0 , and that as ac 3 - @ the indentation vanishes. As will
be discussed further in Section 3, this is inconsistent with the effect
of frontal deformation which causes the elliptical indentation to
contract along the M-axis but leaves the height of the ellipse
unchanged. The following mapping avoids this problem.
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(b)_Mapping 2

In order to construct a sequence of solutions where the potential
temperature at the top of the front remains constant (8 = 1) as the
front develops, it is necessary to modify Map 1 so that the ellipse has
its major axis in the 8 direction.

A mapping with the required properties is given by

8+ ix = W cosh[sinh~"{Y' cosh(as)} - o)
179
z + iM =Y = sinh{)/(a cosh(as) )
where as before
a =1+ tanh(a,)
and the primes on W and Y distinguish these complex variables from those
in 82a .
This is effectively a transformation and rescaling of the ellipse
generated by the first mapping. It is readily shown that W' -~ Y' for
large IW' | and 1Y'| . The lower boundary of the M-6 domain is now given
by @ = ao and for o > 0 we can obtain the elliptical indentation up to
eccentricity 1/2, with major axis along M = 0. The height of the front ,

given by the value of z at the top of the ellipse , ranges from 0 to

1/2 as o, goes from O to «.

In parametric coordinates

® = Cosh(a-o)Cos B
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X = Sinh(a-a,)Sin B

and the top of the front corresponds to (as,0) in the a-f plane , at

which point 6 = 1.

(c)_Mapping 3

To continue the range of solutions the same transformation and

rescaling are applied to the ' thin lens ' mapping of Gill (1981)

giving the third mapping :

a =1+ coth(ay) (e 2%

W
o

8 + ix = W = cosh( -a,)
(18)

z + iM = Y' = cosh({)/(a sinh(ay))

Cross-sections of M and 6 for different choices of -, with
mappings 2 and 3 are shown in Figs. 3 and 4. Here as as - O in mapping 3
the height of the front tends to 1, but the strength of the front as
measured by the jump in M across x = 0 tends to zero, since it can be
shown that :[M] = 2/a = 2/(1 + coth(ay)) y and coth(a,) 2 ». Thus as we
see in Fig. 3(e) and 4(e) for small a, the frontal perturbation vanishes
and we are left with the background horizontally stratified atmosphere
at rest. This corresponds to the application of an infinite amount of
deformation to the initial state of Fig. 2(a) , as described in the next
section .
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A summary of the parametric representation of the mappings used is given

in Appendix 2.

3. The related frontogenesis problem

Each solution given by the conformal mappings of the previous
section is an exact, time-independent flow state with convective and
symmetric stability . However we may also consider the solutions to be
be part of a sequence arising through the action of a barotropic
deformation flow. It has long been accepted (see e.g. the review paper
of Hoskins (1882)) that the simplest dynamical mechanism for

frontogenesis is the pure deformation flow , given by :

U = =aa¥
(19
Vg = 1 apy
Any pre-existing horizontal temperature gradient in the x - direction

will become concentrated under its influence. For our two-dimensional
study, we consider the cross-section in the plane y = 0 . Hoskins and
Bretherton (1972) showed, using semi-geostrophic theory, that such a
flow is able to produce a discontinuity in a finite time .

For this flow we have :
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DM/Dt = - oM

(20)

D6/Dt O

Individual fluid parcels must therefore obey the equation:

M= M, exp(-opt) 21)

so that M and 6 are known for all time in terms of their initial values.
Applying this to the conformal mapping solutions we may take the
initial state to be that shown in Fig. 2 (a) and (b). Then any other

state may be related to this by a time t given by (see Fig. 5):

MZ = M] exp (_aDt)

that is (22)

ot = 1n(M, /M.)

where M, and M, are the initial and final (time t) half-widths of the

ellipse.

For an initial state that does not contain a front the value of M at

the base of the ellipse (a = a, , B = 0 ) is given by

M(t) = a(t) = 1 + tanh[ao(t)] (23)
so we see that the front will form when a = 1| (o = 0); that is in a
time 1 given by:
_13_



%t = 1n[1 +tanh{a,(0))] (24).

As we move to map 2 , &, increases from O to » as the front grows to
height 1/2 , then moving into map 3 a, decreases from ® to O as t =+ o :
The variation of a, with time as we move through the 3 mappings is shown
in fig 6 . In practice the largest value of o, used is that for which
tanh(a,) = 1 .

By looking at the corresponding time dependence of the parametric
coordinates «a,8 and a for a fluid parcel, instantaneous values of the
vertical and horizontal velocities and accelerations may be diagnosed in
accordance with eq. (20). We have x,z,M and 6 given as functions of «, B
and a, for a particular fluid parcel and so differentiating and applying
the chain rule we obtain Dx/Dt , Dz/Dt , DM/Dt and D8/Dt as functions of
o, B, a», DasDt, DB/Dt and Da,/Dt .

Air parcels initially on the elliptical indentation will remain there

and conserve their values of M, and 6 , thus for the point at the base

of the ellipse in the first mapping we have from eqs. (22) and (23) :
1 + tanh(oo(t)) = [1 + tanh(ae(0)]exp(-oapt) (25).
So by differentiating this expression with respect to time we obtain an

expression relating Do,/Dt to op .

Eqs. (20) may now be written as:

o
n

D6/Dt

F, (e, B, 0o, Da/Dt, DB/Dt)

(26)

DM/Dt

-asM F.(a, B, ae, Da/Dt, DB/Dt)
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where F, and F. are known functions. These two equations may be solved
for Da/Dt and DB/Dt at each point (a , B) thereby allowing Dx/Dt and
Dz/Dt to be evaluated from D/Dt{eq.17). The same process may be applied
to the egs. (26) to obtain expressions for D=a/DtZ and D=B/Dt= allowing
Du/Dt and Dw/Dt to be evaluated .

Cross-sections of the vertical velocity calculated by this method are
shown in Figs. 7. If op™' is equivalent to one day in dimensional units
then Fig. 7 (a) corresponds to a time 15 hours before the appearance of
the discontinuity. A broad zone of ascent is indicated on the scale of
the warm air strip on the surface. As the forcing proceeds a low-level
maximum in vertical velocity appears ; Fig. 7(b) shows the cross section
some 2% hours before the front forms. The position of maximum updraught
speed descends until the maximum is located at the surface at the point
of singularity at the time the front forms (Fig 7(c)) . After the front
has formed the vertical velocity maximum rises from the surface ,
coincident with the top of the front , and the circulation weakens.
(Figs 7(d) and 6(e) >

The implication that w is non-zero at the ground when t = 1
deserves some closer inspection. A fluid particle at the tip of the
front has o = a, and B = O which, from mapping 2, has a height
z= = a7 'Tanh(a,). But by a similar argument to that leading to eq. (25)

it can be shown that:

0o (t-1) = 1ln{14Tanh os] = ln¢a) 27>

so that:
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Ze= l-exp[—ao(t—t)]. to2x (28)

The vertical velocity at the top of the front is therefore given by:

g%E = opexp[-op (t-1)] 29

which demands that

§i % ; Ze= at time 7.

A time series of vertical velocity for an air parcel which finds itself
near the top of the front is shown in Fig 8.

Considering the evolution of the ageostrophic circulation as the
frontogenesis takes place, we know by symmetry that both u and u,_, are
zero on x = 0 . For points on the warm strip at the surface ( on the
indentation a = o, ) we have u,, = -apcos(B) , so that Ua.g 1s a maximum
at the endpoints of the warm strip [B = n/2 ,x = +/-(a-1) 1 . Since
conservation of 6 for fluid on the indentation implies conservation of
coordinate B following a fluid parcel , so u,, is conserved for these
fluid parcels . Thus as the forcing proceeds the two endpoints of the
warm strip move towards the origin , retaining the values of u,g
Therefore between these two points du,,/dx increases , so from symmetry
and continuity dw/dz on the line x = 0 also increases . This continues
until at t = t the two points are coincident at the origin , forming the
singularity . Both du,,/dx and dw/dz are infinite at the origin , as the
maximum in vertical velocity reaches the surface .

_16_
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The instant the front forms there is an infinite acceleration bringing
the flow u,, to rest at x = 0 . The region close to the front around
the x - axis also experiences a rapid deceleration of the flow . It can
be shown that as we move to map 2 the acceleration along the x - axis
has a term proportional to 1/x near the origin at time T . From figures
(not shown) du,.,/dx near the front appears uniform with height below the
top of the front , and so therefore is dw/dz . With w = 0 at the surface
the maximum vertical velocity is located at the top of the growing
front. As the forcing proceeds the ageostrophic circulation weakens ,

until as t 5 ® we return to the basic state atmosphere at rest .

4. “Validity of the hydrostatic and semi—-geostrophic

approximations

The condition for the semi-geostrophic approximation to be valid is
that Dv/Dt should be much smaller than fy . Hoskins (1975) expressed
this in intrinsic coordinates which in non-dimensional form gives two

scalar inequalities :

IV-'DV/Dtl « 1 (25a)

IDy/Dtl « 1 (25b)

where V is the magnitude of the horizontal component of velocity and yx
is the angle made between the horizontal projection of the velocity and
a fixed reference line . The semi-geostrophic equations are valid
therefore if both the streamwise acceleration and the rate of turning of
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the horizontal wind are small . With the Boussinesq approximation, the

vertical component of the non-dimensional momentum equation becomes:

f=/N= Dw/Dt +d¢'/dz = 8' (26)

We may define 8' = ® - z as the perturbation from the uniformly
stratified background atmosphere and compare this term with calculated
values of f=/N®Dw/Dt . The hydrostatic assumption is valid provided that
the ratio |[f#*/N*Dw/Dt /8'| 1is much smaller than 1. This is always found
to be the case and the ratio is of order 10 f2/N2 = 10~2 at maximum .
The acceleration and rate of wind turning ratios (on the left of the
inequalities 25 (a)and (b)) at , just before and just after the time of
formation of the front are shown in Fig. (9) .

Before formation of the front the breakdown occurs over a ‘candle
flame' shaped region above the origin . Taking a height scale H of 1lkm
the region extends to a height of some 40m above the origin and maximum
width of the order of 1km. With the dimensional value of op™!
approximately 1 day the ratios first exceed 0.3 some 30 minutes before
the front forms . These values agree with the recent findings of Davies
and Miller (1988) , who found that , for a different surface potential
temperature profile , the semi-geostrophic approximation broke down some
30 minutes before the formation of the front , and over a region some
30m high by 1lkm wide . The flow modelled in this paper is directly
comparable with the ‘symmetric' solution presented by Davies and Miller
(1988) , but the conformal method of solution allows the frontogenesis
to proceed beyond the time of formation of the discontinuity , allowing
the front to grow into the domain . Time series for a fluid parcel which

_18_



finds itself above the growing front are shown in figure 10 a and b ,
and we see that after the front forms the accelerations become small for
this parcel . However, as was described in the discussion of the
ageostrophic circulation , on formation of the discontinuity there is a
deceleration of the u component , proportional to 1/x, which eventually
brings the ageostrophic flow to rest . This causes the acceleration and
rate of turn ratios to exceed 0.3 in a 'half flame shaped region in
each direction along the x-axis (fig 9d,e) for a short time immediately
after formation of the front , while at the same time the accelerations
in the region above the front have moderated . Thus the region in which
the semigeostrophic approximation breaks down before the front forms is
totally separate from the region in which the breakdown occurs after the
front has formed. A time-series of the ratio term for a parcel which
passes through this region is shown in fig 10c .

Physically , if the region of breakdown acts as a source of gravity
waves during the frontal collapse , in this model the source would be
switched off instantaneously and switched on in another location at the
time the front forms . Because of the small time and length scales
involved only a very small part of the gravity wave spectrum will be
excited . If we consider the flow toward the origin along the x-axis ;

before the front forms the air coasts in towards the origin without

hindrance , the continuity equation being satisfied by an increasing
ascent above the origin , but once the front has formed the flow
effectively sees a 'brick wall' at the origin , hence the dramatic

deceleration and breakdown of the semigeostrophic criteria along the x-

axis’;
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5.Discussion _and Conclusions

We have presented an exact solution representing the growth of a
vertical front consistent with the semi-geostrophic equations. Although
from a physical viewpoint the model is rather contrived, it does have
the virtue of displaying a number of important properties of inviscid
frontogenesis taken beyond the point of discontinuity onset at the
boundary. The solution has implications not only for our physical
understanding and numerical modelling of front formation but also for
the interpretation of potential vorticity diagnostics as the following
discussion shows.

Cullen and Purser (1984) argue that inviscid frontogenesis
involves the formation of discontinuity 1lines <(ie. ‘'true' fronts )
intruding into the interior of a fluid in semi-geostrophic balance. They
also propose that these frontal discontinuities appear as line sources
of potential vorticity (PV). Their growth would seem at first sight to
be inconsistent with ideas recently re-emphasised by Haynes and McIntyre
(1987) - that the mass-weighted volume integral of PV should be a
constant in the absence of boundary fluxes. The domain-averaged PV will
increase as the fronts grow if we do not redefine the position of the
boundary. If, however, the front itself is regarded as part of the
boundary so that the boundary contour follows but does not intersect the
front, then the domain-averaged PV is constant.

In order to understand this frontal contribution to the global
PV consider the lower boundary in M-8 and x-z spaces corresponding to
the vertical front in Fig.3 (b) as depicted in Figs. 11 .::The thick
solid line in Fig. 11 (a) represents the ‘ground' in physical space with
the front marked by a zig-zag line. The dashed line in Bigsi 1l -(a). is
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the boundary contour referred to above which does not cut the front. The
associated contours in M-6 space are similarly depicted in Fig. 11 (b).

Here the mass-weighted volume integral of PV is given by

Jo q dxdz = [,. dMde

where D is any region in physical space corresponding to D' in M-8
space. Clearly the volume-integrated PV obtained using the solid-line
boundary will be greater than that obtained using the dashed line by an
amount equal to the area of the shaded half-ellipse. By allowing the
front to be part of the interior fluid we have admitted the shaded
region of M-8 space even though it maps to a line of zero volume in
physical space (implying infinite PV).

If we allow the fluid to have finite viscosity for a very small
though finite time period, the front would become blurred over a finite
horizontal length scale and fluid particles could be found for all M, 8)
values in the shaded region. In other words, very high PV values would
be found over the small finite fluid volume affected by the diffusion.
Real fronts should therefore be identifiable as zones of very high PV
since turbulent mixing will also prevent the formation of a true
discontinuity. Diabatic heating in real fronts also tends to create a
low-level PV maximum and so it is important to be able to distinguish
between these separate contributions. Numerical simulations of dry
frontogenesis by Keyser and Anthes (1982) clearly show sources of PV at
the base of their model frontal zone which they found to be due to heat
and momentum sources created by boundary layer mixing. We suggest that
this PV source is not an accident of the form of boundary layer
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parametrization but is the inevitable consequence of the smoothing of
the frontal discontinuity at the smallest resolvable scale.

The frontal discontinuity line is certain to be unstable at the
smallest scales of motion but may also be unstable at horizontal length
scales of the order of the Rossby deformation radius based on the height
of the front. This is likely since a necessary condition for instability
in a two-dimensional flow ( the generalised Charney-Stern criterion -
see Eliassen, 1983) is that the potential vorticity should have a
maximum on some isentropic surfaces. This is true of those surfaces
which pass through the front in our idealised model

Another interesting implication of this analytical study is the
high degree of imbalance near the incipient front. Gravity wave activity
is likely to be greatest at the time of appearance of the boundary
discontinuity. The vertical velocity maximum descends rapidly as this
time approaches until - in the solution - it touches the ground as the
boundary front forms. Thereafter, the flow settles down again with the
imbalance confined to a shrinking region near the base of the front
(fig. 8d) . Note that if the deformation was at any time switched off,
the fluid would adjust to the semi-geostrophic solution at that time
provided that no irreversible physical processes had occurred earlier
(eg. gravity wave breaking)

Of some modelling significance is the fact that the warm fluid
initially in contact with the ground has been lifted clean away from the
surface after the discontinuity has formed so that 6=0 on z=0. On the
other hand the usual material boundary condition w=0 at z=0 implies in
practical terms that fluid in the lowest model layer will tend to
remain there - irrespective of the separation effect predicted by the
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solution. The use of high vertical resolution in the boundary layers of
current operational weather forecasting models probably does much to
alleviate this difficulty , by allowing diffusive transfer away from a

very shallow surface layer
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'oss sections for the deformation solution .

(a) map 1 a, 2
(b) map 1 o, = 0.1
'just before formation of front .

(c) map 1 (or 2) a, =0.

at the time of singularity .

Iﬁ) map 2 a, = 0.1
'e) map 2 a, =

1
-
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figure 8 Time series vertical velocity for an air parcel which

arrives above the growing front .




figure 9

Cross-sections of ratio and rate of turn terms .

0.04
a) ratio at time 1 -2% hrs 03
b) ratio and ¢) turn terms at time 1
d) ratio and e) turn immediately after time ¢
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figure 10

Time series of the acceleration ratio (a) and (c), and the rate of turn

terms ((b) and (d) .

(Above) for a parcel which finishes above the growing front.

(Below) for a parcel which is near the x-axis as the front forms .

tick marks indicate an interval of 1 hour
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Appendix 1. Algebraic limits of the map as & varies

The first mapping may be written as

Y = a cosh[sinh~'(Wcosh(a,)) - o) Al

which on making use of the identity

sinh='(x) = ln[x+ (x+1)%] A.2
and expanding, we find that for o, = 0 may be written as
TG S s 1Y A.3

To examine the limit as a, 2 © we may take the mapping in the form used

by Gill(1981)

Y = W+ expla,)exp(-{) A 4

writing ¢ for cosh(a,) and using A.2 we obtain

Y =W+ explay)/[Wc + ¢ (W2 + 1/c®)*» | A5

so that letting o, + ® we obtain

YooadlW b LW A. 6

which is the discontinuity map of Shutts(1987).

_24..



Letting a, 9 - in A.5 we find , as described above , that the limit is

The algebraic form of the third map is given by

Y = W+ exp(-{) sinh(a,) A.8

which, using the identity

cosh='(x) = 1ln[x + (x® -1)*] A9

Y=W 8as o, 2 0 A. 10

Y=W+ %/W as o, 2 @ Aaxld

which is the algebraic form of the discontinuity map for a front

height 1/2.

of



Appendix 2. Expansion of the maps in parametric coordinates

Mapping 1 : a = 1 + tanh(ag)

sinh(a)cos(B) / cosh(a,)
cosh(a)sin(B) / cosh(a,)
a cosh(x-a,) cos{(B)

a sinh(o—-oan,) sind(B)

o a =1 + tanh(ag)

sinh(a-o,)sin(B)
cosh (a-a ) cos (B)
cosh(a) sin(B) / (a cosh(as))

sinh(a) cos(B) / (a cosh(a,))

<X a =1+ coth(ag)

sinh(a-as) sin(B)

cosh(a-a,) cos(B)

sinh(a) sin(B) / (a sinh(ay))

cosh(a) cos(B) / (a sinh(ay))

_26_
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