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ABSTRACT

The Lagrangian form of the semi-geostrophic equations has been shown
to possess discontinuous solutions which have been exploited as a simple
model of fronts and other mesoscale flows. In this paper, it is shown that
these equations can be integrated forward in time for arbitrarily long
periods without breaking down, to give a 'slow manifold' of solutions. In
the absence of moisture, orography and surface friction, these solutions
conserve energy, despite the appearance of discontinuities.

In previous work these solutions have been derived by making finite
parcel approximations to the data. This paper shows that there is a unique
piecewise smooth solutions to the equations with general data, to which the
finite parcel approximation converges. It is also shown that the time
integration procedure is well-defined, and that the solutions remain
bounded for all finite times.

Most previous results on the finite parcel solutions are restricted
to the case of a Boussinesq atmosphere on an f plane with rigid wall
boundary conditions. In this paper the results are extended to non-
Boussinesq fluids, free-surface and periodic boundary conditions, and
variable Coriolis parameter. The behaviour of the equations on a sphere and

the effects of external forcing are discussed.



1. Introduction

This paper extends the theory of Lagrangian semi-geostrophic solutions
introduced by Cullen and Purser (1984), henceforward referred to as CP. In
CP, the theory was used to give a simple model of mature fronts. It was,
however, conjectured that the theory had much greater potential to provide
a simplified model of a wide variety of atmospheric flows. In this paper,
this conjecture is followed up to show that the Lagrangian semi-geostrophic
equations can be integrated in time to give a ‘slow manifold' of
atmospheric behaviour. Any balanced system of equations can in principle be
used in this way, provided that it can be proved that solutions continue to
exist for all time. Bennett and Kloeden (1981) proved such results for the
quasi-geostrophic equations if boundary potential temperature gradients
were excluded. In this paper we prove that the semi-geostrophic equations
can be solved for arbitrarily long times, and conserve energy in the
absence of moisture, friction, and mountains.

The concept of a 'slow manifold' has usually been used to describe a
hypothetical subset of solutions of the full equations of motion which
behave in a slowly varying manner, Leith (1980). This manifold is then used
as a convenient way of describing those atmospheric motions which are
directly associated with weather systems. It is now generally agreed, e.g.
Vautard and Legras (1986), that no such manifold can be derived in a
rigorous way from the equations of motion. An alternative procedure is to
use a balanced system of equations to define the manifold. A precise
procedure such as this 1is necessary if, for instance, the concept is being
used to design data assimilation systems. However, whatever balanced system
is used, it will not be an accurate approximation to the equations of
motion everywhere. Its usefulness can therefore not be determined a priori
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but has to be established by experiment.

In CP the equations were written as a set of ordinary differential
equations for the potential temperature and absolute momentum components
along parcel trajectories. By approximating the data by a finite set of
parcels, it was proved that a symmetrically stable solution of the
equations could always be derived as a sequence of rearrangments of the
parcels. This rearrangement 1is wusually smooth, and determines the
ageostrophic circulation. CP showed that it could nevertheless generate
discontinuities in potential temperature and absolute momentum which formed
a simple model of fronts. The rearrangement can also include cases where
parcels have to jump to new stable positions, in which case it forms a
simple model of penetrative convection. It was conjectured that by taking
progressively larger numbers of elements, a sequence of approximate
solutions would be generated which converges to the solution of the
‘continuous' problem. This result is proved in this paper, by making use of
the extensive theory of generalised solutions of the Monge-Ampere equation.

The finite parcel construction has been implemented as a numerical
method, usually called the 'Geometric' method, by Chynoweth (1987). It has
been used to explain aspects of mountain flow, Cullen et al. (1987), Shutts
(1987a) and penetrative convection, Shutts (1987b), Shutts et al. (1988).
These applications include cases where the solutions appear to contain
discontinuities representing fronts. There is always a difficulty, however,
in distinguishing the discontinuities between individual parcels in the
approximation, and discontinuities which remain in the limit of infinitely
small parcels. This is a situation where it is important to understand the
convergence properties of the method. An even more difficult situation, not
treated in this paper, is that of penetrative convection, where parcels
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‘Jump' in physical space. In that case it is necessary to show that the
method converges to a solution giving continuous mass transfer at a well-
defined rate from a source region to a sink region.

The next aim of the paper is to establish results about the time
evolution of the system. In CP it was conjectured that a solution could be
constructed by integrating the ordinary differential equations in time for
the parcel properties, and finding the arrangement of the parcels in
physical space at each time. This is the implementation for the semi-
geostrophic case of the general procedure for solving balanced equations
set out by Hoskins, McIntyre and Robertson (1985) where the potential
vorticity is advected along trajectories and the remaining fields found
using an 'invertibility' principle. The Geometric method can be regarded as
the inversion procedure in the special case of piecewise constant data. In
simple problems, such as most of the published applications of the
Geometric method, the evolution equations can be solved analytically, and
the solution derived by a single construction at output time. In general,
the evolution equations can only be solved with a knowledge of the current
position of the parcels, and the solution must be obtained by time-
stepping. It 1is necessary to ensure that a well-defined solution is
obtained as the timestep tends to zero. We first prove that this procedure
is well-defined for strictly positive potential vorticity. The limit
solution then defines the ageostrophic circulation. If the potential
vorticity is allowed to approach zero, the ageostrophic circulation is not
well-defined but the evolution of the geostrophic field still converges to
a well defined limit. This covers such cases as the evolution of well-mixed
boundary layers. Such a solution is physically relevant because changes in
the positions of individual parcels in a well-mixed layer do not affect
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the pressure field. This extension is the first step towards ensuring that
the penetrative convection solutions are well-defined.

Salmon (1985) and Shutts (1988) have derived forms of the semi-
geostrophic equations from Hamilton's principle. Both make use of the
Lagrangian form of the equations. This means that the equations have
conservation properties which make them a suitable candidate for extended
time integrations. The next step is therefore to show that the Lagrangian
equations can be integrated forward in time for indefinitely long periods.
It is shown using conservation of potential vorticity and the energy
equation for individual parcels that a solution exists for all finite
times. This analysis is most conveniently carried out by using the ‘dual’
form of the equations set out in Purser and Cullen (1987), referred to
hence as PC. In this formulation we study how parcels move round data
space. The constraints which are used in the analysis must be respected by
numerical methods if their nonlinear stability and accuracy is to be proved
for long time integrations.

The results in CP and the extensions set out above apply to the f-
plane equations in a bounded region, using the form of Boussinesq
approximation and lower boundary condition introduced by Hoskins and
Bretherton (1972). The rest of the paper shows how much of the theory can
be extended to the case where these extra approximations are not made. We
thus consider the non-Boussinesq case, free-surface boundary conditions,
periodic boundary conditions, and variable Coriolis parameter f. An extra
approximation introduced by Salmon (1985) is crucial in applying the
results directly to the variable f case. Slightly weaker results, however,
can still be proved by iteration without this approximation. The theory has
been extended to spherical geometry by Shutts (1988) using a modified

-6 -

"
‘l



Tk R G - aE T =

version of the equations in which the component of geostrophic wind
parallel to the axis of rotation is neglected in the Hamiltonian. In this
paper we study the unmodified version of the equations in spherical
geometry. We finally illustrate how external forcing terms are included in
the solution, and discuss their effect on the long-term evolution.
2. Solutions of the semi-geostrophic equations in a bounded region on an
f-plane.
a. Basic equations

The equations are written in their usual form with z a function of

pressure and the Boussinesq approximation made, Hoskins and Draghici

€1977).
Du,/Dt + f(vg - v) =0, (2:5)
Dvg/Dt + f(u - ug) = 0, (2:2)
De/Dt = O, (2:3)
DV/Dt = O, 2-4)
(fvg, -fug, g6/6.) = Vy, £2:5)

where D/Dt = d/dt + u'V. The equations are to be solved in a closed region
Q in x=(x,y,z) with zero mass flux through the boundary. No boundary
conditions can be given on the geostrophic variables. The continuity
equation has been written in Lagrangian form with V the specific volume.
For this first application, we rewrite the equations using the geostrophic

coordinates as dependent variables, as in PC:

X = (X,Y,2) = (xtvg/f,y-ug/f,g0/(£20,)), (2+6)

DX/Dt + f(Y-y) = 0, @

DY/Dt + f(x-X) = 0, 2:8)

DZ/Dt = O, 29

Dp/Dt = O. 2:10)
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p 1is the inverse potential vorticity, 2(x)/d(X). If the equations have

differentiable solutions, (2.10) was shown to follow from (2.1) to (2.4) by
Hoskins and Draghici (1977). (2:7) to (2:10) can be reinterpreted as
equations defining the motion of points in geostrophic and 1isentropic
coordinates (X,Y,Z). We henceforward refer to X=(X,Y,Z) space as data
space. The equations in data space are then:
U= (f(y-YD,fX-x),0) (2:11)
op/dt + Vy (pU) = 0. (2:12)
As indicated, all derivatives are now with respect to X rather than x, so
(2:12) does not take the same form as (2-10). However, for the particular U
given by (2-11), V,:U=0, so that Dyp/Dt is zero. U must be redefined when
forcing terms are included, and the more general equation (2-12) will be
needed to calculate Dyp/Dt.
As shown in PC, the physical coordinates (x) can be derived as the

gradients of a potential function R, where

R=fix-X - P, (2:13)

and

P

¢ + Bf2(x2+y2), (2-14)
P is the generalised geopotential function introduced by CP. It was shown
there that the condition for static, inertial and symmetric stability is
that P is a convex function.
b. Representations of atmospheric states at a fixed time

We follow the general prescription of Hoskins et al. (1985) for
solving balanced systems of equations. An invertibility principle allows
all variables to be derived from the potential vorticity. The potential
vorticity equation is then used to advance the solution in time. We first
show how the atmospheric state is calculated from the potential vorticity,
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using the semi-geostrophic definition of balance. The geometric
construction of CP is the invertibility principle for the special case when
p is made up of delta functions. Since the general case will be derived as
the limit of such constructions, it will turn out to be most convenient to
use p rather than q as the history carrying variable.

Suppose that at some time t, p is given as a function of X, subject to
the condition that integrating p over all X gives the volume of the given
region Q in physical space. p is zero for all values of the data X which
are not taken by any point in the fluid. Then the remaining variables can
be computed in principle by the following steps:

(1) Use the definitions of p and R to give

det (D2R/dx,0x;) = dD(VRI/D(X) = p. (2-15)

(i11) (2:15) is a Monge-Ampere equation for R in terms of p. It must be

solved given the boundary condition that VR = x is always within Q

for all X. Note that this avoids the need to specify any information

about the geostrophic variables on the domain boundary. This is an
important advantage over some of the systems discussed by Gent and

McWilliams (1983).

(111) The solution for R(X) allows VR to be calculated, and hence the

mapping X-x which assigns data values to points in physical space.

(iv) All information required to advance the solution of (2:11) -

(2:12) in time is now available. The values of the total velocity u

are not needed for the time integration. Where they are well defined,

they can be diagnosed during the time integration by calculating

(x(t+At)-x(t))/At.

The boundary value problem (ii) is a standard one in the theory of the
Monge-Ampere equation. The theory of this equation is set out in Pogorelov
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(1964), henceforward referred to as PG. The extensions needed to apply this
theory to the meteorological problem are proved in Cullen, Norbury and
Purser (1988), hereafter referred to as CNP. In this paper we give an
intuitive geometrical description of the results and proofs.

In the geometrical interpretation, the potential function P is
interpreted as a surface, and the extra condition is imposed that the
surface must be convex when viewed from below. This 1s equivalent to
requiring general parcel stability for the atmospheric state, Shutts and
Cullen (1987). The curvature of P is related to the potential vorticity,
and convexity implies non-negative potential vorticity. It implies that X
is monotonically increasing in x, Y in y and Z in z. It can then be shown
that, if the physical domain Q is convex, the 'dual' potential function R
is also convex. The inverse potential vorticity p is related to the
curvature of R, and convexity of R implies non-negative p. Since p is
defined for all X, R is an infinite convex surface. These ideas are now
developed more formally.

Definition.

Given any point O of an infinite convex surface, construct the cone
of rays extending upwards from the surface which do not intersect it again.
The set of directions taken by these rays is called the limit cone of the
surface, Fig. 1. It can be shown that it is independent of the choice of O.
Definition.

Given a segment of a surface containing a point O, construct the
normals to the surface at all points within the segment. Move these normals
to 0, thus constructing a cone at O, Fig. 2. Calculate the ratio of the
solid angle of this cone to the area of the segment. This is the curvature
of the segment. The limit, A, of this ratio as the segment shrinks towards

~-10~
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O is called the curvature of the surface at 0. (A rather fuller definition

is given by PC, p.3453.)

The inverse potential vorticity p associated with the segment can be

calculated directly from the curvature. It is shown in PC (p.3454) that

p = MJIC(1+|VR|2)S = N/J(1+x2+y2+22)5,
This is an example of a generalised curvature. PG defines a generalised
curvature to be A multiplied by any positive function of x, X, and R.
Theorem 1.

There is a unique infinite convex surface R with given generalised
curvature p and limit cone W up to an arbitrary additive constant, given
the condition that the integral of p over X is the solid angle contained in
w.

Proof.

The formal statement and proof of existence are given by PG (p.33),
and the uniqueness result 1s given by CNP. The method used is to
approximate the surface by polyhedra with successively more faces, and thus
show that the geometric construction introduced by CP converges. The
uniqueness result is proved by contradiction. If there are two solutions R,
and R., the arbitrary constant and the common limit cone V means that we
can assume that R.?R, everywhere, with equality at at least one point O.
Then R, can only diverge from R, if there is some neighbourhood of O where
the solid angle contained in R> over the neighbourhood is strictly less
than that of R,. The generalised curvature of R, over the neighbourhood is
therefore also strictly less than that of R,, contrary to hypothesis. (The
rigorous mathematical proof requires care because R, and R may contain
‘creases' which make the solid angle contained in certain regions 1ill-

defined).
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Definition.

A displacement of a field p(X) is a mapping X to X'=X+AX and a new
function p' such that p'(A')=p(A) where A is any subset of X space and A'
is its image under the displacement. The case where the displacement maps a
finite region onto a single point is covered.

Theorenm 2.

The surface R changes continuously under changes to p which maintain
the physical requirement p30 and conserve the integral of p over X.

Proof

The mathematical version is given in CNP. Any change to p which
satisfies these conditions can be generated by a displacement of the p
field as defined above. Measure the displacement required to achieve the
change by its maximum value of AX. Consider a sequence of displacements
with max(AX) tending to zero, and associated functions p' and R'. A
standard argument shows that the functions R' must have a limit R". Let p"
be the generalised curvature of R". The definition of displacement,
however, means that the generalised curvatures p'(A) must tend to p(A) over
any subset A of X with boundary dA where p(dA)=0. The boundary of A has
measure zero in X, and so for almost all choices of A, p(dA) will be zero.
Thus p" (A)=p(A) for almost all A, and the argument used to prove uniqueness
in Theorem 2 shows that R"=R.

These results show that given any p(X), the geostrophic pressure and
wind fields can be constructed uniquely in physical space. This solution
can be achieved by taking progressively more elements in the Geometric
method, and may contain discontinuities in the limit solution. It is these
discontinuities which form a simplified model of mature fronts. Unlike the
more familiar quasi-geostrophic application of the invertibility principle,

_12_
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no boundary values can be given for the geostrophic fields. In the quasi-
geostrophic case, the isentropic potential vorticity must be given, which
means that p is given as a function of x,y and Z. In the semi-geostrophic
case p is given as a function of X,Y and Z. The difference is the familiar
one of replacing physical by geostrophic coordinates. The quasi-geostrophic
problem requires Z to be specified as a function of x and y on the physical
boundary. In the semi-geostrophic case , consider the region of X space
with p#0. The monotonicity condition means that any point on the convex
hull of this region corresponds to a point on the physical boundary (CP,
p.1486). In particular, the point with the largest X, Y or Z does so. At
these points any one of the X coordinates can be considered as given in
terms of the other two, so we can write Z=Z(,Y). This is the semi-
geostrophic version of the quasi-geostrophic requirement Z=Z(x,y). However,
the practical effect is very different. In the semi-geostrophic case no
values of the geostrophic variables can be specified in advance at
particular points on the physical boundary, the entire solution is
constructed from p. No unnatural boundary conditions of the type needed in
the various systems examined by Gent and McWilliams (1983) are required.

It was shown in Shutts and Cullen (1987) that the atmospheric state
obtained by the above inversion procedure is a minimum energy state with
respect to smooth volume preserving rearrangements of the fluid conserving
X. This characterisation also applies when the rearrangement is not smooth,
as may be the case for general data. The necessary extension of the result
is given in the following theorem:

Theorem 3
The minimum geostrophic energy
E = [o¥(u 2+v 2)-gbz/0,dx (2:16)

_13_




obtainable by rearranging the fluid within Q and preserving the value of X
following each particle is given by solving for R as described in Theorems
1 and 2, and then finding the particle positions from VR.
Proof
The full mathematical version is given in CNP. The energy integral can

be written

£2 [, (6 ((y-Y)2+(x-X)2)-zZ) dx. 2:17)
The only terms which change under the prescribed rearrangements are

f2 [~ {yY+xX+zZ) dx. (218)
This integral is bounded under rearrangements because both Q and the data
are bounded, and it can then be shown that there must be some rearrangement
that minimises E. In this configuration, any cyclic interchange of
particles originally at (x,,''',x,) must not decrease E, so that

=Xy X=Xy )~ e X (X X)) 300, (2.19)
A standard theorem proved in Rockafellar (1970,p.238) states that X must
then be the gradient mapping of a convex function P(x) defined on Q. (This
mapping may be multivalued at some points in Q). Since there is a unique
convex function constructed according to Theorems 1 and 2, this must be the

desired minimising function.
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C. Integrations of the equations in time

Now consider the integration of (2:11) and (2:12) in time. (2-12) does
not make sense when the data take a wuniform value X over a region Z of
positive volume in Q because x-X is then multivalued. The potential
vorticity is then zero over this region. p is a delta function at X whose
integral is the volume of E. (2:12) must be replaced by the integral form

d/dt(Jupdt) + [,upU-nds = 0, (2:20)
where the integrals are taken over fixed volumes V in X space with
boundaries dV. Physically, the semi-geostrophic equations do not define the
motion within a region where the data are uniform, such as a well-mixed
layer with zero absolute vorticity. Motions within such a region, however,
have no effect on the remainder of the balanced solution, so the equations
have in effect been reformulated to ignore them.

The standard method of showing that equations like (2:12) and (2-20)
can be integrated forward in time over an interval (0,T) in a well-defined
way is to divide the interval into timesteps and prove that the solutions
obtained converge to a unique limit as the timestep tends to zero. This is
a trivial matter for conventional evolution equations with smooth
solutions, but is not trivial for balanced equations where some of the
variables are determined implicitly. Essentially it then requires that an
ellipticity condition is satisfied.

The proof requires Vy: (pU) to vary in a continuous way as the p field
evolves under the conservation law (2:20). In the simple case where p 1is
initially bounded and remains so throughout (0,T), it is shown in CNP that
the continuity result in Theorem 2 is sufficient. (2:-11) and (2'12) are
used. The U defined by (2:11) is non-divergent, even if it contains
discontinuities. This is because the integral [,.U'nds around the boundary

_15_



of any subset V of X space can be written as
Jau (d/70s (R-%(X2+Y2))ds,

which vanishes. Hence we obtain

Theorem 4

(2:11) and (2:12) can be integrated forward for a finite time
interval, given that p is initially bounded.

In the general case where p contains delta functions, corresponding
to regions of zero potential vorticity, it is still possible to show that
the evolution of the potential functions R and P is well-defined. Thus the
geostrophic part of the flow can still be calculated. Individual particle
trajectories are undefined within regions where the potential vorticity is
zero, since two particles with the same X can be exchanged without any
effect on the geostrophic fields and hence the balance requirements.

In order to do this U must be redefined, since (2:11) will be
multivalued at points where p is unbounded. In order to preserve energy
conservation, the appropriate choice of U will be shown to be

U = [of (y=Y,X-x,00dx/p V), (2:21)
where V is the region of Q with data values X, and p(V) is its volume.
Theorem 5

R can be integrated forward in time for a finite interval.

Proof

The procedure of updating p according to (2:20) and (2:21), and
finding R, can be set out as solving the equation

dR/dt = F(R). (2:22)
Theorem 2 shows that F(R) is continuously dependent on any changes to p
that can arise from solving (2:20), so the standard time integration
argument used for Theorem 4 proves the result.
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It is then natural to ask if the equations can be integrated forward
indefinitely. This is necessary if they are to be used as a 'slow
manifold', or a model describi the evolution of the balanced part of the
atmospheric flow over long time periods. Hoskins (1975) shows that they
conserve energy, at least for smooth solutions, and they also conserve
potential vorticity. In the quasi-geostrophic case, such properties can be
used to show that the equations can be integrated forwards indefinitely,
under restrictive assumptions on the boundary conditions, Bennett and
Kloeden (1981).

We first show that the equations still conserve energy when the
solutions are discontinuous. Since Theorem 1 shows that a general solution
can be treated as the 1limit of a sequence of piecewise constant
approximations, we prove the result for piecewise constant X. The general
case can be recovered in the limit.

Theorem 6

Given piecewise constant data X, at t=0, the integration of (2:20) and
(2:21) in time conserves the total geostrophic energy (2:16).

Proof

Using the form (2:17), and dropping the factor f2, the integral of
%k(x2+y?) is constant in time. Consider the rate of change of

Ja{®(X24Y2)-xX-yY-2Z }dx.
i zijn;{%(X12+Y,?)-xix,-y,Y,—z,Z,}p,d,, (2:23)
where x; is the centroid of the region Q; of Q with data X;, and p, is its

volume. According to (2:21)

dx;/dt = f(y‘_Y’.)
dy,/dt = f(X;-xy) (2:24)
dZ,/dt = 0.
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Differentiating (2-23) with respect to time and substituting (2-24), all
terms within the integral cancel except

-X, -dx/dt. £2:25)
This is a discrete representation of the term u'V¢ which is derived in the
energy equation for the continuous case. Since the volume of the regions Q,
is conserved, the physical velocity within each region can be represented
as a non-divergent u with mean value dx;/dt. The component of u normal to
region interfaces is continuous across them but the tangential component
need not be. Then the term [, {-X,'dx,/dt}dx becomes

Jas—u VP dx

= -[0: (PW'n ds
around the boundary of Q;. When summed over the Q;, this term cancels at
region interfaces by continuity of P and u'n, and vanishes on the boundary
of Q because no fluid can flow across it. This proves the result.

In order to study the long time behaviour of the system, consider the
evolution of X following a fluid particle. The aim is to show that X
remains bounded indefinitely, which means that the equations will have a
solution for all time with total energy conserved. The Z component never
changes, so consider the evolution of the (X,Y) components. Let W=/(X2+YZ)
and a be the angle made by (X,Y) with the X axis, Fig. 3. Denote the
position of the particle in the (X,Y) plane by A. If x is the position of
the particle in Q, let B be the point in the (X,Y) plane with coordinates
(x,y) and let B be the angle between (x,y) and the x axis. Then (2:7) and
(2:8) show that A rotates around B with period 2nf-' and that W satisfies
the equation

dw/dt = f/(x2+y?)sin(f-a). (2:26)
W can only increase at a rate bounded by the diameter of Q. Furthermore, if
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|X| becomes large, it will have to be close to the point in Q where the
normal direction is X, by monotonicity of any component of X in the
corresponding component of x. This is illustrated in Fig. 4 which shows
contours of P, recalling that X=VP/f2. Energy conservation means that a
region with large |X| and hence large W must have volume proportional to
|X|-2. Let I be the closed convex curve in the (X,Y) plane whose
coordinates are equal to the (x,y) coordinates of the points of the
boundary of Q where the tangent plane is parallel to the z axis. This curve
and the subsequent construction are illustrated in Fig. 5. For large W, the
point B will be close to that point of Il where the tangent is normal to the
direction (X,Y). Now let C be the point where the direction (X,Y)
intersects I and let r be the distance OC, where O is the origin in the
(X,Y) coordinate system. Let the angle o that X makes to the X axis
increase. If dr/da>0, as shown in Fig. 5, 1t is clear that OB makes a
greater angle to the X axis than OC and so (B-a)>0. As a rotates round
(0,2n), the integral of sin(B-a) will be approximately the integral of
dr/da, which vanishes. If W is large, (2:7) and (2:8) show that o will
indeed rotate in this way, and so W is likely to tend to a constant rather
than increase indefinitely. Though this argument is not rigorous, it
suggests very strongly that the solutions will remain bounded for all time.

The very strict bound (2:26) on the growth of W, and the likelihood
that it remains bounded for all time, mean that the semi-geostrophic
equations (2+1) to (2:5) can be integrated for indefinitely long periods
while conserving total energy. It is known that a slightly simplified
version of these equations can describe the growth of baroclinic waves
including fronts, Hoskins and West (1979). The existence result therefore
suggests that a complete inviscid baroclinic lifecycle exists. When such a
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lifecycle is computed using a primitive equation model, up to half the net
available potential energy depletion is accounted for by dissipation in
horizontal diffusion terms, Simmons and Hoskins (1978). The semi-
geostrophic lifecycle is thus fundamentally different.

Since (2+1) to (2:'5) are inviscid, they can be run backwards as well
as forwards in time. This suggests that the behaviour of synoptic systems
with embedded fronts can be modelled as a completely reversible system in
which fronts are regions of discontinuity that appear and disappear from

time to time, and are entirely controlled by the large scale flow.

3. Extensions of the theory

The f plane Boussinesq system discussed in section 2 takes a
particularly simple form which makes it suited to anmalytic solutions for
smooth data using the geostrophic coordinate transformation and to simple
construction of solutions for piecewise constant data by the geometric
method. However, for assessing the applicability of the theory, it is
important to know if the basic qualitative structure of the solutions is
affected by these approximations. In this section they are withdrawn one by
one to see if the theory still applies.
a. Non-Boussinesq fluids

As shown in the original derivation of (2:1) to (2:5) by Hoskins and
Bretherton (1972), (2:4) takes the general form

D(r(z)V)/Dt = 0. (3D

The equations are now to be solved in a region Q of the form Q(x,y)x(0,H).
r(z) is a prescribed function ( a pseudo-density) which decreases with z.
If the whole mass of the atmosphere is included in the model, then r(z)
tends to zero as z tends to H. The special form of Boussinesq approximation
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used neglects the variation of r(z) following a trajectory. This is not too
serious for dry adiabatic processes where conservation of © makes large
excursions in 2z wunlikely. Since the change from (2+4) to (3:1) is
essentially a rescaling of the measure of mass in the z coordinate, it is
not likely that the qualitative nature of the solution will change. The
only difficulty is that r(z) » O at the upper boundary.

In order to extend the theory to use (3:-1) instead of (2:4), it is
sufficient to prove that the inversion procedure of section 2b can still be
applied. (2-12) becomes

d/dt(pr(z)) + V.- (pr(z)U) = 0. (3:2)
Thus pr(z) is the predicted quantity rather than p. The same procedure for
constructing the solution as in section 2 can be followed. The theory given
by PG, p.33, proves that a convex surface R can be constructed if pr is the
given quantity rather than p itself because the definition of generalised
curvature includes the form pp(x,y,z), where p is an arbitrary prescribed
positive function.

PG does not give a uniqueness proof for this case, so the uniqueness
proof in CNP must be extended. Supposing that there are two solutions, R,
and R., the critical part of the proof, as summarised in the proof of
Theorem 1 above, is the identification of a region where the solid angle
contained in R. is strictly greater than that in R,. The integral over this
region of p multiplied by u(x) will then be different for R> and R,,
establishing the required contradiction. The only difficulty is near the
upper boundary where r(z) tends to zero. If, however, the only region where
R,#R. adjoins z=H, there must still be a z strictly less than H where r(z,)
is strictly positive and R, (z,)#R2(z,). The same argument can then be
applied using z, as the upper boundary rather than H.
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b. Free surface boundary conditions

The easiest extension from the case of a fluid filling a prescribed
volume is to the shallow water equations, where the fluid 1is within a
region Q in the (x,y) plane but its depth can vary. The theory can treat
the important cases where the fluid does not cover the whole of Q, or where
it detaches from the boundary of Q during the time evolution. Neither are
easily treated by conventional shallow water theory.

Consider first the ‘'shallow water' form of the semi-geostrophic

equations in two space dimensions:

Du,/Dt + flvg - v) = 0, (3:3)
Dvy/Dt + f(u - uy) = 0, (3+4)
D(sV) /Dt = 0, (3+5)
(fvg, -fuy) = Vs. (3:6)

The potential vorticity equation now becomes
D(p¢>/Dt = 0. €372

p is still defined as d(x)/d(X), with X defined by the first two components
of (2:6). The equations are to be solved in a closed region Q in x=(x,y)
with zero mass flux across the boundary. In order to understand how the
solution is constructed, consider piecewise constant data as in CP.

Consider first the problem solved in section 2 where (3'3) 1is
repalced by DV/Dt = 0, and the fluid fills Q. The solution is constructed
as a polyhedral shell P=¢+%f2(x2+y?) whose faces have given gradients X,
and areas V,. The areas V, projected onto the (x,y) plane add up to the
area of Q. The solution is only determined up to an additive constant.

Given the same form of data, the free surface construction is
illustrated in Fig. 6. For simplicity, the diagram is drawn for one space
dimension only. It is now the fluid volumes p,, equal to the integrals of
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(P-%f2 (x2+y2))V, over each face, which are given. The values of V, are not
given. The construction is carried out by starting from the convex cylinder
with lower end surface s=kf2(x2+y?2), (x,y)€Q, and vertical sides
intersecting the boundary of Q. The surface P is then constructed as the
intersection of tangent planes with this cylinder. These planes are
displaced parallel to the s axis a sufficient distance to obtain the
correct p;. As in the incompressible case, the crucial property is that
increasing the value of s associated with one face increases its value of p
at the expense of neighbouring faces. The argument of CP can then be
followed through to prove the existence of a unique solution. If the
total volume of fluid is sufficient, the whole of Q will be covered. If
not, the fluid will only partially fill Q as in the example shown in Fig.
6. In a time dependent calculation, this property of the model allows
boundary separation to be represented. This may be particularly important
if the model is applied to the ocean. This method of construction is
equivalent to the procedure used by Shutts (1987a) to solve the problem of
two-fluid flow over a weir. In his case the fluid interface plays the role
of the free surface.
This result can be extended to general data by using methods similar
to those in section 2. Define the conserved quantity p¢ in (3:7) to be
p(X) = max(f2x:X-R(X)-%f2 (x2+y2?),0)p(X). (3:8)
This expression is obtained by substituting for ¢ in terms of R using
(2-13) and (2:14). The zero value represents values of X with no associated
fluid volume. PG, pp. 29-33, includes functions 1like (3:8) in his
definition of generalised curvature, so the existence theorem holds for
this case. The uniqueness proof can be carried out by similar methods to
those used in CNP for the fixed boundary problem, though it is easier to
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work in physical space rather than data space.

The second extension to the theory made in this section withdraws the
approximation to the lower boundary condition made in section 2, where zero
mass flux 1is imposed at z=0, though this 1is not the physical lower
boundary. The correct lower boundary condition in the z coordinate case be
shown to be

$ =0 at z = H(1 = (pa/po)s¥=!27v), (3:8)
using the definition of z in Hoskins and Bretherton (1972). p. is the
surface pressure. Only the integral of ps over Q 1is given. The other
boundary conditions are unaltered, so that there is zero mass flux through
the boundary of a closed region Q of the (x,y) plane and through z=H. The
interior equations are still (2:1) to (2:5).

The method of solution is illustrated for a version of the problem in
a (x,z) cross-section, so that P and ¢ are surfaces in three dimensions and
can be easily visualised. In this case Q is a closed line segment in x.
Piecewise constant data is used as in CP. In the fixed boundary problen,
the construction of CP starts with an infinite cylinder I in (x,z,s) space,
whose cross section is Qx(0,H). Then P is the lower boundary of the
intersection of I with the half spaces

s 3 xX, + 2Z, +s,. (3:9)
It can then be proved that there is a unique construction in which the
faces of P have prescribed areas whose sum is the area of Qx(0,H).

In the free surface case, the only change is that I is the curved half
cylinder

S 3. Mf2x2, 2z ¢ H, x€ Q. (3-10)
This is illustrated in Fig. 7. It is convex, and so a convex surface P can
be constructed as the intersection of Il with half spaces (3:9). Assume that
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Z; > 0 for all i, which simply requires positive 6. Then it can be seen
from Fig. 7 that the resulting surface is equal to ¥f2x? for z ¢ z,, for
some 2Z,, and otherwise has the required boundaries z=H and x€dQ. The
required solution of the equations is that part of the surface with z ?
Zo. The proof that a solution in which each face has the required area can
be constructed is then exactly the same in CP. To see that this solution is
unique, suppose there are two solutions P, and P>, with lower boundaries
z,(x) and z-(x) where P = ¥%f2x2, Choose z,¢{z,({x),zo(x) for all x in Q.
Extend P, and P> to the region Qx(z,,H) by setting P,=%f2x2 for z,{z{z, (x),
P_=%f2x2 for z.¢z¢{z-(x). The area of this extension is the same for P, and
P-, because the area of each face is given. Then P, and P, are two
different solutions to the fixed boundary problem, and can only differ by a
constant. Since the two surfaces are equal for z=z,, they are equal
everywhere.

The proof in the three-dimensional case 1is exactly the same, though
not easy to visualise. The extension to general data can be carried out by
the same methods as in section 2. The only extra step needed is to ensure
that it is possible to choose a z, in the uniqueness proof. This fact
follows from boundedness of the data.

C, Periodic boundary conditions

The next extension is from the fixed boundary problem to periodic
boundary conditions. This 1is needed to treat the important idealised
problem of flow in a periodic channel, as well as a first step to extending
the theory to spherical geometry. The only difficulty arises with the
definition of absolute momentum components, which have to be redefined
allowing the coordinate to 'wrap around'.

The geometrical construction of CP was extended to a domain in an
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(x,z) cross-section with periodic boundary conditions in x by Chynoweth
(1987). His method is used here to extend the result to general periodic
boundary conditions. The geopotential ¢(x,y,z) is defined for all x, with
the periodicity condition

¢ (x+kK, y+1L, z+mM) = ¢ (x,y,2), 311)
for all integers k,l,m and fixed values (K,L,M). The potential P is now
defined by

P (x+kK, y+1L, z+2Z) =

P(x,y,z) + f2(kKx+lLy+mMz) + %f2 (k2K2+12L2+m2M2?), (3:12)
This definition retains the convexity of P. Now given a set of n values of
plecewise constant data X, with total area KLM, construct a set of ‘'ghost'
values

(X,+kK, Y, +1L,Z, +mM) (3:13)
indexed by the integers (k,1,m) for each i. It is then shown that if x lies
on the intersection of values X, and X;, x+k‘K lies on the intersection of
values X;+k‘K and X;+k:‘K. The construction is now carried out in a similar
way to that in CP. The solution is obtained over a single ‘copy' of the
domain (O¢x¢K,Of{y¢L,0¢z¢Z). It is found as the intersection of the tangent
planes

s = xX+s,, 1¢i¢n, (3-14)
where each plane has 'ghost' planes

s = x. (X +kK,Y,+1L,Z,+mM) + s, + %f2(k2K2+12L2+m2M2)

+ f2 (kKX,+1L,+mMZ,). (3:15)

It is then clear that as each s; is increased, the total area of the ith
plane and its 'ghosts' will be increased at the expense of its neighbours,
so that the proof of CP can be applied. The construction is illustrated for
one space dimension in Fig. 8. The extension to general data is made by the
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methods of section 2.
d. Variable Coriolis parameter

This is the most difficult of the extensions treated in this paper,
because the rewriting of the equations in a form where all the ageostrophic
circulation is absorbed into the D/Dt operator is only possible for
constsnt f. This procedure is crucial in the theory. The extension is
necessary if the theory is to be used to describe more than localised
mesoscale phenomena over short time periods, and has therefore received
much attention in the literature, especially Salmon (1985). It 1is first
analysed assuming that the domain does not approach the equator. The
application of the theory at the equator is described in the next section.
At least four approaches are possible. Three introduce extra approximations
as the price for obtaining equations to which some of the theory can be
applied. The fourth does not, but little can be proved about the solutions.

Shutts (1989) extended the theory to spherical geometry by considering
the sphere as embedded in three-dimensional Cartesian space and using a
Hamiltonian formulation in which the gravitational force does not have to
be parallel to the axis of rotation. The theory applies quite naturally to
this configuration. The effect is that equation (2:2) 1is replaced by

D(vgsinA\) /Dt + f(u - uy) = 0, (3:16)
where A is the latitude. This approximation replaces the horizontal wind by
its geostrophic component in a plane perpendicular to the axis of rotation.
The absolute momentum can now be written as
M= 2Q(r - (Q'Q/Q?) - Qxv/Q, (3123

where r is a position vector and Q is the angular velocity vector. It is
then shown that the absolute momentum components are conserved if the
pressure gradient terms are removed from (2+1) and (3:16), geostrophic
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coordinates can be defined, and the remainder of the theory presented in
this paper follows through without alteration.

Salmon (1985) derived a set of equations very similar to the semi-
geostrophic equations from Hamilton's principle. By introducing
approximations directly into the Hamiltonian, he was able to ensure that
simple Lagrangian equations of the form (2:11) and (2:12) were obtained. We
apply his results to the incompressible equations in the (x,y) plane with f
a function of x and y. The standard semi-geostrophic equations are then
(2:1), (2+2) ,(2:4), and the (x,y) components of (2:5). Salmon's equations
(3:12), (3:21), and (3:22) can be shown to reduce to

£X

fY

f2(y-Y) - flx-X|2f, (3:18)

A2 (X=xr" Pl x-X| 21, (3:19)
where f is defined as a function of X and Y rather than of x and y. «fX,f1)
is non-divergent and can be derived from a stream function ®. The inverse
potential vorticity p satisfies (Salmon's (3:30))

fp = 2(x)/d(X) (3:20)
and the evolution equation

Dxp/Dt = O. (3:21)
If p is given as a function of X, then (3:20) must be solved for x(X) with
the boundary condition that x is contained in a specified region of
physical space. It is not yet known whether this can be done. There is an
extension to the geometric method which can treat this case, but it is not
known whether it gives a unique solution. Salmon derives an elliptic
equation (his (3:34)) which can clearly be solved uniquely by making
further approximations involving neglecting derivatives of f in certain
terms. A rather similar approximation can be made here by writing x as VR,
so that
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Ox/dY-dy/dX=0. (3-22)
This then allows x(X) to be found by the method of section 2. (3:22) is not
compatible with the condition that (& ¢% s ORI © non-divergent unless the
spatial derivatives of f are neglected.

Once x(X) is known, the solution can be completed by noting that pf
satisfies an equation of the form (2-12)

d/dt(pf) + Vi (pfl) = 0, (3:23)
where U=(X,Y) is defined by (3:18-19). This part of the problem is exactly
the same as that posed in section 2, with pf replacing p.

The other option is to solve (2:1) to (2'5) as they stand. Hoskins
(1975) proved that they conserve the energy integral (2-16) even with
variable f, and Cullen et al. (1987) showed that the energy is stationary
under smooth local rearrangements which can be written

Sug = fdy (3:24)

-féx. (3:25)

dvg
This stationary point is a minimum if the geostrophic potential vorticity
is positive, since the variation of f is not relevant to local parcel
stability. However, the potential vorticity is no longer conserved. The
rearrangements (3:24-25) cannot be extended to global rearrangements
because the changes to ug and v, will be dependent on the trajectory used.
It is thus clear that if the solution implies explicit convection in the
horizontal it will not be unique, because the end state values of (ug,vy)
will depend on the trajectory followed in the convection. It will thus only
be possible to prove that the solution is unique if the potential vorticity
is positive and the equations can be solved for a bounded total velocity u.
We consider only this case.
There are two approaches. Much of the theory can still be applied if
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the equations are written in spherical polar coordinates in a way which
allows them to be decoupled into zonal and meridional problems to which the
theory can be applied separately. The zonal problem can be treated by the
periodic f-plane theory, and the meridional problem by the axisymetric
formulation of Shutts et al. (1988). The results can then be extended to
the coupled system by an iterative argument. This argument also allows the
axisymmetric solutions of Shutts et al. to be extended to non-axisymmetric
flows. The solutions should be useful if the trajectories are approximately
straight in a polar coordinate system. This makes their theory much more
useful in studying, for instance, hurricane structure.

The equations are written in spherical polar coordinates with A
longitude, p latitude, a the radius of the earth and Q the earth's angular
velocity. The region of interest is assumed to be bounded away from the
pole, to avoid difficulties with the coordinate system, as well as away
from the equator. In order to decouple the equations into zonal and

meridional parts, it can be seen from Shutts (1980) that the correct form

is
Du_/Dt - (ugvtanp)/a + 2Qsinplvg - v) = 0 (3:26)
Dv,/Dt + 2Qsinp(u - ug) = 0 (3:27)
De/Dt = 0 (3:28)
DV/Dt = 0 (3:29)
ug2tanp + 2Qau_sinp + d¢/dp = 0 (3:30)
2Qavsinpcospy = 0¢/0M (3:31)
g6/8o = d¢/dz (3:32)
D/Dt = d/dt + (u/acosp)d/dON + (V/o)d/dp + wd/dz. (3:33)

Though this form of the equations appears closer to the standard
geostrophic momentum approximation than those used by Shutts and Salmon, it

-30-




requires trajectories to be approximately straight 1in the latitude-
longitude plane, an unreasonable requirement near the poles. The systems
used by Shutts and Salmon are both accurate at the poles.
In order to clarify the method of solution, temporarily write the
continuity equation (3:29) in Eulerian form
du/dN + d/dp(vcosp) + acospdw/dz = 0. (3-34)

(3:26-34) are now split into two separate problems

u,'V = (u/acosp)d/d\ + w,d/0dz (3:-35)

u-'V = (v/a)d/dp + wxd/dz, (3:36)
where

(1/acosp)du/d\ + dw,/dz = 0 (3:37)

(1/acosp)d(vcosp) /dp + dwo/dz = 0, (3:38)

dug/dt + uy Vug + {usVug - (ugvtanp)/a + 2Q(vg-v)sinp} = 0(3:39)

dvg/dt + {u,-Vvg + 2Q(u-ug)sinp) + 65:Vvg = 0. (3:40)
6/dt + u,*V8 + u>'Ve = 0 (3:41)
(ug2/a)tanp + 2Qugsinp + (1/8)0¢/dp = O (3-42)
fvg = (1/acosp)de/dN (3:43)
g6/6o = d¢/dz. (3-44)

The continuity equations (3:37) and (3:38) can be written as Lagrangian
conservation laws for specific cross-sections in the zonal and meridional
directions. The east-west problem consists of (3:35), (3:37), (3:43),
(3-44) and the relevant parts of the evolution equations (3:39-41). This
problem can be solved uniquely for each value of p, since it is a set of f
plane problems with periodic boundary conditions in X. The north-south
problem consists of (3:36), (3:38), (3-:42), (3:44) and the second parts of
(3:39-41). It can be reduced to the equations for axisymmetric flow on an f
plane by the substitution r=acosp. Then, in particular, we can write the
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second part of (3:39) as an equation foe zonal angular momentum

M= ugr + Qar? (3:45)

DM/Dt = 2Qavgrsinp (3:46)
and (3:38) as

D(rA)>/Dt = O (3:47)
where A is the specific meridional cross-section. (3:42) becomes

u,2/r + 2Qug + d¢/dr = 0. (3:48)
These equations were solved by Lagrangian construction by Shutts, Booth
and Norbury (1988). They showed that the transformed radial coordinate
(1/ro2-1/r2), where ro is a minimum value of r, must be used. The problem
cannot be solved in this coordinate system if the domain includes the
poles.

The solution of the full problem (3:26-33) is now obtained by
iteration. Starting with a first guess for u, the east-west problem is
solved for (u,w,) with (v,w>) fixed and then the north-south problem is
solved for (v,wz) with (u,w,) fixed. If we suppose that these partial
problems are solved over a time interval At, solving the east west problem
minimises the total energy (2:16) at the end of the time interval under
rearrangements in the zonal direction, and solving the north-south problem
minimises the energy under rearrangements in the meridional direction. Each
step of the iteration therefore reduces the total energy. Since the energy
that can be reached by such an iteration is bounded below by the rest state
energy of the system, the iteration must converge. Any limit satisfies the
full problem (3:26-33), and in particular has the same total energy as the
initial state. This 1limit is therefore unique for the given iteration
strategy. It is possible that a different solution could be obtained if the
north-south problem was solved first. However, if this happens, the second
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solution must be reached from the first by a rearrangement of the fluid,

since only u is being iterated. If

( dv/dAt2aQsinpcosp  dvy/dp dvg/dz )
Q= ( -dug/doA 2Qasinpt (ug/a) tanp-du,/dp dug,/dz ) (3-49)
( d8/d\ d8/dp 6/dz )

has strictly positive eigenvalues, giving strict local parcel stability
everywhere, then any perturbation by rearrangement of the first solution
must have more energy. Thus any second solution must be separated by a
finite difference from the first and cannot bifurcate from the first. The
initial-value problem therefore has a unique solution as long as the
condition on (3:49) is satisfied everywhere. Since there is no potential
vorticity conservation law for this system, we cannot be sure that (3-49)
will remain positive definite for all time, even if it is for the initial
data. However, the arguments of Shutts and Cullen (1987) suggest that any
breakdown will occur in a parameter range where the semi-geostrophic
approximation is not accurate.

It is important to note that this method of solution only works
because f varies with latitude only and is axially symmetric. It would not
work if f was an arbitrary function of position. This method can also be
used to generalise the solutions of Shutts et al. (1988) for axisymmetric
vortices to non-axisymmetric flow. Its accuracy depends on the trajectories
being approximately straight in these coordinates, including the case of
almost axisymmetric flow. Because of the loss of potential vorticity
conservation and the indirect nature of the proofs, this method is suited
to analytic solutions.

The problem at the pole is artificially created by the need to
decompose the equations into two tractable sub-problems. If the geostrophic
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momentum approximation is applied directly in spherical polar coordinates,
an extra term (uugtanp)/a appears on the left of (3:27) and the term
u,2tanp is omitted from (3:30). The term -(ugvtanp)/a in (3:26) becomes

-(uvgtanp)/a. The resulting equations conserve energy, and the
identification of the solution with a minimum energy state still holds. The
equations are very similar to (3:26-30) away from the poles, and are very
close to f-plane equations at the poles. This suggests that the same
qualitative properties of the solutions apply, though there is no easy way
of proving it.

In terms of physical applicability, the loss of the global
rearrangement property in (3:26-30) or the alternative discussed in the
preceding paragraph only matters if there are regions of zero potential
vorticity, slantwise convection, or mountain blocking effects, extending
for a latitudinal distance comparable to the scale on which the Coriolis
parameter varies. In order to make the solution unique, it is necessary to
require any convective jump to take place by a particular route so that the
dependence of the change in u, on the trajectory can be allowed for. This
route must be chosen on physical considerations outside the scope of semi-

geostrophic theory.
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e. Behaviour at the equator

While the geostrophic relation no longer gives a useful relation
between height and wind fields near the equator, any theory which is
applied to the planetary scale atmospheric circulation should, to be
useful, be capable of giving at least a simplified description of the
equatorial flow, if only to act as a proper boundary condition for the
extra-tropics. Similarly, if a 'slow manifold' definition is to be useful
in initialising data for numerical models, it must be capable of being used
at the equator, even if the solution 1is oversimplified. Cullen et al.
(1987) show that the interpretation of the semi-geostrophic equations as
‘quasi-equilibrium' equations evolving through minimum energy states makes
sense at the equator, since the concept of minimising the energy is just as
applicable in non-rotating as in rotationg fluids. In this section we
illustrate the behaviour of the solutions near the equator. A full
existence and uniqueness proof for the global problem is, however, not yet
possible.

The equatorial behaviour is illustrated by describing two simple
problems, one in a (y,z) cross-equatorial cross-section and the other in a
cross-section along the equator. The unmodified semi-geostrophic equations
(2:1) to (2:5) are used. The Salmon method has not yet been extended to
cross-equatorial flow. The behaviour of the system studied by Shutts (1988)
is significantly different, and allows Kelvin waves at the equator. It is
not yet possible to assess the usefulness of his system as compared to
(2:1) to (275).

First consider flow in an (x,z) cross-section along the equator.
Periodic boundary conditions are used, and the flow is driven by an
atmospheric heat source such as latent heat release. The equations are
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D8/Dt = Q (3:50)
DV/Dt = O (3-51)
(2¢/dx,d4/dz) = (0,88/85), (3:52)

where V 1is the specific cross-section. The requirement of no horizontal
gradient means that the solution is

w= Q- Q)/©6/d2), (3:53)
with u given by (3:51). If there is topography present, the average over x
extends only between topographic barriers at the same level in z, Fig. 9.
Note that there is no way of distinguishing air parcels at the same z but
different x. The zonal mean u is undefined, except below the height of the
highest mountain barrier.

Now consider a cross-equatorial cross-section, bounded by walls at

some latitude either side of the equator. If u, satisfies

ug, + QacosA = 0, (3:54)
then the associated absolute vorticity is zero, the momentum equation
becomes trivial and the problem reduces to (3:50-52) solved in (y,z) rather
than (x,z). In general cross-equatorial flow will result. If u, differs
from the value given by (3:54) by other than a constant, then the absolute
vorticity component will become non-zero. The inertial stability condition
requires it to be positive in the Northern hemisphere and negative in the
Southern hemisphere. Cross-equatorial advection will result 1in the
condition being violated and horizontal ‘convective' inertial interchanges
will result. These interchanges represent advection on time-scales faster
than f~' which cannot be 'seen' by semi-geostrophic dynamics. Thus a
solution will be obtained and the mass transport across the equator will be
well-defined. The cross-equatorial velocity field will not be easy to
calculate. It is likely that energy will be lost in this jump, as it is
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when the jump results from orographic blocking or penetrative convection,
Shutts (1987a,b).

Any practical solution of these equations by other than the geometric
construction method is likely to require addition of some background
friction to enable solutions to be obtained. The resulting system of
equations then contains the simple systems used to describe the basic
cross-equatorial monsoon circulation, for instance that used by Sashegyi
and Geisler (1987). This solution depends critically on the presence of
friction. Further study is required to see if the mass transport implied by
this solution converges to that given by the geometric method as the
friction tends to zero.

The solution procedure given above should give a unique solution in
three dimensions. Even using the formulation of Shutts, (3:16), it cannot
be found by global rearrangement arguments because parcels in the two
hemispheres with equal angular momentum and potential temperature are
interchangeable.

f. Inclusion of forcing terms

We analyse the effect of forcing terms for the simplest case of the

bounded f plane problem (2:1) to (2:5). The analysis can then be extended

to the other cases treated in previous sections. The equations are now

Dug/Dt + f(vg-v) = A (3:55)
Dv,/Dt + f(u-ug) = B (3:56)
D8/Dt = C, (3:57)

together with (2-4) and (2'5). A,B and C are assumed to be prescribed
forcing functions of x,X and t, but not of u. In terms of the geostrophic

coordinates, the equations are
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DX/Dt + f(Y-y) = B/f (3:58)
DY/Dt + F(x-X) = -A/f (3:-59)
DZ/Dt = C. (3:60)

(2-12) still holds, but (2:11) becomes
U= (f(y-YD+B/f, f (X-x)-A/f,C) (3:61)

and V4'U is not necessarily zero. The inverse potential vorticity p is no
longer a Lagrangian conservation property. The definition p=0(x)/d(X) 1is
unaffected, and the solution procedure of section 2 can be followed
provided (2-:12) can be solved. The difficult case is where zero potential
vorticity is generated by the forcing, for instance by heating from below.

(2:12) can be described in terms of displacements of p in the sense of
section 2 (Theorem 2) as U is a bounded function of x and X. Theorem 5
therefore proves that (3:58-60) can be solved for the evolution of R and
hence the geostrophic variables X. The total physical velocity u will cease
to be well defined if zero potential vorticity regions are generated.
4. Discussion

The results contained in this paper show that the Lagrangian form of
the semi-geostrophic equations form a 'slow manifold', in the sense
described in the introduction. They do not show how accurate this model is
in describing real atmospheric behaviour. No equivalent results have been
proved for other filtered sets of equations such as the nonlinear balance
equations, it may be important to attempt to do so. The equations can be
solved in principle for general smooth or piecewise smooth data, for free-
surface and periodic boundary conditions, and for variable Coriolis
parameter. In some cases the method may produce discontinuous solutions
from smooth data. The equations can be integrated forward for arbitrary
finite times and produce a solution which conserves the initial energy. It
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is thus possible to construct a model of the adiabatic atmospheric
circulation without mountains which conserves energy. Shutts (1987a and b)
and Cullen (1988) show that energy will be lost 1if there is orographic
blocking, penetrative convection, and surface friction.

Further research is needed to determine which, if any, of the versions
of the theory described here is most useful for describing planetary scale
circulations. Further work is also needed to prove that solutions involving
mountains, penetrative convection, or cross-equatorial transport are well-
defined in the sense that the implied mass transports can be uniquely
calculated and the geostrophic fields predicted. Such an extension is
important, since if these mass transports are really determined by the
larger scale flow in this fashion, the overall predictability of the flow
will be much greater than if the transports depend on local effects.

These results also prove that the geometric construction method and an
alternating direction method converge to the desired solutions as they are
refined. Such proofs do not indicate whether these methods will converge
fast enough to be of practical use for calculations, though they will
produce reliable benchmark solutions.
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FIGURE CAPTIONS
The limit cone of a convex curve at a point O.
The construction which determines the curvature at O.
The construction which determines the motion of the point A.
Contours of P within Q, showing that the extreme value of VP
occurs on the boundary near where VP is normal to the boundary.
The construction which illustrates the motion of ‘an isolated
large value of X.
The free surface construction with two elements of area p, and
Pz-
The free surface construction for an (x,z) cross-section. (a)
Basic cylinder. (b) The intersection of one plane with the
cylinder.
The construction of periodic solutions.

Horizontal averaging in the equatorial solution.
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Fig.5

B near here

The construction which illustrates the motion of "an isolated

large value of X.
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