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Abstract 

As part of its contribution to THORPEX, the Met Office has developed a global, 15-day multi-
model ensemble. The multi-model ensemble combines ensembles from ECMWF, Met Office and 
NCEP and is calibrated to give further improvements. The ensemble-post processing includes bias 
correction, model-dependent weights and variance adjustment, and is based on a moving-average 
over past observation-forecast pairs. The post-processing parameters are calculated separately 
for each grid-point and forecast lead-time, and we show that the optimal size of the training data 
set is dependent on the forecast lead-time. 

Verification shows that the multi-model ensemble gives an improvement in comparison to a 
calibrated single-model ensemble, particularly for surface temperature. However, the benefits are 
smaller for mean-sea-level-pressure (mslp) and 500hPa height. The reason for this is attributed 
to the higher degree of similarity between forecast-errors for mslp and 500hPa height than for 
temperature. The results also show only small improvements from the use of the model-dependent 
weights and the variance-adjustment. This is because the models have similar levels of skill, and 
the multi-model ensemble variance is already generally well calibrated. 

In conclusion, we demonstrate that the multi-model ensemble does give benefit over a 
single-model ensemble. However, as expected, the benefits are small if the models are similar to 
each other and further post-processing gives only relatively small improvements. 

Contents 

1 Introduction 2


2 Procedure 3

2.1 Calibration and combination framework . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Moving-average estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Bias Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Measure of similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.6 Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.7 Variance Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12


3 Results 13

3.1 Bias correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13


3.1.1 Interpretation of bias correction results . . . . . . . . . . . . . . . . . . . . . 13

3.2 Simple combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17


3.2.1 Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Brier Skill Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Weighted combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20


3.4.1 Comparison of different weights . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Variance Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24


1 



4 Discussion 26 
4.1 Benefits of multi-model ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26


5 Conclusions 27 

1 Introduction 

Ensemble forecasts, used in probabilistic weather prediction, aim to represent the uncertainty that 
arises from errors both in the initial conditions, or analysis, and in the forecast model. Typically, an 
ensemble prediction system generates a range of initial conditions by adding small perturbations to 
the analysis, and then evolving each initial condition with the numerical forecast model (e.g. Toth and 
Kalnay, 1993). It is also common to add stochastic perturbations throughout the model integration, 
to account for errors from the model parameterizations (e.g. Houtekamer et al., 1996). However, it is 
difficult to represent all the errors arising from the forecast model. 

The aim of a multi-model ensemble is to account for the errors in both the initial conditions and 
the forecast model, by combining together ensembles from different centres, and hence combining 
different analyses, perturbation generation methods, and forecast models. It has been shown in the 
context of seasonal forecasting (Palmer et al., 2004; Hagedorn et al., 2005; Weigel et al., 2008) that 
the combination of ensembles from different models results in more skill than the single ensembles 
considered separately, this improvement being not just due to the increased ensemble size, but from 
the information provided by the different models. Benefits in the medium-range (15-day) have also 
been shown (Harrison et al., 1999; Evans et al., 2000; Mylne et al., 2002), with the improvement being 
attributed to the models exploring different regions of phase space. Further studies have shown that 
although sometimes the multi-model ensemble is not always the most skilful, it is better than the worst 
single-model ensemble, as emphasised by Matsueda et al. (2007), and as we can not predict which 
the worst single-model ensemble will be at a particular time and location, this gives the multi-model 
ensemble an advantage. 

Although a multi-model ensemble combines the strengths from different models, some models might 
be better than others at different times, and hence further improvements might be made by giving 
the models different weights. Previous research has shown that model-dependent weights can give 
improvements, but care needs to be taken in how they are calculated and used. For example, Raftery 
et al. (2005) concluded that the Bayesian Model Averaging (BMA) model-dependent weights created a 
better deterministic forecast, and Stefanova and Krishnamurti (2002) also showed an improvement from 
model-dependent weights, when considering probability forecasts from seasonal multi-model forecasts. 
However, Doblas-Reyes et al. (2005) concluded that model-dependent weights gave no significant 
improvement in the DEMETER (Development of a European Multi-model Ensemble for Seasonal to 
Interannual Prediction) ensemble. 

Further improvements can be made to ensemble forecasts through calibration. In calibration, the 
forecasts are adjusted so that the average statistical properties are similar to those of a reference data 
set. For example, if forecast temperatures are consistently too high, these can be reduced through 
bias correction. Thus, it may be the case that a calibrated multi-model ensemble has little benefit 
over a calibrated single-model ensemble. The results in Doblas-Reyes et al. (2005) suggested that both 
calibration and combination improve the ensemble predictions, although the results are sensitive to the 
reference data sets. Hagedorn et al. (2008) also found that a calibrated multi-model ensemble was 
slightly more skillful than a calibrated single model ensemble. 

2 



ECMWF Met Office NCEP 

Number of members 51 24 21 

Perturbation method Singular vectors ETKF Bred Vectors 

Horizontal Resolution 50km (TL399) day 
0-10, 80km (TL255) 
day 10-15 

90km (1.25/0.833) 105km (T126) 

Vertical Levels 62 38 28 

Table 1: Comparison of ensembles. 

The THORPEX Interactive Grand Global Ensemble (TIGGE) is designed to allow the enhanced 
collaboration of operational centres, and to investigate new techniques to combine and calibrate en­
sembles. Preliminary results on the ensembles archived in the TIGGE database have been compiled by 
Park et al. (2008). The results showed that for 500hPa height, there was only a small benefit from a 
simple multi-model ensemble in comparison to the ECMWF ensemble. The purpose of this report is 
to investigate further the benefits of multi-model ensemble combination, particularly looking at other 
variables, and also from more sophisticated combination methods. 

The structure of the paper is as follows. In section 2 we describe the component model ensembles, 
and also the general framework in which the combination and calibration is addressed. We then go on 
to describe the procedure by which the calibration parameters are estimated, and how these parameters 
are used to correct the bias of the single model ensembles, define the model-dependent weights and 
adjust the variance of the multi-model ensemble. The results are presented in section 3, beginning with 
the impact of bias-correction, and a simple combination of models, and then examining the impact 
of the weights and variance adjustment. The ensembles are verified both using RMS errors of the 
ensemble mean, and Brier skill scores. In section 4 we present a general discussion of the benefits of 
multi-model ensembles and suggestions for future work. The final conclusions of the paper are given 
in section 5. 

2 Procedure 

Three ensembles have been chosen as the components of the multi-model ensemble. These are 
ECMWF, Met Office, and NCEP (GFS), which have been chosen because they are all accessible 
in real-time, and because they have similar levels of skill. The Met Office 15-day ensemble is an exten­
sion of the MOGREPS short-range ensemble (Bowler et al., 2008), which is currently run for research 
purposes as part of the Met Office contribution to THORPEX. The studies from Titley et al. (2008) 
showed that although the Met Office ensemble does not quite have the same skill as the ECMWF 
ensemble, many of the aspects are competitive. A separate study (Buizza et al., 2005) showed that the 
NCEP ensemble is also competitive, especially during the first 5-days. The details of the models are 
presented in table 1. The Met Office and NCEP ensembles have similar resolution grids and numbers 
of members, and the ECMWF has twice the number of members, and higher resolutions both in the 
horizontal and the vertical. The ensembles are post-processed on a 1◦/1◦ grid, for three variables: 
mean sea level pressure (mslp), 2m temperature and 500hPa height. We concentrate on results for 
mslp and 2m temperature, as the results for 500hPa height are similar to those for mslp. 
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Figure 1: Illustration of the steps in calibrating and combining the multi-model ensemble. Each panel shows 
the pdfs for each ensemble, with the x-axis representing the value of the forecast variable, e.g. temperature. 
The panels show the pdfs for (a) raw data, (b) after bias correction (c) after model-dependent weights and 
(d) after variance adjustment. 

2.1 Calibration and combination framework 

We now describe a very general calibration and combination procedure in a similar way to Raftery et al. 
(2005) and, at this stage, without making any assumptions about how the biases, weights and variance 
adjustments should be estimated. We assume that there are M calibrated single-model ensembles and 
that the kth single model ensemble has Nk ensemble members, given by xi

k. The true or verifying 
state is given by y. From the law of total probability (Raftery et al., 2005) the multi-model probability 
density function (pdf) of the variable x is given by an average of the pdfs from the single-models, 

M

p(x) = p(x|Mk)p(Mk) (1) 
k=1 

where p(x|Mk) is the pdf based on model Mk and p(Mk) is the probability of Mk being the best 
model. These probabilities can be viewed as model-dependent weights wk such that p(Mk) = wk/M ,�Mwhere 0 ≤ wk ≤ M and wk = M .k=1 

The calibration and combination procedure is split into three steps: bias (first moment) correction, 
weighting and variance (second moment) adjustment, as illustrated in Fig.1. The ensembles are com­
bined and calibrated in a framework where each single-model pdf is represented by a normal (Gaussian) 
distribution with mean and variance given by the ensemble mean and ensemble variance respectively. 
The pdfs for the three single models are shown by the dashed curves, and the pdf for the multi-model, 
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Figure 2: Illustration of the available bias correction data. A single forecast is shown by a diagonal arrow, as 
a function of the lead time and verification time, and the most recent forecast is shown by the thick diagonal 
arrow. The observations, shown by the unshaded circles, are only available to the present time, tn, meaning 
that only the forecast data in the shaded box can be used to estimate the bias in the most recent forecast. 

given by an average of the three pdfs, is shown by the solid curve. 
The first step is to estimate the biases of the individual ensembles so that the average ensemble 

mean is closer to the average true value. Let us imagine that models 1 and 2 have negative bias, and 
that model 3 has a positive bias. Then bias correction applied to each individual model will shift the 
models towards zero, as shown in Fig.1(b). Notice that the bias correction has no effect on the spread 
of the individual ensembles. 

The second step is to define the model-dependent weights. It is likely that some models exhibit 
more skill than other models in certain situations. Therefore, it is sensible to estimate model-dependent 
weights, wk, to apply to each pdf. In Fig.1(c), model 1 has been assigned the smallest weight, and 
model 3 has been assigned the largest weight. 

The final step is to adjust the variance of the multi-model ensemble so that it is, on average, 
representative of the uncertainty in the multi-model ensemble mean. Let us imagine that we have a 
relatively accurate multi-model ensemble mean. Then the calibration will reduce both the within-model 
variance (the variances of the single model ensembles) and the between-model variance (the variance 
of the single model means around the multi-model mean), as shown in 1. Note that although the 
variance adjustment does not alter the multi-model ensemble mean, it does affect the means of the 
component models. 

2.2 Moving-average estimates 

If we assume that the model errors are stationary over time, then it would be possible to generate 
estimates for the calibration parameters by averaging over a sample of forecast errors over a long 
period of time. This approach, known as Model Output Statistics (MOS) has been successfully used in 
the statistical post-processing of many weather and climate forecasts (e.g. Wilks, 2006; Doblas-Reyes 
et al., 2005; Stephenson et al., 2005; Kharin and Zwiers, 2002). However, MOS requires a large time 
period of calibration data, with an identical forecast model. If the forecast model changes, then the 
MOS statistics need to be recalculated, making the process unfeasible for the realistic situation with 
many model upgrades. 

An alternative method is to perform an on-line estimation, as used by for example Cui et al. (2004) 
and Woodcock and Engel (2005). In this technique, the parameter is updated over time, removing the 
need for a large set of calibration data and making the calculation more efficient. Further, and perhaps 
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Figure 3: Illustration of the size of the data window associated with a particular value of µ. In this case, the 
data window is of length Q = 19, and for the exponential moving average, µ = 0.1. 

more importantly, the estimate easily accommodates for changes in the bias due to model upgrades 
and also allowing for a better estimate of errors that depend on the particular weather conditions 
(flow-dependent errors). 

The moving-average estimate, also known as an exponential moving average, is a simple method 
where all the previous forecast errors are averaged together, but using an exponentially increasing 
weighting so that the most recent data has the largest weight. The method is currently a popular way 
to correct the biases for atmospheric forecasts, (e.g. Cui et al., 2004; Woodcock and Engel, 2005). 
Although the method averages together all the previous data, it can still be implemented as a so-called 
on-line or sequential update. The moving-average can also be considered as a type of Kalman filter 
(Homleid, 1995), but where we assume that there are no observational errors so that no filtering is 
necessary. 

The aim is to find an estimate of the calibration parameter ps
n for a forecast at lead time s, and 

starting at verification time n. The calibration parameter could be for example, the average forecast 
error (i.e. the bias), or the average variance. The estimate p̂n

s is given by 

p̂n = (1 − µ)p̂ n−1 + µp n−s (2) s s s 

which is an average of the previous estimate p̂n
s 
−1 and the most recent parameter pn

s 
−s . Some of the 

parameter estimates, such as the bias, require forecast-observation pairs as the input data. This means 
that the most recent parameter is actually at the most recent observation time, which is from the 
forecast at verification time n − s and with lead time s. 

As the input data is forecast-observation pairs, all the data to be used in the estimate is from the 
past, as illustrated in Fig. 2. The most recent forecast starts from an analysis at verification time tn, 
with a lead time of t0. The forecast is integrated over 5 steps so that the forecast at a lead time 
of t5 should be close to the observations at a verification time of tn+5. The estimate of the bias of 
the most recent forecast is based on the forecast errors of the past. These forecast errors are given 
by the differences between the forecasts and the verifying observations (the unshaded circles). As we 
only have observations of the past available, we can only use the forecast values in the shaded box to 
estimate the bias of the most recent forecast. For example, to calibrate the forecast at a lead time of 
ts, the most recent forecast error that is available is the difference between the forecast that starts at 
verification time tn−s with a lead time of ts and the observation at verification time t0. Thus, there is 
a time-lag of s steps between the forecast to be corrected and the most recent forecast error. The lag 
between these forecasts increases with increasing lead time, and we will see that this time-lag plays an 
important role in determining an optimal estimate of the calibration parameters. 
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The parameter µ determines the smoothness of the estimate. If µ is close to zero, then the recent 
data will have very little influence, and the resulting bias will be close to the average climatological 
estimate. If µ is close to one, then the bias will be dominated by the most recent data. However, as 
the forecast statistics are likely to change quickly over time, it is likely that the most recent data no 
longer provides a good estimate. Thus, the optimal value for µ lies somewhere in between these two 
extremes. 

It is useful to know the equivalent size of the calibration data set associated with a particular value 
of µ, and this is possible by comparing the exponential weighted average (the running mean) with a 
weighted moving average. In all cases, the sum of the weights over time is equal to one. In a weighted 
moving average of Q observations, the weights are given by wi = 2(Q−i+1)/q(q +1), so that they are 
arithmetically decreasing with the most recent observation having the largest weight (2/(Q+1)). In an 
exponential moving average, there are an infinite number of observations. However, by comparing an 
exponential moving average with a weighted moving average, so that the exponential moving average 
has the same weight as the weighted moving average for the most recent data (µ = 2/(Q + 1)), as 
shown in Fig. 3, then we can say that a value of µ is similar to a calibration data set of length (2−µ)/µ. 
Thus, an update parameter of µ = 0.1 is equivalent to a window length of Q = 19, and an update 
parameter of µ = 0.01 is equivalent to a window length of Q = 199. 

2.3 Bias Correction 

In bias correction or first moment calibration, we adjust the mean of the ensemble, so that the average 
value of the mean over time is the same as the average value of the observation over time. That is, 
we find the value b such that 

E(x̄ − b) = E(y) (3) 

Thus, the bias is the average of the forecast errors over time - dominated by flow dependent errors when 
averaged over a short time period, and dominated by seasonally varying errors when averaged over a 
long time period. In reality, we can only use past errors to estimate the bias, therefore we can only 
correct the forecast errors that persist over the time period. Thus, the forecast errors can be considered 
to have two components - a systematic or predictable component, which has little variability over time, 
and a random component which has large variability over time making it highly unpredictable. In 
performing bias correction, we are aiming to estimate the systematic, or predictable component of the 
forecast error, based on the past forecast errors. 

The ensemble-mean biases for each single model are estimated using the moving-average estimate, 
and applied to every ensemble member from the same model, so that the single-model ensemble-mean 
is bias corrected. The bias correction is applied to the individual single-model ensembles before the 
ensembles are combined; this allows for the fact that the models might have different biases, and 
ensures that the multi-model variance is not artificially inflated due to different biases. 

2.4 Combination 

The multi-model ensemble is given by the union of the ensemble members from the single model 
ensembles. From this multi-model ensemble, we can then derive probabilities and ensemble mean and 
variance, which can be written in terms of the single-model ensemble values. 

The multi-model ensemble probability 

1 � 
pMM = wkpk (4) 

M 
k 
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is given by a weighted average of the single-model probabilities, pk = 

N
1 
k k o

i
k, where oi

k is the binary 
forecast of whether or not the event will occur, based on ensemble member i from model k. The 
multi-model ensemble mean 

M
1 � 

x̄MM = wkx̄k (5) 
M 

k=1 

1 �Nk iis given by a weighted average of the single-model means, x̄k = 
Nk i=1 xk, and the multi-model 

ensemble variance 
M

1 � 
σ2 = wkσ

2 (6) MM kM 
k=1 

is given by a weighted average of the single model variances - around the multi-model ensemble mean. 
These variances can be also be written in terms of the between-model and within-model variances, 

Nk

σk 
2 = 

N

1 

k 

� 
(x ik − x̄MM )

2 (7a) 
i=1 

= ζk 
2 + νk 

2 (7b) 

where 

ζk 
2 = (x̄k − x̄MM )

2 (7c) 

is the between-model variance for model k, which is the squared distance between the single model 
mean and the multi-model mean, and 

Nk

νk 
2 =

1 � 
(x ik − x̄k)

2 (7d) 
Nk i=1 

is the within-model variance for model k, which is the variance of the single model members around 
the single model mean. 

2.5 Measure of similarity 

To define the weights and variance adjustment, it is useful to have an objective measure of the similarity 
between models. Here, we define a measure that is computed for each grid point using moving-average 
estimates. If we assume that the single-model ensemble means have similar level of skill, then the 
average between-model variance gives an indication of the similarity between the forecast errors. If the 
forecast errors are exactly the same for the two models, then the between-model variance would be 
zero. To obtain an absolute measure of the similarity, then we compare the between-model variance 
with the mean-square-error of the multi-model ensemble mean. That is, we are aiming to assess the 
proportion of the phase-space of uncertainty that is spanned by the contributing models. 

The measure of similarity, S, is defined as 

E(ζ2)
S = (8) 

E(ζ2) + MSE 

where MSE is the mean-square-error of the multi-model ensemble mean and E(ζ2) is the average 
between-model variance. 

1 � 
E(ζ2) = E(ζk 

2) (9) 
M 

k 
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Figure 4: Illustration of two alternatives for combining ensembles where model 1 has 200 members and model 
2 has 20 members. In (a) we consider the members to be sampled from two distinct distributions and the 
multi-model mean is given by the average of the single model means, and in (b) we consider the members to 
be sampled from a single distribution and the multi-model mean is given by the average of the members from 
both models. 

S ranges from zero to one, with a smaller value indicating a larger similarity. When the models are 
identical, then the average between model variance is zero, so that S = 0. When the models are 
different to one another and are spanning a relatively large part of the true uncertainty, then the 
between-model variance will be large in comparison to the MSE so that S = 1. 

2.6 Weights 

The weights can be viewed as the probability of a particular model being the best model, and aim 
to give more weight to the most skillful model. There are various methods to define these weights. 
One method is to use multiple-regression based weights, as used by Krishnamurti et al. (1999); Kharin 
and Zwiers (2002); Doblas-Reyes et al. (2005); Stephenson et al. (2005). Although this is a well-
defined method for computing a weighted mean, it is not straightforward to extend this to weighted 
probabilities. In particular, care needs to be taken in using the regression coefficients to define the 
weights (Stefanova and Krishnamurti, 2002). 

A competing method to compute the weights is Bayesian model averaging (BMA) (Raftery et al., 
2005; Wilson et al., 2007), where the weights and variances are computed simultaneously through a 
maximum likelihood estimation which aims to fit the pdfs to the calibration data. 

A much more simple method is to use a skill-based method where the weights are dependent on 
a measure of forecast skill. This method is commonly used in the generation of consensus forecasts 
(Woodcock and Engel, 2005). Despite the simplicity of the method, the derived weights are surprisingly 
similar to those derived from multiple-regression and BMA, as seen in the studies by Raftery et al. 
(2005); Johnson (2006). Therefore we choose to use the skill-based method here. 

The definition of the optimal weights is based on both the skill of the models and also on the 
similarity between the models. The reason why we need to consider the similarity between the models 
is because the component ensembles have different numbers of ensemble members. If we consider the 
definition of the multi-model ensemble mean, then one way to create the mean would be to take an 
average of the three single model ensembles, so that the multi-model ensemble mean is an average 
of the single model ensemble means. An alternative would be to take an average of all the ensemble 
members, so that the model with more members will get more weight. If the models have the same 
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number of members, then both methods will give the same result. 
Figure 4 illustrates the difference between these two alternatives. In both (a) and (b), ensemble 

members have been drawn from two Gaussian distributions with different means, but the same variance 
(0.5). Ensemble 1 has 200 members drawn from a distribution with mean 2 and ensemble 2 has 20 
members drawn from a distribution with mean 3. In reality we don’t know the underlying parent 
distributions of the ensemble members, as we only have a small sample of members. If we assume 
that the members are sampling from different parent distributions, so that the models are providing 
different samples, as in (a), then the members from ensemble 2 provide more information than those 
from ensemble 1, so that the multi-model-mean should be formed by the average of the means of the 
single-model means. If we assume that the members from both ensembles are actually from the same 
parent distribution, as in (b), then we can assume that all members should be treated equally, so that 
the multi-model mean should be formed by the average of the members. 

Another possibility is that the multi-model mean lies in between these two extremes. This can be 
achieved using the measure of similarity to define an effective number of members for each single-model 
ensemble. 

In Eq(5), we formulated the multi-model ensemble mean as a weighted combination of the single 
model ensemble means. Here, we define the weight given to each ensemble mean as 

Nk γ 
wk = (10) 

T̃k MSEk 

where MSEk is the mean-square-error of the bias-corrected ensemble mean for model k, and γ is a 
normalization factor to ensure that 1 wk = 1. Nk is the number of members in model k and we 

M 

define T̃k, below, as an effective average number of members. 
In the case where the models are dissimilar, and hence providing members from different samples, 

then we will have T̃k = Nk, the effective average number of members is the same as the number of 
members in that model, so that the weight is only based on MSEk. Together with (5) this means 
that the multi-model ensemble mean is given by a weighted combination of the single-model ensemble 
means. 

In the case where the models are identical, and hence providing members from the same sample, 
then we will have T̃k = T where 

1 � 
T = Nk (11) 

M 
k 

is the actual average number of members in each model. If the number of ensemble members in that 
model Nk is larger than the average number of members, then more weight is given to that single-model 
ensemble mean. This means that the multi-model ensemble mean is given by a weighted combination 
of all the ensemble members. 

The measure of similarity is used to define the effective average number of members. Based on 
experience, we have found that better results are obtained if the similarity values are skewed more 
towards 0 and 1, which can be achieved by transforming the measure of similarity. There are a variety 
of ways in which to do this; we have chosen to use a formula similar to the tanh function. The 
transformed similarity measure is 

S̃ = 
1 θλ(S−1/2) − 1 

+ 1 (12) 
2 θλ(S−1/2) + 1 

and we have chosen to use the values θ = 4 and λ = 10. This formula gives values of S̃ are similar 
to S in that when the models are similar, then S = S̃ = 0 but when the models are dissimilar then 
S = S̃ = 1. 
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(a) 2m temperature (b) mslp 

Figure 5: Percentage improvement in globally averaged RMS errors for (a) 2m temperature and (b) mslp, 
predicted by the Met Office ensemble mean, as a function of lead time. The upper plot shows the RMS 
errors and the lower plot shows the difference in RMS errors from that of the raw ensemble mean. The bias 
correction uses µ = 0.01 (solid), µ = 0.02 (dotted) and µ = 0.1 (dashed). The data are verified against 
multi-model analyses over a 250 day period ending on 29 April 2008. 

The effective number of members for each model is then defined as 

˜ S)T + ˜Tk = (1 − ˜ SNk (13) 

If the models are similar then S = 0 so that T̃k = T . i.e the effective average number of members is 
identical to the actual average number of members. If the models are dissimilar, then S = 1 so that 
T̃k = Nk, the effective number is equal to the number of members for that model. 

2.7 Variance Adjustment 

The aim of variance adjustment is to correct the second moment of the pdf. In a similar way to 
equation (3) for bias correction, We require, 

E(x i − x̄)2 = E(y − x̄)2 (14) 

where xi is a member of the multi-model ensemble and x̄ is the multi-model ensemble mean. This 
is equivalent to requiring that the multi-model ensemble variance is, on average, equal to the mean 
square error of the multi-model ensemble mean. This is achieved by adjusting both the between-model 
variance and the within-model variance simultaneously, 

x ik = x̄MM + β(x̄k − x̄MM ) + αk(x ik − x̄k) (15) 

where β adjusts the between-model variance and αk adjusts the within-model variance for model k. 
Note that we now assume that the single model ensemble members and means, xi

k and x̄k, are bias-
corrected. Although the variance adjustment alters the means of the component ensembles, it does 
not alter the mean of the multi-model ensemble. 

Based on Eq(6) this gives a new calibrated multi-model variance 

1 � 
σ2 = wk(β

2ζk 
2 + α2ν2) (16) MM k kM 

k 
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and hence we require 
1 � 

MSEMM = wk(β
2E(ζk 

2) + αk
2E(νk 

2)) (17) 
M 

k 

An extra constraint is required to determine the ratio of the between-model variance to the within-
model variance. We have chosen to apply the following constraint. 

E(ζk 
2) = Sαk

2E(νk 
2) (18) 

where E(νk 
2) = E(xi

k − x̄k)
2 is the within-model variance and E(ζk 

2) = E(x̄k − x̄MM )
2 is the between-

model variance. 
This constraint means that, for models that are dissimilar, the between-model variance should be 

equal to the within-model variance. This constraint means that the within-model variance of a single 
model is representative of the distance from the multi-model ensemble mean. Thus, if one model has 
a relatively high between-model variance - i.e. it is very different from the other models, then the 
corresponding ensemble members will have a large spread. This constraint should also ensure that the 
pdfs from the different models overlap within the multi-model ensemble, whilst retaining the individual 
identity of each model. 

However, if the models are similar to each other, then we will expect that the between-model 
variance would be small, and so in this case, we weaken the constraint so that that the between-model 
variance is smaller than the within-model variance. In the extreme case where the models are identical, 
then S = 0 and the between-model variance is zero. 

Using (18) to substitute for α2 
kE(νk 

2) in (17) then we obtain 

MSEMM 
κ = 1 � (19a) 

wj E(ζj 
2)

M j 

κS 
β2 = (19b) 

1 + S 

kα2 = 
1 + 

κ

S E
E

(

(

ν

ζk

k 

2

2 

)

) 
(19c) 

where κ is the ratio between the mean-square error of the multi-model ensemble mean and the overall 
between-model variance. 

β2 is large if the expected between-model variance is too small relative to the mean-square-error, 
and α2 is large if the within-model variance is too small compared to the adjusted between-model 
variance. 

2.8 Summary 

In summary, we have used moving-average estimates of the ensemble statistics to define the biases 
of the single model ensembles, the model-dependent weights, and the parameters to simultaneously 
adjust the between and within model variances, and hence the overall multi-model ensemble variance. 
Both the weights and the variance adjustment parameters have made use of a measure of the similarity 
of the ensembles, again defined from moving-average estimates. 

The moving-average estimates use past data to define the parameters. This means that the cali­
bration data ages more when calibrating the forecast at longer lead times. We will see in the results 
section that this ageing means that it is harder to calibrate the ensemble at longer lead times. 
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Figure 6: The optimal value of µ as a function of the time-lag for three timeseries with different autocorrelation 
values: 0.75,0.8 and 0.85. 

3 Results 

We now present the results from the multi-model combination and calibration applied to the three 
global model ensembles. We begin by examining the impact of the bias correction that is applied to 
the single model means. This is followed by the results from the simple and weighted combination 
methods, and finally by the results from the variance-adjustment. 

3.1 Bias correction 

The results for the bias correction of Met Office ensemble mean are first presented. The bias correction 
is also applied to the NCEP and ECMWF ensembles means, and as the overall conclusions are similar, 
the results are not shown here. The bias correction is repeated with three different value of µ: 0.01, 
0.02 and 0.1, and a estimate of the bias is found for each grid point and each lead time, for the three 
variables under consideration. 

The differences between globally averaged RMS errors for the raw and bias corrected 2m temperature 
are shown in Fig. 5a. All three bias correction methods give a reduction in the RMS error at all lead 
times. At short lead times (less than 5 days), the lowest RMS errors are achieved with µ = 0.1, with a 
30% improvement and at longer lead times (greater than 5 days), the lowest RMS errors are achieved 
with µ = 0.02, giving a 5% improvement. 

Similar results are found for mslp (Fig. 5b). At short lead times (less than 3 days), the lowest RMS 
errors are achieved with µ = 0.1; at medium lead times (between 3 and 7 days) the lowest RMS errors 
are achieved with µ = 0.02; and at longer lead times (greater than 7 days) the lowest RMS errors are 
achieved with µ = 0.01. An important difference here to the 2m temperature results is that at longer 
lead times, the bias correction is actually detrimental to the forecast if the value of µ is too large. 

In summary, the optimal value for µ depends on both the lead time, and on the variable: a smaller 
value of µ should be used for longer lead times, and for mslp; a large value of µ should be used for 
shorter lead times and for 2m temperature. 

3.1.1 Interpretation of bias correction results 

To give further insight into these results, we consider some idealized experiments based on autoregressive 
timeseries. We assume that the true bias is given by a stationary, first-order autoregressive AR(1) 
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Figure 7: 2m temperature forecast error timeseries from the Met Office ensemble at point (50◦N, 0◦E), at 
lead times of 2 and 8 days over the period July 2007 to February 2008. 

Figure 8: Autocorrelation values for 1 and 15 day time lags, as a function of lead time. The data is the 2m 
temperature forecast error timeseries from the Met Office ensemble at point (50◦N, 0◦E) 
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Figure 9: The optimal values of µ computed for timeseries from various lead times (or forecast ranges, D+2 
to D+14) and for bias correction using a range of time-lags for the most recent observation. The data is the 
2m temperature forecast error timeseries from the Met Office ensemble at point (50◦N, 0◦E) over 250 days 
of data ending on 2008/02/25 with the optimal value for µ based on verification over the last 120 days of 
data. 

process (e.g. Papoulis and Pillai, 2002; Smith and Krajewski, 1991), about mean b̄ = 0, 

bn = ρbn−1 + W n (20) 

nwhere ρ = E(a an−1), known as the autocorrelation or temporal correlation, is the expected value of 
the bias with a time-shifted version of itself, and the Wiener process W n is a random number drawn 
from a Gaussian distribution with variance, V = σ2(1 − ρ2), where σ2 is a specified scalar equal to the 
variance of bn . 

Five randomly-generated timeseries are created with 2000 data points in each timeseries. The 
optimal value of µ is selected based on the RMS errors over the last 120 data points of these bias 
estimates for these timeseries. The results are shown for three different autocorrelation values in Fig. 6. 
As expected, the optimal value for µ decreases with increasing time-lag. But also, the optimal value for 
µ increases with increasing autocorrelation. Thus, if there is a high temporal correlation in the data, 
then the estimate will draw close to the most recent data; if there is a low temporal correlation, then 
the estimate will draw close to the long term average. 

We then consider a forecast-error timeseries of the Met Office ensemble mean at a single grid-point. 
Timeseries of the 2m temperature forecast error at (50◦N, 0◦E) are shown in Fig. 7. The errors are 
highly variable over time, and have a larger magnitude with increasing lead time. Also shown are the 
estimated biases using the three different values of µ. With µ = 0.01, the bias varies very slowly over 
time, whereas for µ = 0.1, the bias has larger amplitudes and is more variable. The time lag between 
large errors and large biases are noticeable for µ = 0.1. This time lag means that sometimes the 
estimated bias has the opposite sign to the actual error. 

Figure 8 shows the correlation values of the timeseries with time-shifted versions of itself, where 
the time-shift is either 1-day (E(bs

n − ̄bs)(bs
n−1 − ̄bs)) or 15-days (E(bs

n − ̄bs)(bs
n−15 − ̄bs)). For a 1-day 

time-shift, we see that the correlation increases with increasing lead time. For a 15-day time-shift 
we see that the correlation decreases with increasing lead time, such that at long lead times, there is 
actually a negative correlation. This contrast between the 1-day and 15-day shifted correlations means 
that the temperature timeseries is more complicated than a simple AR process. However, we can still 
apply the general principles derived from the AR process experiments. 

From the AR process experiments we found that if the timeseries has a large autocorrelation then 
a relatively large value of µ should be used, whereas if the timeseries has a small autocorrelation, then 
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(a) 2m temperature (b) mslp 

Figure 10: RMS errors of the (a) 2m temperature and (b) mslp, ensemble means for the three single models 
and for the raw and bias corrected multi-model ensemble, both using a simple combination. The data is 
verified globally over 250 days ending on 29 April 2008. 

a relatively small value of µ should be used. For the real data, the 1-day autocorrelation at short lead 
times is relatively small so that a small value of µ is required. However, the 15-day autocorrelation at 
long lead times, is actually negative, so that an even smaller value of µ is required. 

As the 1-day autocorrelation for the long lead time timeseries is relatively large, we would expect to 
see that if we applied bias correction using more recent data (of course this is not possible in practise), 
that we would use a larger value of µ than for the short lead time data. Similarly we would expect that 
if we applied bias correction to the short lead time timeseries using older data, that a smaller value of 
µ would be required, because the autocorrelation for a 15-day time lag is smaller (perhaps negative) 
than for a 1-day time lag. 

The results from these experiment are shown in Fig. 9. The dotted line with crosses shows the 
optimal values for µ for the 15-day timeseries computed with a range of recent data times. If the 
recent data is only from the previous day then the optimal value for µ is close to one, whereas if the 
recent data is from longer lead times, then the optimal value for µ is much smaller (here, taking the 
lowest value tried, 0.0001 - in fact there may be no value of µ that actually gives an improvement over 
the raw data). For the 6-day timeseries, the optimal value for µ when the most recent data is from 
the previous day is about 0.4 (lower than for the 15-day timeseries) because the data has a smaller 
autocorrelation). This value then reduces as the most recent data increases to 7 days. This is because 
the autocorrelation for say a 4-day time lag is smaller. For the 2-day timeseries data, there is little 
change in the optimal value for µ. There is perhaps a slight increase, but this may be due to the small 
sample size. 

In conclusion, we see that a smaller value of µ is required at longer lead times. In fact, at longer 
lead times the 1-day autocorrelation is larger, so we might expect a larger value of µ to give better 
results. Indeed, if we could use observations of the future, then we would be able to use a large value 
of µ and subsequently obtain a better bias correction at longer lead times. However, as there is a 
larger time lag from the most recent observation, and there are smaller autocorrelation values for larger 
time-shifts, a smaller value of µ gives better results. 
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Figure 11: Plots of similarity, S, on 29 April 2008, for 2m temperature (top: a,b) and mslp (bottom: c,d), at 
T+48 (left: a,c) and at T+336 (right: b,d). S is defined by equation (8). High values (shaded grey) indicate 
that the models are dissimilar, low values (shaded white) indicate that the models are similar. 

3.2 Simple combination 

The aim of a multi-model ensemble is to give a better representation of the uncertainty, arising from 
both the initial conditions and from the forecast model. We might expect that the different ensembles 
might span different parts of phase space, according to their different biases, and hence that these 
biases would cancel each other out in the multi-model ensemble mean. Therefore, we address the 
question of whether a raw multi-model ensemble-mean is better than a bias-corrected single-model 
ensemble-mean. And further, whether a bias-corrected multi-model ensemble-mean is better than a 
raw multi-model ensemble-mean. 

For all the experiments in this subsection we assume that the weights given to each model are 
equal, wk = 1. We also apply bias correction using µ = 0.01. Figure 10a shows the RMS errors of 
the ensemble means for the three bias corrected ensembles, and also for the raw and bias-corrected 
multi-model ensemble, for 2m temperature. We see that the three component-model ensembles have 
similar errors, with the ECMWF ensemble having a slightly better performance. 

The raw multi-model ensemble is the combination of the raw ensembles, and has even lower RMS 
errors than any of the bias-corrected component model ensembles. Thus the benefits from the multi-
model combination outweigh the benefits from bias correction. Figure 10a also shows a bias-corrected 
multi-model ensemble, which is the combination of the bias-corrected ensembles. This has slightly 
smaller RMS errors, particularly at the shorter lead times. However, the impact of the bias correction 
on the multi-model ensemble is far less than on the single model ensembles. 

The effect of the multi-model ensemble combination for mslp is shown in Fig. 10b. Both the raw 
and bias-corrected multi-model ensembles have very similar RMS errors to the ECMWF ensemble. 

These results show that the impact of multi-model combination is equal to or better than the 
impact of bias correction. This means that the impact of bias correction is not only to cancel the 
biases between the two models. There are a number of other reasons that the multi-model ensemble is 
giving a better performance over the bias-corrected single-model ensemble. The first is that the multi­
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Figure 12: Reliability and sharpness diagrams for 2m temperature greater than the climatological mean, at 
T+240. The bias-corrected single model ensembles for (a) ECMWF, (b) Met Office and (c) NCEP and the 
bias-corrected multi-model ensemble (d) are shown. The data is globally averaged over 120 days until 29 April 
2008. 

model ensemble is cancelling errors in the model that can not be predicted using bias correction. That 
is, the multi-model ensemble is cancelling out the random, unpredictable components of the errors. 
The second reason is that the multi-model ensemble always performs better than the worst model. As 
the three ensembles have similar levels of skill, then if assume that the identity of the worst model 
changes for different situations, then the multi-model ensemble will have better skill. 

These reason show that the multi-model ensemble gives more benefit for 2m temperature than for 
mslp. For both variables, the three single models have similar levels of skill although, again for both 
variables, the ECMWF model can be identified as having slightly better skill. Thus, the reason can 
not be solely attributed to the fact that a best model can be identified and we must concluded that it 
is also associated with the similarity of the models. If the models are identical, then there can be no 
error cancellation. However, if the models are dissimilar, then the multi-model ensemble give benefits 
from the cancelling of errors between the models. It is likely that there is less similarity between the 
2m temperature forecasts than the mslp forecasts, over both time and space. This is because there is 
a larger impact on 2m temperature from the model parameterizations such as land-surface schemes, 
of which there is a large variety between different forecast models (e.g. Pitman et al., 1999). 

It is important to emphasise the difference between the similarity of the forecasts, and the similarity 
of the forecast skill. In fact, for the multi-model combination to give an improvement over the single 
model, it is important for the models to have similar levels of forecast skill. So, in conclusion, it is 
necessary for the models to have dissimilar forecasts, but similar levels of forecast skill. This conclusion 
has also been reached by Hagedorn et al. (2005), who summarised that “the key to the success of the 
multi-model concept lies in combining independent and skillful models, each with its own strengths and 
weaknesses”. 
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3.2.1 Similarity 

The results from the simple combination showed that there is a greater benefit from the multi-model 
ensemble for 2m temperature than there is for mslp. This difference was partly attributed to the 
differences in the similarities of the forecast errors, so that in comparison to mslp, 2m temperature has 
less similarity between the forecast errors, so that there is more cancelling of errors. 

The plots in Fig. 11 show the similarity values for mslp and 2m temperature, at two times T+48 
and T+336. The dark shading indicates regions that have a large value of S (models are not similar) 
and the light shading indicates regions that have a small value of S (models are similar). 

We see that the forecasts for mslp are more similar than for 2m temperature at both T+48 and 
T+336. The dissimilarity between the temperature forecasts can perhaps be attributed to the dif­
ferences in the land surface schemes in the two models, whereas mslp will be governed more by the 
dynamical cores, which are perhaps more similar. 

We also see that the models at T+336 are more similar than at T+48. This shows that there is a 
good spread in analyses at the initial time, but as the forecasts evolve, they develop the same errors 
so that the forecasts become similar to each other and do not span the full phase space. 

The plots also show that the forecasts exhibit more similarity in the extratropics, than in the tropics. 
This is perhaps because the errors in the extratropics are dominated by dynamical errors, and there are 
very little differences in the dynamics of the three models, whereas errors in the tropics are more likely 
to be a result of differences in convection schemes, which have more differences between the three 
models. 

3.3 Brier Skill Scores 

We now look at the effect of the combination on the probabilistic prediction of the ensemble. We 
compute reliability tables based on probabilities above climatological thresholds such as the mean, or 
the 90th percentile. This climatology data is based on the ERA-40 reanalysis database, and provided 
by M. Leutbecher, ECMWF. If we were to use fixed thresholds then we would expect to see false skill 
in the Brier skill scores, because for example the temperatures over the tropics will always be greater 
than 0◦C, and hence the forecasts are always correct (Hamill and Juras, 2006). By using climatological 
thresholds and assuming that the model climatology is the same as the ERA-40 climatology, we can 
neglect this effect, and average the verification data globally, giving a large sample size. 

The reliability and sharpness diagrams are shown in Fig. 12. The three single models are showing 
an over forecasting bias for low frequencies, and an under-forecasting bias for high frequencies, as a 
result of poor resolution. The ensembles also have a relatively high sharpness, with large frequencies 
at the two extremes. The multi-model ensemble has less sharpness, as indicated by a flatter sharpness 
graph, but has a higher resolution and reliability, as indicated by the solid line (actual) being closer to 
the dotted line (ideal). These improvements in both the reliability and the resolution lead to a higher 
overall Brier skill score. 

The corresponding Brier skill scores for the range of ensembles are shown as a function of lead time 
in Fig. 13. The Brier skill scores for the three single models, shown in grey, decrease with increasing 
lead time, as expected. The scores are similar for all three ensembles, although the ECMWF is slightly 
better. The multi-model, shown by the dotted black line and lying underneath the solid black line, has 
a much better performance, at all lead times, with a 1-day increase in predictability at day 7 (the skill of 
the multi-model at day 8 is the same as the skill of the best single model at day 7). This improvement 
is also seen in both the reliability and the resolution components. 

The Brier skill scores for mslp are shown in Fig. 14. In this case the ECMWF model can be clearly 
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Figure 13: (a) Brier skill score, (b) reliability component and (c) resolution component, for 2m temperature 
greater than the climatological mean as a function of lead time. The grey lines show the bias-corrected single-
model ensembles (ECMWF, Met Office and NCEP) and the black lines show three different multi-model 
ensembles: simple combination (dotted), weighted (dashed), weighted and variance-adjusted (solid). The 
data is globally averaged over 120 days until 29 April 2008. 

identified as the best model, and the multi-model Brier skill scores give only a slight improvement on 
the ECMWF model. 

The Brier skill scores for 2m temperature, but this time using the 90th percentile as the threshold 
rather than the mean, are shown in Fig. 15. In a similar way to the scores for temperature using 
the mean threshold, the multi-model gives a considerable improvement at all lead times, with a 2-day 
increase in predictability at day 7. 

3.4 Weighted combination 

We now examine the impact of model-dependent weights. The mean-square-error, used to calculate 
the weights, is estimated using a running mean with update parameter µ = 0.01. 

The γ/MSEk component of the weights for 2m temperature are shown in Fig. 16, for two different 
lead times. The values of γ are chosen so that these components sum to 3. To make a clear assessment 
of the individual model skills, we have not included the Nk component, that accounts for the similarity 

T̃  
k 

and the number of members, in the plots. However, it is included in the weighted multi-model ensemble 
verification results. The grey and black shaded regions show the regions in which the most weight is 
given, whereas the white and dotted regions show the regions in which less weight is given. In general, 
we see that more weight is given to the ECMWF model in the extratropics, whereas more weight is 
given to the NCEP model in the tropics. We also see ocean/land contrasts so that more weight is given 
to the ECMWF model over the Amazon, in comparison to the other two models, and flow-dependent 
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Figure 14: As Fig. 13 but for mslp greater than the climatological mean.


Figure 15: As Fig. 13 but for 2m temperature greater than the 90th percentile. 
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Exp. Description Weight given to single model means 
MM1 

MM2 

combine means with equal weights 

combine means with unequal weights (based on 
RMS error) 

wk = 1 

wk = 
γ 

MSEk 

MM3 

MM4 

combine members with equal weights 

combine members with unequal weights (based 
on RMS error) 

wk = 
Nk 

T 
wk = 

Nk 

T 
γ 

MSEk 

MM5 combination based on similarity and RMS error. wk = 
Nk 

T̃k 

γ 
MSEk 

Table 2: Different combination methods. wk is the weight given to the ensemble mean for model k, MSEk is 
the mean-square-error of the bias-corrected single model ensemble mean, γ is a normalization factor to ensure 
that the weights sum to the number of models, Nk is the number of members for model k, T is the average 
number of members (eq(11)), and T̃k is the effective average number of members, for model k (eq(13)). 

differences such as the in the ITCZ region over the eastern Pacific, where more weight is given to the 
ECMWF model than the Met Office model. 

Generally, the weights are relatively close to one and the probabilities given by the component 
models are also relatively similar to one another, so the application of the weights make only a slight 
modification to the probability values, and hence only a slight modification to the overall verification 
scores. The impacts of the model-dependent weights on the Brier skill scores are shown in Figs. 13 to 
15, by the dashed line. For the mean thresholds, the model-dependent weights have very little impact. 
However, more of an impact is made for the 90th percentile threshold (Fig. 15). In particular, at short 
lead times, the model-dependent weights make an improvement in the ensemble reliability, whereas 
at longer lead times, the model-dependent weights are detrimental to the ensemble reliability. This 
negative impact at longer lead times is most likely due to a similar effect that was seen in the the bias 
correction results, in that there is a longer time-lag between the most recent data and the forecast 
time. 

3.4.1 Comparison of different weights 

The weights that have been specified in the multi-model ensemble are based on both the skill of the 
model and a measure of the similarity between the models. We now investigate the impact if a different 
set of weights are used. The five different weighting methods are listed in table 2. The results are 
assessed using the RMS errors of the multi-model ensemble means. The difference in the RMS errors 
of the multi-model ensemble means from using different model weightings to those from a simple 
combination of the single model means (MM1), are shown in Fig. 17. 

For mslp (Fig.17a), we see that the RMSE difference for MM2 is negative at all lead times, with 
larger differences at short lead times, showing that the weighting using the RMS errors is giving an 
improvement over giving equal weight to each model. Similarly, we see that MM4 has better skill 
than MM3, showing that when combining the ensemble members, the MSE based weights also give an 
improvement. At all lead times, and for both equal and MSE-based weights, the combination of the 
ensemble members gives lower RMS errors than the combination of ensemble means. For temperature 
(Fig.17b), we see again that MM2 has better skill than MM1,and that MM4 has better skill than MM3, 
showing that the MSE-based weights are giving an improvement. However, in contrast to mslp, we see 
that at short lead times, the combination of members gives worse skill than the combination of the 
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Figure 16: Weights plots on 29 April 2008, for 2m temperature, at T+48 (left a,c,e) and at T+336 (right 
b,d,f) and for the three different models: Met Office (top a,b), ECMWF (centre c,d) and NCEP (bottom e.f). 
These weights are computed as γ/MSEk where γ is a normalization factor. 
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(a) mslp (b) 2m temperature 

Figure 17: Percentage relative difference in RMS errors from that of the simple multi-model average (MM1) 
for 4 different methods for (a) mslp and (b) 2m temperature, as a function of lead time (days). Verification 
is globally averaged over 160 days of data ending on 29 April 2008. The grey dash line for MM4 is very close 
to the solid line for MM5. 

ensemble means. At long lead times, the RMS errors are similar to each other. 
Thus, for mslp we see that it is better to combine the members, whereas for temperature, it is 

better to combine the means. This difference is due to the similarities between the forecasts. As shown 
in Fig.11, we saw that, in general, there is more similarity between the mslp forecasts than there is 
between the temperature forecasts. The combination to produce multi-model MM5 uses weights that 
are also based on the similarity index, as used in the multi-model that was verified with the Brier skill 
scores. This actually gives the best overall RMS errors for both variables. For mslp, MM5 has a similar 
level of skill to MM4, which was the optimal out of the 4 different combinations. For temperature, MM5 
has a similar level of skill to MM2 at short lead times, and is higher than all the other combinations at 
longer lead times. 

In conclusion, we have seen that the optimal weighting for the multi-model ensemble is based on 
both the skill and similarities of the component model ensembles. However, the impact of the weights 
is very small, with improvements in the RMS errors of up to only 4 %. 

3.5 Variance Adjustment 

We finally discuss the impact of the variance adjustment on the multi-model ensemble. An example 
of the inflation factors are shown in Fig. 18. We see that the inflation factor for the between model 
variance, β lies between 0.0 and 1.0 over the whole globe, showing that the between-model variance 
needs to be reduced, with larger reductions over the tropics. There is a different inflation factor α for 
the within-model variance for each model. In all three models, there is a large variance inflation over 
the ITCZ region over the Eastern Pacific. However, there are also regions where there are differences 
between the models. For example, for the Met Office model, the within-model variance is reduced 
in the extra tropics and at the poles, whereas for the NCEP model, the variance is reduced in the 
tropics. The most striking difference is that for the ECMWF model, there is a greater area over which 
the within-model variance is reduced. This region is mainly over the tropical and mid-latitude oceans. 
There are two reasons that the inflation factor for the ECMWF is smaller in these regions. The first is 
that the raw ECMWF ensemble generally has a larger within-model variance than the raw Met Office 
and NCEP ensembles. The second is that the ECMWF ensemble mean generally has a smaller between 
model-variance. That is, the ECMWF ensemble mean is closer to the multi-model ensemble mean than 
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Figure 18: Variance adjustment factors on 29 April 2008, for 2m temperature, at T+240. The within-model 
inflation factors α are shown for (a) Met Office (b) ECMWF and (c) NCEP and the between-model variance 
β is shown in (d). Values below 1 (white and light grey) indicate that the variance should be decreased, whilst 
values above 1, (dark grey and black) indicate that the variance should be increased. 

the other component models. From constraint 18, this results in a smaller within-model variance. 
These results highlight that it is important to allow for different inflation factors for different models 

when adjusting the variance of the multi-model ensemble. Some ensembles may already have a much 
better calibrated spread than other models, and hence need to be treated differently. If every model 
was treated identically, then the multi-model ensemble spread might be dominated by the members 
from a particular model. 5 

The impact of the variance adjustment is shown by the Brier skill scores in Figs. 13 to 15. In fact 
there is again generally little impact on the Brier skill scores. For 2m temperature greater than the 90th 

percentile, we see an improvement in the reliability at short lead times, but a degradation at longer 
lead times. The reason that we don’t see a significant improvement in the Brier skill scores is that 
the raw multi-model ensemble is already generally well calibrated, so that the variance adjustment is 
only making small adjustments. At short lead times, the calibration data remains a good sample so 
that it is possible to use the calibration parameters to make an improvement. However, at long lead 
times, the calibration data is no longer a good sample, and as only small adjustments are required, 
these adjustments actually make the skill worse. Following the interpretation of the bias correction 
results, it is likely that we would no longer degrade the forecast if a smaller value of µ were used in the 
moving-average. However, we are still unlikely to make any significant improvement. 
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4 Discussion 

4.1 Benefits of multi-model ensembles 

We have seen that the multi-model ensemble does give benefits over a single-model ensemble, with 
larger improvements for 2m temperature than for mslp. Although not shown, the results for 500hPa 
height are similar to those for mslp, showing a small improvement from the multi-model combination. 
These small benefits for 500hPa height are in agreement with the studies by Park et al. (2008). However, 
we should emphasise here that the small benefits of the multi-model ensemble for 500hPa height does 
not necessarily mean that the multi-model ensemble gives small benefits for all variables. Indeed, we 
have found here that the benefits are much larger for 2m temperature. 

This returns us to the question of why a multi-model ensemble should give benefits over a single 
model ensemble. For a multi-model ensemble to have better skill than the component model ensembles 
then we require that the component model ensembles have similar levels of skill but dissimilar types 
of forecast errors, as noted by Hagedorn et al. (2005). This ensures that the errors cancel each other 
out when combined in the multi-model ensemble. We have argued in this paper that although the 
component models have similar levels of skill, they also often have similar errors. 

The issue of similarity between the component-model forecast errors has also been discussed by 
Tebaldi and Knutti (2007) in the context of climate prediction, who concluded that although some 
errors in a model might be random, others are the result of our limited understanding of the process 
and our ability to parametrize them efficiently in coarse resolution models. 

For some variables, we have seen that the benefits of the multi-model ensemble are small, which 
draws us to the question of whether resources should be put into improving the best ensemble, or 
developing multi-model ensembles. Buizza et al. (2003) found that a higher resolution single-model 
ensemble performed better than a low resolution poor mans ensemble, so it would seem that it is 
possible for a single model ensemble to outperform a multi-model ensemble containing poor models. 
However, even with sophisticated stochastic physics schemes, it is unlikely that we will ever be able to 
truly represent the model uncertainty. Therefore, we should continue to pursue research in multi-model 
ensembles. 

4.2 Future Work 

The issue of similarity between models guides the future development of multi-model ensembles. If 
multi-model ensembles are to truly capture the forecast model uncertainty, then we must ensure that 
we are combining forecasts that have significant differences from each other. For example, when 
determining which models/forecasts to use in a multi-model ensemble then we should examine both 
the skill and similarity of the forecasts. It may be of value to blend forecasts from different model grid 
resolutions together, even if the lower resolution forecasts have slightly less skill, if this gives a better 
representation of the model uncertainty. 

The issue of similarity also affects the choice of variables to combine in a multi-model ensemble; 
it is better to combine variables for which there is less similarity between models. Our understanding 
of model ’dynamics’ is generally consistent throughout all forecast models: the forecast models have a 
coded representation of the same underlying physical equations. This means that there is a high degree 
of similarity between variables such as 500hPa height and mslp. However, we have less understanding of 
how to represent the model ’physics’, such as convection, precipitation, and land surface processes. The 
greater variety between the model physics in forecast models means that there is less similarity between 
fields such as 2m temperature. Although not studied here, it is likely that there is also less similarity 
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between fields such as precipitation and sunshine duration, and therefore that we would see larger 
benefit from a multi-model ensemble for these fields. Fortunately, these are the type of variable that 
are of particular use to end users, hence further increasing the potential of the multi-model technique. 

Further improvements could be made to the calibration method presented. For example, the sim­
ilarity measure presented here assumes that the ensembles have similar levels of skill. In fact, if the 
ensembles have different levels of skill then the similarity measure may also be measuring this difference. 
It would be better if the similarity measure could be modified so that it measures only the similarity in 
the forecast errors. Another improvement would be in the definition of the model-dependent weights. 
In the current implementation, the moving-average estimates produce weights that have a high spatial 
variability, which can lead to noisy multi-model fields. Future work should aim to take into account the 
spatial correlations of the variables, perhaps through increased temporal filtering (using a smaller value 
of µ) or spatial averaging. A further problem with the calibration parameters is that they are based 
on the most recent data, and hence if there is regime change, they may no longer be relevant. The 
forecasting of such regime changes is in fact one of the prime purposes of medium-range forecasting. 
Therefore it would be of benefit if regime-dependent calibration parameters could be estimated, for 
example using a reforecasting approach (Hamill et al., 2004). 

When examining the benefits of the multi-model ensemble against a calibrated single model ensem­
ble, we only applied bias correction to the single-model ensemble. The benefit of variance adjustment 
on the single-model ensemble was not examined. As variance adjustment will not affect the ensemble 
mean, the conclusions from the RMS error results would not be affected. However, variance adjustment 
might improve the Brier skill scores of the single-model ensembles, hence reducing the benefit of the 
multi-model ensemble. This aspect should be investigated in future work. 

5 Conclusions 

A calibrated, global, 15-day multi-model ensemble has been developed as part of the Met Office’s 
contribution to THORPEX. The multi-model ensemble blends together three single-model ensembles: 
ECMWF, Met Office and NCEP, and for three different variables: 500hPa height, mslp and 2m tem­
perature. Calibration parameters are estimated for every lead time, variable and grid point using a 
moving-average of past data. These parameters are used to correct the bias of the single model en­
semble means, define the model-dependent weights and apply variance-adjustment to the multi-model 
ensemble variance. 

Verification against multi-model analyses includes RMS errors, and Brier skill scores. The results 
show that: 

•	 The bias-correction studies highlighted that the calibration data used in the moving-average ages 
with increasing lead time. This means that a smaller update-parameter should be used at longer 
lead times. 

•	 The bias-correction of the single-model ensemble mean gives up to a 30% improvement at 24 
hours reducing to 5% at 15 days. However, there is less impact from the bias-correction on the 
multi-model ensemble mean. 

•	 The raw multi-model ensemble mean has better skill than any of the bias-corrected single-model 
ensemble means, showing that multi-model combination has more impact than calibration. This 
improvement in skill is larger for 2m temperature than for mslp and 500hPa height. 
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•	 The multi-model combination gives up to a 2-day increase in predictability at day 7, as illustrated 
by the Brier skill scores for predicting 2m temperature greater than the 90th percentile. 

•	 Different flavours of model-dependent weights were tested. The RMS errors showed that the 
optimal weights are those that consider both the skill and the similarities of the component-
model ensembles. 

•	 The model-dependent weights and variance-adjustment only gave an improvement up to day 
6. This improvement was relatively small, and was only exhibited in the verification of extreme 
values. The weights and variance adjustment was detrimental at longer lead times because the 
calibration data had aged so that it was no longer a representative sample. 

In summary, the results show that a simple combination of ensembles from different operational 
centres can give a significant improvement in the predictive skill. Further calibration such as bias 
correction and variance adjustment have been found to give further slight improvements, but the 
greatest benefit is from the combination of the ensembles, and hence that the combination of ensembles 
is a promising approach for future development. As the greatest benefits have been found for 2m­
temperature, future research is focusing on the development of the multi-model ensemble for further 
surface ’weather-related’ variables. 
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